Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (4) : 737-753    https://doi.org/10.1007/s11707-021-0893-x
RESEARCH ARTICLE
Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China
Jianwei LV1,2, Songhang ZHANG1(), Ning YANG3(), Chunbo FU4, Xinlu YAN1, Yang LI1
1. School of Energy Resources, China University of Geosciences, Beijing 100083, China
2. Chinese Academy of Natural Resources Economics, Beijing 101149, China
3. Huadian Coal Industry Group Co., Ltd., Beijing 100035, China
4. Second Oil Production Plant, PetroChina Changqing Oilfield Company, Qingyang 745100, China
 Download: PDF(3452 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To investigate the paleoenvironmental controls on organic matter accumulation of Upper Paleozoic shales in the eastern Ordos Basin, China, 26 shale samples were collected from two wells drilled into the Shanxi and Taiyuan Formations. The total organic carbon (TOC) content, mineral compositions and elemental geochemistry of the samples were analyzed. Quartz (35.42%) and clay minerals (48.34%) are the dominant minerals and trace elements (Li, Cs, Cu, V, Co, and Cr) are commonly enriched in the shale samples compared to the Upper Continental Crust. C-values (ranging from 0.2 to 4.5), chemical indices of weathering (CIW) values (48.82 to 99.11), and Sr/Cu ratios (1.00 to 11.05) suggest that the paleoclimate was humid in the study area during the Late Paleozoic. Elemental redox indices (e.g., Al2O3/(Al2O3+Fe2O3), V/Cr, Ni/Co, V/(V+Ni) and U/Th) indicate a dysoxic to oxic paleoenvironment characterized by transitional sedimentary deposits in a continental margin setting. In addition, chemical index of alteration (CIA, ranging from 77.92% to 98.36%) and CIW (89.19% to 99.11%) values suggest that there was intense chemical weathering in the study area, while the Al2O3-CaO*+Na2O-K2O (A-CN-K) ternary diagram demonstrates that the shales were not subjected to potassium metasomatism during diagenesis. Al2O3/TiO2 and TiO2/Zr ratios, as well as REE characteristics suggest a felsic source rocks and discount seawater as an REE source. Ce anomalies indicate an oxic environment with terrigenous input during black shale deposition, and LREE enrichment with negative Eu anomalies suggests that both shale formations were affected by detrital input rather than hydrothermal fluids. The correlation of TOC (ranging from 1.10% to 6.39%, with an average of 2.77%) with trace elemental redox indices (Sr/Cu, Sr/Ba, V/Cr, and U/Th) indicates that a warm-humid, dysoxic to oxic environment preserved much of the organic matter.

Keywords Late Paleozoic      shale      geochemistry      paleoenvironment      eastern Ordos Basin     
Corresponding Author(s): Songhang ZHANG,Ning YANG   
Online First Date: 13 July 2021    Issue Date: 20 January 2022
 Cite this article:   
Jianwei LV,Songhang ZHANG,Ning YANG, et al. Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China[J]. Front. Earth Sci., 2021, 15(4): 737-753.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0893-x
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I4/737
Fig.1  Simplified geological map of the Ordos Basin. Wells XY1 and LY4 in the study area are shown.
Fig.2  Stratigraphic columns for wells XY1 and Well LY4.
Fig.3  SEM photomicrographs showing mineral characteristics of the shales (a): clay minerals; (b): illite; (c) and (d): pyrite).
Fig.4  Mineral characteristics of samples from Shanxi and Taiyuan Formations.
Samples Depth/m TOC LOI SiO2 TiO2 Al2O3 Fe2O3 Na2O K2O CaO MgO P2O5
LY401 1377.5 1.10 8.78 60.31 0.85 23.98 2.94 0.50 3.02 0.16 0.67 0.04
LY402 1384 1.63 14.09 58.23 0.33 17.39 7.63 0.45 2.28 1.66 1.39 0.06
LY403 1387 1.86 9.75 63.80 0.71 19.41 3.42 0.40 3.01 0.15 0.72 0.05
LY404 1389 6.39 9.07 60.27 0.97 20.55 8.98 0.30 2.41 0.24 1.15 0.13
LY405 1391.5 4.18 11.49 62.19 0.96 20.90 2.71 0.21 1.73 0.11 0.31 0.04
LY406 1430 1.72 20.25 52.10 0.89 22.36 2.97 0.20 1.59 0.15 0.53 0.06
LY407 1433.3 1.99 22.42 50.93 0.84 21.14 3.04 0.18 1.59 0.13 0.49 0.07
LY408 1456 1.27 14.92 51.58 0.84 27.12 4.70 0.18 1.09 0.11 0.28 0.06
LY409 1459 3.34 16.35 46.48 0.80 26.74 10.38 0.20 1.23 0.30 0.59 0.07
LY410 1461.8 3.82 16.33 48.43 0.99 28.81 6.57 0.19 1.16 0.11 0.29 0.06
LY411 1463 1.86 22.34 47.69 1.29 25.04 2.47 0.19 1.08 0.14 0.30 0.04
LY412 1465 1.10 25.46 51.01 1.36 19.04 1.90 0.16 1.53 0.08 0.27 0.03
XY101 1453 3.32 9.15 58.45 0.83 21.72 8.56 0.72 2.96 0.25 1.07 0.11
XY102 1455 2.89 12.88 53.47 0.68 21.62 10.53 0.65 3.39 0.23 0.92 0.11
XY103 1458 1.51 10.01 58.30 0.85 22.31 7.10 0.62 2.47 0.21 1.16 0.08
XY104 1461 1.99 13.61 52.99 0.75 19.43 14.82 0.54 1.90 0.54 1.56 0.10
XY105 1472 2.15 11.79 55.69 0.81 23.24 5.89 0.52 2.69 0.14 0.98 0.07
XY106 1477 4.65 9.22 62.65 1.11 21.62 2.98 0.31 2.25 0.27 0.60 0.05
XY107 1493 4.05 10.61 59.37 0.86 19.46 4.34 0.53 3.72 1.26 0.93 0.12
XY108 1498 4.15 20.19 42.21 0.56 15.50 3.17 0.33 1.97 15.92 1.00 0.06
XY109 1523 2.25 11.54 60.23 0.80 16.75 7.57 0.41 2.06 0.56 0.72 0.19
XY110 1529 3.10 17.70 50.69 1.21 24.90 3.75 0.20 1.78 0.10 0.58 0.05
XY111 1534 2.45 14.75 45.07 1.48 36.67 1.72 0.18 0.28 0.15 0.34 0.07
XY112 1538 2.37 9.61 60.13 1.49 25.19 1.89 0.20 1.64 0.17 0.47 0.04
XY113 1540 2.93 11.88 55.80 0.84 19.52 12.40 0.19 2.60 0.55 1.37 0.15
XY114 1543 4.01 13.90 52.62 0.80 19.36 15.07 0.21 2.28 0.77 1.47 0.16
Tab.1  TOC and major elements concentrations for the late Paleozoic shale (in wt.%)
Fig.5  Major elements plotted against Al2O3 for shale samples from the Taiyuan and Shanxi Formations.
Samples Li Be Sc V Cr Co Ni Cu Zn Ga Rb Sr Zr Nb Cs Ba Hf Ta Tl Pb Bi Th U
LY401 50.0 3.30 13.7 73.0 53.3 3.53 11.6 22.8 71.5 34.1 150.0 166.0 310 29.7 17.4 687 9.21 2.03 0.97 19.8 0.49 18.4 3.77
LY402 31.8 2.12 8.8 49.4 23.7 6.58 15.5 79.3 83.5 22.0 84.6 226.0 184 16.0 5.85 573 5.96 1.21 0.61 33.0 0.44 13.2 3.08
LY403 36.1 2.84 17.0 109.0 61.9 14.0 18.5 35.0 98.0 28.4 147.0 174.0 283 23.0 12.5 704 7.96 1.51 0.92 28.8 0.43 18.7 4.64
LY404 43.0 1.46 17.8 94.5 89.2 14.8 28.1 40.8 158.0 33.6 125.0 189.0 361 32.7 8.19 573 11.0 2.18 0.83 35.2 0.48 24.2 5.71
LY405 59.5 2.39 15.9 84.5 64.9 5.14 10.9 24.7 115.0 26.7 80.8 82.2 274 28.0 6.22 354 8.52 1.74 0.55 33.9 0.31 20.2 4.35
LY406 89.2 2.05 16.4 85.1 54.9 9.78 24.2 31.3 76.0 26.7 69.4 102.0 186 20.5 6.77 255 5.54 1.36 0.65 23.9 0.34 17.1 4.04
LY407 81.1 2.45 17.1 111.0 56.9 12.3 23.7 32.6 111.0 27.2 69.9 125.0 209 20.3 6.30 263 6.53 1.38 0.72 26.5 0.39 18.0 4.58
LY408 111.0 1.77 19.2 106.0 59.2 17.7 21.9 24.3 59.4 31.3 42.2 99.6 259 20.8 2.94 132 8.89 1.34 0.60 43.8 0.44 20.1 6.54
LY409 100.0 2.33 20.5 128.0 60.6 16.5 20.0 16.8 25.0 30.9 45.7 144.0 229 18.9 3.07 149 7.89 1.21 0.39 18.1 0.44 19.6 5.96
LY410 112.0 2.90 19.9 95.9 61.6 20.5 31.3 75.3 48.0 33.3 44.1 128.0 270 20.9 4.51 181 9.10 1.61 0.61 30.1 0.45 21.1 3.98
LY411 184.0 3.39 17.0 69.3 54.3 3.91 12.9 70.0 46.5 39.7 37.7 70.5 322 31.9 4.16 152 8.94 2.09 0.30 26.7 0.68 23.5 4.57
LY412 83.6 3.85 12.2 68.2 57.1 9.22 15.5 63.2 49.2 32.6 54.4 63.5 226 31.6 6.68 188 6.73 1.98 0.28 20.6 0.19 18.9 -
XY101 43.3 3.75 17.2 103.0 56.4 10.5 22.5 33.7 128.0 33.0 132.0 181.0 283 28.0 7.47 643 8.02 1.73 0.64 33.4 0.47 21.6 4.79
XY102 38.0 3.89 17.4 141.0 54.7 37.0 54.8 44.3 169.0 30.3 156.0 190.0 320 22.4 12.1 748 7.84 1.40 1.29 43.7 0.66 21.4 5.48
XY103 59.0 3.86 17.4 116.0 64.9 18.5 33.6 35.0 143.0 29.5 118.0 189.0 325 25.7 8.52 639 8.61 1.55 0.70 34.1 0.46 19.7 5.46
XY104 54.2 3.86 18.9 173.0 87.0 9.88 45.0 27.4 168.0 24.9 98.9 243.0 285 20.4 8.97 664 7.75 1.19 0.77 21.8 0.58 18.6 10.9
XY105 67.9 3.70 19.0 151.0 73.2 15.1 40.9 28.6 180.0 31.6 117.0 193.0 311 25.5 6.70 469 9.19 1.52 0.74 24.4 0.68 21.0 6.09
XY106 69.9 3.02 16.2 101.0 70.2 5.62 14.1 16.1 52.6 29.1 90.9 111.0 216 25.3 5.78 380 6.43 1.54 0.51 27.0 0.20 16.6 4.91
XY107 36.8 2.54 15.0 91.6 59.8 18.4 26.3 22.9 90.5 26.8 120.0 253.0 156 18.0 4.57 391 4.67 1.20 0.67 31.4 0.28 15.6 3.55
XY108 39.5 1.69 10.0 69.6 43.5 9.60 31.0 15.1 89.9 16.1 60.9 113.0 133 15.2 3.42 252 3.93 0.91 0.26 25.1 0.19 12.3 3.98
XY109 43.8 2.33 12.2 100.0 59.0 8.11 14.2 24.0 104.0 23.8 79.0 132.0 175 15.5 4.68 217 4.19 0.92 0.87 23.7 0.29 11.1 2.67
XY110 145.0 3.14 22.6 190.0 144.0 16.3 41.2 35.2 119.0 27.6 77.8 85.6 162 20.0 10.6 328 4.68 0.15 0.46 28.5 0.55 17.5 4.82
XY111 514.0 1.98 19.1 147.0 168.0 14.2 63.7 47.4 67.1 47.0 12.9 86.5 288 42.5 1.83 108 8.29 2.80 0.10 19.5 0.99 28.1 7.03
XY112 92.5 2.76 20.9 174.0 112.0 2.25 11.7 12.9 37.5 34.1 75.3 85.0 249 26.1 8.25 225 7.59 1.57 0.42 10.6 0.34 17.9 5.11
XY113 77.4 3.80 18.7 132.0 80.2 11.9 25.1 38.5 128.0 27.9 122.0 125.0 179 17.5 9.53 292 4.88 1.19 0.55 19.2 0.52 15.6 3.61
XY114 94.7 3.31 17.7 124.0 80.0 27.2 38.8 31.5 173.0 26.3 110.0 120.0 177 17.1 9.48 276 4.98 1.16 0.46 23.3 0.53 15.0 3.86
Tab.2  Trace elements concentrations (×10−6) for shale from the eastern Ordos Basin, China
Fig.6  Concentration coefficients of trace elements relative to Upper Continental Crust (from McLennan (2001)) for Taiyuan and Shanxi Formation shales from wells LY4 and XY1, eastern Ordos Basin, China.
Well Samples La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y LREE HREE REE LREE/HREE
LY4 LY401 59.1 111 13.5 51.0 8.65 1.21 6.49 1.13 6.01 1.22 3.53 0.61 4.25 0.551 33.3 244.5 23.8 268.3 10.3
LY402 51.5 99 11.5 41.4 7.53 0.99 6.24 1.14 5.86 1.23 3.39 0.65 4.10 0.607 32.9 211.5 23.2 234.7 9.1
LY403 75.5 136 15.0 50.1 7.39 1.00 6.07 1.11 6.22 1.29 3.66 0.74 4.66 0.676 33.4 285.0 24.4 309.4 11.7
LY404 96.3 177 20.8 78.0 14.4 2.50 11.3 1.94 9.96 1.99 5.11 0.98 6.29 0.792 51.9 389.0 38.4 427.4 10.1
LY405 54.0 101 11.9 44.1 8.16 1.26 6.35 1.13 6.13 1.15 2.95 0.50 3.49 0.412 29.8 220.4 22.1 242.5 10.0
LY406 69.3 132 14.4 51.7 8.28 1.52 6.47 1.06 5.71 1.23 3.15 0.55 3.92 0.540 30.9 277.2 22.6 299.8 12.3
LY407 78.1 153 16.8 61.8 10.1 1.95 7.67 1.29 6.87 1.29 3.89 0.67 4.71 0.615 36.6 321.8 27.0 348.8 11.9
LY408 90.5 162 17.8 60.4 7.94 1.23 6.97 1.29 7.88 1.70 4.74 0.89 5.85 0.818 42.4 339.9 30.1 370.0 11.3
LY409 88.8 165 19.6 75.4 13.8 3.74 11.5 1.79 9.38 1.83 5.20 0.83 6.72 0.991 52.7 366.3 38.2 404.6 9.6
LY410 83.4 154 17.5 62.1 8.83 1.15 6.29 1.21 7.07 1.51 4.16 0.74 5.46 0.687 39.1 327.0 27.1 354.1 12.1
LY411 60.4 101 10.5 32.0 4.90 0.69 4.62 1.11 6.48 1.27 3.39 0.71 4.97 0.704 34.7 209.5 23.3 232.7 9.0
LY412 65.0 109 11.8 39.0 6.02 0.76 4.73 0.89 4.52 0.89 2.56 0.45 3.19 0.478 22.7 231.6 17.7 249.3 13.1
XY1 XY101 83.4 155 17.4 62.9 10.5 1.60 8.92 1.52 8.19 1.61 4.69 0.84 5.34 0.711 47.1 330.8 31.8 362.6 10.4
XY102 85.3 154 16.5 56.9 9.01 1.26 8.15 1.40 7.92 1.63 4.72 0.86 5.35 0.721 44.6 322.9 30.8 353.7 10.5
XY103 84.6 167 19.4 76.7 14.7 2.28 11.30 1.92 9.64 1.82 5.19 0.90 5.49 0.73 52.9 364.7 37.0 401.7 9.9
XY104 92.4 181 20.8 80.7 15.0 3.02 12.40 2.15 10.8 2.03 5.74 0.99 6.21 0.829 63.7 392.9 41.2 434.1 9.6
XY105 87.1 164 18.4 68.8 12.0 1.99 10.10 1.78 9.40 1.78 5.05 0.86 5.17 0.679 49.8 352.3 34.8 387.1 10.1
XY106 53.9 101 10.8 38.6 6.22 1.06 5.55 0.92 4.82 0.96 2.72 0.46 2.78 0.394 25.2 211.6 18.6 230.2 11.4
XY107 63.7 118 13.0 47.5 7.77 1.38 6.18 0.95 4.86 0.97 3.03 0.50 3.05 0.409 26.5 251.4 20.0 271.3 12.6
XY108 40.3 68 7.8 27.8 4.39 0.68 3.79 0.63 3.48 0.71 2.14 0.38 2.32 0.314 21.8 148.7 13.8 162.5 10.8
XY109 47.6 92 10.0 37.2 6.34 1.21 5.48 0.89 4.74 0.92 2.82 0.50 3.11 0.437 27.3 194.1 18.9 213.0 10.3
XY110 50.5 107 11.6 45.0 8.57 1.62 6.47 1.05 5.31 1.01 2.96 0.53 3.34 0.458 27.3 224.3 21.1 245.4 10.6
XY111 32.0 59 6.9 26.1 5.35 1.14 4.50 0.86 5.20 1.05 3.08 0.59 3.74 0.510 30.7 130.8 19.5 150.3 6.7
XY112 33.4 60 7.1 26.5 5.06 1.07 4.51 0.87 4.78 0.90 2.56 0.44 2.81 0.378 25.3 133.4 17.3 150.7 7.7
XY113 55.1 108 12 45.6 8.12 1.49 7.21 1.22 6.43 1.26 3.69 0.647 3.99 0.533 35.9 230.3 25.0 255.3 9.2
XY114 48.9 98.7 10.7 40.9 7.63 1.57 6.98 1.16 6.08 1.19 3.45 0.599 3.62 0.482 34.6 208.4 23.6 232.0 8.9
Tab.3  Rare earth elements concentrations (×10−6) and relative ratios for shale from the eastern Ordos Basin, China
Fig.7  PAAS-normalized REE patterns of shale samples from the Shanxi and Taiyuan Formations from wells LY4 and XY1, eastern Ordos Basin, China.
Fig.8  Plot of Al2O3 vs. TiO2 for Late Paleozoic shales from the eastern Ordos Basin.
Fig.9  Plot of TiO2 vs. Zr for Late Paleozoic shales from the eastern Ordos Basin.
Fig.10  A-CN-K ternary diagram for shale samples from the eastern Ordos Basin. Mineral compositions: Pl, plagioclase; Ksp, K-feldspar; UCC, Upper Continental Crust; A, Al2O3; CN, CaO*+Na2O; K, K2O.
Fig.11  CIW– C-value diagram for Taiyuan and Shanxi Formations shale samples. CIW, chemical indices of weathering; C-value, (Fe+Mn+ Cr+Ni+ V+ Co)/(Ca+Mg+ K+ Na+ Sr+ Ba), ×10−6.
Fig.12  Stratigraphic profiles of geochemical indicators from well LY4.
Fig.13  Stratigraphic profiles of geochemical indicators from well XY1.
Samples CIA* CIW* C-value Sr/Ba Sr/Cu Al2O3/TiO2 V/Cr Ni/Co V/(V+Ni) U/Th Ce/Ce* Eu/Eu* LaN/YbN
LY401 84.84 97.32 0.67 0.24 7.28 28.28 1.37 3.29 0.86 0.20 0.95 0.75 1.02
LY402 74.08 89.19 1.31 0.39 2.85 52.07 2.08 2.36 0.76 0.23 0.92 0.67 0.93
LY403 82.64 97.24 0.79 0.25 4.97 27.38 1.76 1.32 0.85 0.25 1.30 0.70 1.19
LY404 86.45 97.44 2.17 0.33 4.63 21.25 1.06 1.90 0.77 0.24 0.89 0.91 1.13
LY405 89.98 98.51 1.14 0.23 3.33 21.84 1.30 2.12 0.89 0.22 0.90 0.82 1.14
LY406 91.05 98.42 1.20 0.40 3.26 25.21 1.55 2.47 0.78 0.24 1.16 0.97 1.30
LY407 91.03 98.54 1.27 0.48 3.83 25.32 1.95 1.93 0.82 0.25 1.11 1.03 1.22
LY408 94.62 98.95 2.81 0.75 4.10 32.13 1.79 1.24 0.83 0.33 1.40 0.77 1.14
LY409 92.88 98.14 4.50 0.97 8.57 33.55 2.11 1.21 0.86 0.30 0.84 1.38 0.97
LY410 94.65 98.97 3.72 0.71 1.70 29.19 1.56 1.53 0.75 0.19 1.32 0.72 1.13
LY411 93.91 98.72 1.44 0.46 1.01 19.41 1.28 3.30 0.84 0.19 1.36 0.67 0.90
LY412 90.55 98.76 0.93 0.34 1.00 14.00 1.19 1.68 0.81 - 1.31 0.67 1.50
XY101 82.65 95.76 0.79 0.28 5.37 26.17 1.83 2.14 0.82 0.22 1.03 0.77 1.15
XY102 81.54 96.10 0.90 0.25 4.29 31.75 2.58 1.48 0.72 0.26 1.15 0.69 1.17
XY103 84.93 96.26 0.72 0.30 5.40 26.31 1.79 1.82 0.78 0.28 0.83 0.82 1.14
XY104 84.06 94.77 1.40 0.37 8.87 25.98 1.99 4.55 0.79 0.58 0.85 1.03 1.10
XY105 85.79 97.26 0.43 0.41 6.75 28.62 2.06 2.71 0.79 0.29 0.96 0.84 1.24
XY106 86.72 97.39 0.40 0.29 6.89 19.48 1.44 2.51 0.88 0.30 1.10 0.84 1.43
XY107 73.78 91.56 0.20 0.65 11.05 22.68 1.53 1.43 0.78 0.23 1.09 0.93 1.54
XY108 83.00 48.82 0.06 0.44 7.48 27.53 1.60 3.23 0.69 0.32 1.07 0.78 1.28
XY109 82.89 94.57 0.23 0.61 5.50 20.99 1.69 1.75 0.88 0.24 1.00 0.96 1.13
XY110 91.50 98.82 0.44 0.26 2.43 20.58 1.32 2.53 0.82 0.28 0.92 1.01 1.11
XY111 98.14 99.11 0.86 0.80 1.82 24.78 0.88 4.49 0.70 0.25 0.78 1.08 0.63
XY112 91.55 98.54 0.37 0.38 6.59 16.91 1.55 5.20 0.94 0.29 0.81 1.04 0.88
XY113 83.82 96.38 1.21 0.43 3.25 23.13 1.65 2.11 0.84 0.23 0.90 0.91 1.02
XY114 83.55 95.22 1.52 0.43 3.81 24.08 1.55 1.43 0.76 0.26 0.87 1.00 1.00
Tab.4  Selected geochemical indicators for shale from the eastern Ordos Basin, China (%)
1 T J Algeo, J B Maynard (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206(3–4): 289–318
https://doi.org/10.1016/j.chemgeo.2003.12.009
2 M A Arthur, B B Sageman (1994). Marine black shales: depositional mechanisms and environments of ancient deposits. Annu Rev Earth Planet Sci, 22(1): 499–551
https://doi.org/10.1146/annurev.ea.22.050194.002435
3 F Bai, Y Sun, Y Liu, M Guo (2017). Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 187: 1–8
https://doi.org/10.1016/j.fuel.2016.09.012
4 Y Bai, Z Liu, P Sun, R Liu, X Hu, H Zhao, Y Xu (2015). Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China. J Asian Earth Sci, 97: 89–101
https://doi.org/10.1016/j.jseaes.2014.10.008
5 R Bezard, R Hébert, C Wang, J Dostal, J Dai, H Zhong (2011). Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet. Lithos, 125(1–2): 347–367
https://doi.org/10.1016/j.lithos.2011.02.019
6 D Birk, J C White (1991). Rare earth elements in bituminous coals and underclays of the Sydney Basin, Nova Scotia: element sites, distribution, mineralogy. Int J Coal Geol, 19(1–4): 219–251
https://doi.org/10.1016/0166-5162(91)90022-B
7 J A Chermak, M E Schreiber (2014). Mineralogy and trace element geochemistry of gas shales in the United States: environmental implications. Int J Coal Geol, 126: 32–44
https://doi.org/10.1016/j.coal.2013.12.005
8 S Dai, T Li, V V Seredin, C R Ward, J C Hower, Y Zhou, M Zhang, X Song, W Song, C Zhao (2014). Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. Int J Coal Geol, 121: 53–78
https://doi.org/10.1016/j.coal.2013.11.001
9 S Dai, D Ren, C Chou, S Li, Y Jiang (2006). Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int J Coal Geol, 66(4): 253–270
https://doi.org/10.1016/j.coal.2005.08.003
10 S Dai, V V Seredin, C R Ward, J C Hower, Y Xing, W Zhang, W Song, P Wang (2015b). Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner Depos, 50(2): 159–186
https://doi.org/10.1007/s00126-014-0528-1
11 S Dai, J Yang, C R Ward, J C Hower, H Liu, T M Garrison, D French, J M K O’Keefe (2015a). Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol Rev, 70: 1–30
https://doi.org/10.1016/j.oregeorev.2015.03.010
12 E Douville, P Bienvenu, J L Charlou, J P Donval, Y Fouquet, P Appriou, T Gamo (1999). Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems. Geochim Cosmochim Acta, 63(5): 627–643
https://doi.org/10.1016/S0016-7037(99)00024-1
13 X Fu, J Wang, Y Zeng, F Tan, J He (2011a). Geochemistry and origin of rare earth elements (REEs) in the Shengli River oil shale, northern Tibet, China. Chemistry, 71(1): 21–30
https://doi.org/10.1016/j.chemer.2010.07.003
14 X Fu, J Wang, Y Zeng, F Tan, X Feng (2011b). Concentration and mode of occurrence of trace elements in marine oil shale from the Bilong Co area, northern Tibet, China. Int J Coal Geol, 85(1): 112–122
https://doi.org/10.1016/j.coal.2010.10.004
15 P Gao, G Liu, C Jia, A Young, Z Wang, T Wang, P Zhang, D Wang (2016). Redox variations and organic matter accumulation on the Yangtze carbonate platform during Late Ediacaran–Early Cambrian: constraints from petrology and geochemistry. Palaeogeogr Palaeocl Palaeoeco, 450: 91–110
https://doi.org/10.1016/j.palaeo.2016.02.058
16 M H Hakimi, W H Abdullah, S G Sia, Y M Makeen (2013). Organic geochemical and petrographic characteristics of Tertiary coals in the northwest Sarawak, Malaysia: implications for palaeoenvironmental conditions and hydrocarbon generation potential. Mar Pet Geol, 48: 31–46
https://doi.org/10.1016/j.marpetgeo.2013.07.009
17 S Han, K Hu, J Cao, J Pan, F Xia, W Wu (2015). Origin of early Cambrian black-shale-hosted barite deposits in South China: mineralogical and geochemical studies. J Asian Earth Sci, 106: 79–94
https://doi.org/10.1016/j.jseaes.2015.03.002
18 S Han, J Zhang, C Wang, X Tang (2018). Elemental geochemistry of lower Silurian Longmaxi shale in southeast Sichuan Basin, South China: constraints for paleoenvironment. Geol J, 53(4): 1458–1464
https://doi.org/10.1002/gj.2966
19 K I Hayashi, H Fujisawa, H D Holland, H Ohmoto (1997). Geochemistry of approximately 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta, 61(19): 4115–4137
https://doi.org/10.1016/S0016-7037(97)00214-7 pmid: 11540490
20 J He, W Ding, J Zhang, A Li, W Zhao, P Dai (2016). Logging identification and characteristic analysis of marine–continental transitional organic-rich shale in the Carboniferous-Permian strata, Bohai Bay Basin. Mar Pet Geol, 70: 273–293
https://doi.org/10.1016/j.marpetgeo.2015.12.006
21 T He, S Lu, W Li, D Sun, W Pan, B Zhang, Z Tan, J Ying (2020). Paleoweathering, hydrothermal activity and organic matter enrichment during the formation of earliest Cambrian black strata in the northwest Tarim Basin, China. J Petrol Sci Eng, 189: 106987
https://doi.org/10.1016/j.petrol.2020.106987
22 T He, S Lu, W Li, Z Tan, X Zhang (2018). Effect of salinity on source rock formation and its control on the oil content in shales in the Hetaoyuan Formation from the Biyang Depression, Nanxiang Basin, Central China. Energ Fuels, 32(6): 6698–6707
https://doi.org/10.1021/acs.energyfuels.8b01075
23 M H Hofmann, X H Li, J Chen, L A MacKenzie, N W Hinman (2016). Provenance and temporal constraints of the Early Cambrian Maotianshan Shale, Yunnan Province, China. Gondwana Res, 37: 348–361
https://doi.org/10.1016/j.gr.2015.08.015
24 J Hu, S Tang, S Zhang (2016). Investigation of pore structure and fractal characteristics of the Lower Silurian Longmaxi shales in western Hunan and Hubei Provinces in China. J Nat Gas Sci Eng, 28: 522–535
https://doi.org/10.1016/j.jngse.2015.12.024
25 B Jones, D A Manning (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol, 111(1–4): 111–129
https://doi.org/10.1016/0009-2541(94)90085-X
26 C Kasanzu, M A H Maboko, S Manya (2008). Geochemistry of fine-grained clastic sedimentary rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: implications for provenance and source rock weathering. Precambrian Res, 164(3–4): 201–213
https://doi.org/10.1016/j.precamres.2008.04.007
27 Y Li, D Tang, P Wu, X Niu, K Wang, P Qiao, Z Wang (2016). Continuous unconventional natural gas accumulations of Carboniferous-Permian coal-bearing strata in the Linxing area, northeastern Ordos basin, China. J Nat Gas Sci Eng, 36: 314–327
https://doi.org/10.1016/j.jngse.2016.10.037
28 Y Li, T Fan, J Zhang, J Zhang, X Wei, X Hu, W Zeng, W Fu (2015). Geochemical changes in the Early Cambrian interval of the Yangtze Platform, South China: implications for hydrothermal influences and paleocean redox conditions. J Asian Earth Sci, 109: 100–123
https://doi.org/10.1016/j.jseaes.2015.05.003
29 Y Li, Z Wang, Z Pan, X Niu, Y Yu, S Meng (2019a). Pore structure and its fractal dimensions of transitional shale: a cross section from east margin of the Ordos Basin, China. Fuel, 241: 417–431
https://doi.org/10.1016/j.fuel.2018.12.066
30 Y Li, Z Wang, Q Gan, X Niu, W Xu (2019b). Paleoenvironmental conditions and organic matter accumulation in Upper Paleozoic organic-rich rocks in the east margin of the Ordos Basin, China. Fuel, 252: 172–187
https://doi.org/10.1016/j.fuel.2019.04.095
31 Y Li, Y Wang, J Wang, Z Pan (2020a). Variation in permeability during CO2–CH4 displacement in coal seams: Part I—experimental insights. Fuel, 263: 116666
https://doi.org/10.1016/j.fuel.2019.116666
32 Y Li, J Yang, Z Pan, W Tong (2020b). Nanoscale pore structure and mechanical property analysis of coal: an insight combining AFM and SEM images. Fuel, 260: 116352
https://doi.org/10.1016/j.fuel.2019.116352
33 L Ma, F Z Teng, L Jin, S Ke, W Yang, H O Gu, S L Brantley (2015). Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: accumulation of light Mg isotopes in soils by clay mineral transformation. Chem Geol, 397: 37–50
https://doi.org/10.1016/j.chemgeo.2015.01.010
34 S M McLennan (1993). Weathering and global denudation. J Geol, 101(2): 295–303
https://doi.org/10.1086/648222
35 S M McLennan (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophy Geosy, 2: 2000GC000109
36 Q Meng, Z Liu, A A Bruch, R Liu, F Hu (2012). Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. J Asian Earth Sci, 45: 95–105
https://doi.org/10.1016/j.jseaes.2011.09.021
37 A Michard, F Albarède (1986). The REE content of some hydrothermal fluids. Chem Geol, 55(1–2): 51–60
https://doi.org/10.1016/0009-2541(86)90127-0
38 R W Murray (1994). Chemical criteria to identify the depositional environment of chert: general principles and applications. Sediment Geol, 90(3–4): 213–232
https://doi.org/10.1016/0037-0738(94)90039-6
39 H Nesbitt, G Young (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715–717
https://doi.org/10.1038/299715a0
40 H Nesbitt, G Young (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta, 48(7): 1523–1534
https://doi.org/10.1016/0016-7037(84)90408-3
41 L P Newport, A C Aplin, J G Gluyas, H C Greenwell, D R Gröcke (2016). Geochemical and lithological controls on a potential shale reservoir: Carboniferous Holywell Shale, Wales. Mar Pet Geol, 71: 198–210
https://doi.org/10.1016/j.marpetgeo.2015.11.026
42 A M Olivarez, R M Owen (1991). The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chem Geol, 92(4): 317–328
https://doi.org/10.1016/0009-2541(91)90076-4
43 X Qiu, C Liu, G Mao, Y Deng, F Wang, J Wang (2014). Late Triassic tuff intervals in the Ordos Basin, Central China: their depositional, petrographic, geochemical characteristics and regional implications. J Asian Earth Sci, 80: 148–160
https://doi.org/10.1016/j.jseaes.2013.11.004
44 X Qiu, C Liu, F Wang, Y Deng, G Mao (2015). Trace and rare earth element geochemistry of the Upper Triassic mudstones in the southern Ordos Basin, Central China. Geol J, 50(4): 399–413
https://doi.org/10.1002/gj.2542
45 B M Sarki Yandoka, W H Abdullah, M B Abubakar, M H Hakimi, A K Adegoke (2015). Geochemistry of the Cretaceous coals from Lamja Formation, Yola Sub-basin, Northern Benue Trough, NE Nigeria: implications for paleoenvironment, paleoclimate and tectonic setting. J Afr Earth Sci, 104: 56–70
https://doi.org/10.1016/j.jafrearsci.2015.01.002
46 V A Stepanova, O S Pokrovsky, J Viers, N P Mironycheva-Tokareva, N P Kosykh, E K Vishnyakova (2015). Elemental composition of peat profiles in western Siberia: effect of the micro-landscape, latitude position and permafrost coverage. Appl Geochem, 53: 53–70
https://doi.org/10.1016/j.apgeochem.2014.12.004
47 Y Sun, C Zhao, S Qin, L Xiao, Z Li, M Lin (2016). Occurrence of some valuable elements in the unique ‘high-aluminium coals’ from the Jungar coalfield, China. Ore Geol Rev, 72: 659–668
https://doi.org/10.1016/j.oregeorev.2015.09.015
48 L Tang, Y Song, Z Jiang, S Jiang, Q Li (2019). Pore structure and fractal characteristics of distinct thermally mature shales. Energ Fuels, 33(6): 5116–5128
https://doi.org/10.1021/acs.energyfuels.9b00885
49 S Tao, Y Shan, D Tang, H Xu, S Li, Y Cui (2016). Mineralogy, major and trace element geochemistry of Shichanggou oil shales, Jimusaer, Southern Junggar Basin, China: implications for provenance, palaeoenvironment and tectonic setting. J Petrol Sci Eng, 146: 432–445
https://doi.org/10.1016/j.petrol.2016.06.014
50 N Tribovillard, T J Algeo, T Lyons, A Riboulleau (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol, 232(1–2): 12–32
https://doi.org/10.1016/j.chemgeo.2006.02.012
51 M Udchachon, H Thassanapak, Q Feng, C Burrett (2017). Palaeoenvironmental implications of geochemistry and radiolarians from Upper Devonian chert/shale sequences of the Truong Son fold belt, Laos. Geol J, 52(1): 154–173
https://doi.org/10.1002/gj.2743
52 A Vosoughi Moradi, A Sarı, P Akkaya (2016a). Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: implications for Paleoclimate conditions, source–area weathering, provenance and tectonic setting. Sediment Geol, 341: 289–303
https://doi.org/10.1016/j.sedgeo.2016.05.002
53 A Vosoughi Moradi, A Sarı, P Akkaya (2016b). Paleoredox reconstruction of bituminous shales from the Miocene Hançili Formation, Çankırı-Çorum Basin, Turkey: evaluating the role of anoxia in accumulation of organic-rich shales. Mar Pet Geol, 78: 136–150
https://doi.org/10.1016/j.marpetgeo.2016.09.012
54 J Wang, D Chen, D A N Wang, D Yan, X Zhou, Q Wang (2012). Petrology and geochemistry of chert on the marginal zone of Yangtze Platform, western Hunan, South China, during the Ediacaran-Cambrian transition. Sedimentology, 59(3): 809–829
https://doi.org/10.1111/j.1365-3091.2011.01280.x
55 S Wang, D Dong, Y Wang, X Li, J Huang, Q Guan (2016). Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale: a case study of the Lower Silurian Longmaxi Formation, Southern Sichuan Basin, China. J Nat Gas Sci Eng, 28: 691–699
https://doi.org/10.1016/j.jngse.2015.11.045
56 S Wang, C Zou, D Dong, Y Wang, X Li, J Huang, Q Guan (2015). Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: geochemical and organic carbon isotopic evidence. Mar Pet Geol, 66: 660–672
https://doi.org/10.1016/j.marpetgeo.2015.07.009
57 X M Xiao, B Q Zhao, Z L Thu, Z G Song, R W T Wilkins (2005). Upper Paleozoic petroleum system, Ordos Basin, China. Mar Pet Geol, 22(8): 945–963
https://doi.org/10.1016/j.marpetgeo.2005.04.001
58 F Xiong, Z Jiang, H Huang, M Wen, J Moortgat (2019). Mineralogy and gas content of Upper Paleozoic Shanxi and Benxi Shale Formations in the Ordos Basin. Energy Fuels, 33(2): 1061–1068
https://doi.org/10.1021/acs.energyfuels.8b04059
59 G Xu, J L Hannah, B Bingen, S Georgiev, H J Stein (2012). Digestion methods for trace element measurements in shales: paleoredox proxies examined. Chem Geol, 324-325: 132–147
https://doi.org/10.1016/j.chemgeo.2012.01.029
60 H Xu, D Tang, S Tang, W Zhang, Y Meng, L Gao, S Xie, J Zhao (2015). Geologic and hydrological controls on coal reservoir water production in marine coal-bearing strata: a case study of the Carboniferous Taiyuan Formation in the Liulin area, eastern Ordos Basin, China. Mar Pet Geol, 59: 517–526
https://doi.org/10.1016/j.marpetgeo.2014.10.005
61 C Yang, Y Xiong, J Zhang, Y Liu, C Chen (2019). Comprehensive understanding of OM-hosted pores in transitional shale: a case study of Permian Longtan Shale in South China based on organic petrographic analysis, gas adsorption, and X-ray diffraction measurements. Energy Fuels, 33(9): 8055–8064
https://doi.org/10.1021/acs.energyfuels.9b01410
62 H Yang, J Fu, X Wei, X Liu (2008). Sulige field in the Ordos Basin: geological setting, field discovery and tight gas reservoirs. Mar Pet Geol, 25(4–5): 387–400
https://doi.org/10.1016/j.marpetgeo.2008.01.007
63 N Yang, S Tang, S Zhang, Y Chen (2015). Mineralogical and geochemical compositions of the No. 5 coal in chuancaogedan mine, Junger Coalfield, China. Minerals (Basel), 5(4): 788–800
https://doi.org/10.3390/min5040525
64 N Yang, S Tang, S Zhang, Y Chen (2016). Modes of occurrence and abundance of trace elements in Pennsylvanian coals from the Pingshuo Mine, Ningwu Coalfield, Shanxi Province, China. Minerals (Basel), 6(2): 40
https://doi.org/10.3390/min6020040
65 J Zhang, T Fan, T J Algeo, Y Li, J Zhang (2016). Paleo-marine environments of the Early Cambrian Yangtze Platform. Palaeogeogr Palaeocl Palaeoeco, 443: 66–79
https://doi.org/10.1016/j.palaeo.2015.11.029
66 S Zhang, S Tang, D Tang, Z Pan, F Yang (2010). The characteristics of coal reservoir pores and coal facies in Liulin district, Hedong coal field of China. Int J Coal Geol, 81(2): 117–127
https://doi.org/10.1016/j.coal.2009.11.007
67 J Zhao, H Xu, D Tang, J P Mathews, S Li, S Tao (2016a). Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China. Int J Coal Geol, 159: 18–29
https://doi.org/10.1016/j.coal.2016.03.019
68 J Zhao, D Tang, H Xu, Y Li, S Li, S Tao, W Lin, Z Liu (2016b). Characteristic of in situ stress and its control on the coalbed methane reservoir permeability in the eastern margin of the Ordos Basin, China. Rock Mech Rock Eng, 49(8): 3307–3322
https://doi.org/10.1007/s00603-016-0969-1
[1] Haoran XU, Wei JU, Xiaobing NIU, Shengbin FENG, Yuan YOU, Hui YANG, Sijia LIU, Wenbo LUAN. Prediction of natural fracture in shale oil reservoir based on R/S analysis and conventional logs[J]. Front. Earth Sci., 2021, 15(3): 705-718.
[2] Longhui BAI, Bo LIU, Jianguo YANG, Shansi TIAN, Boyang WANG, Saipeng HUANG. Differences in hydrocarbon composition of shale oils in different phase states from the Qingshankou Formation, Songliao Basin, as determined from fluorescence experiments[J]. Front. Earth Sci., 2021, 15(2): 438-456.
[3] Shikui GAO, Quanzhong GUAN, Dazhong DONG, Fang HUANG. Environmental risks of shale gas exploitation and solutions for clean shale gas production in China[J]. Front. Earth Sci., 2021, 15(2): 406-422.
[4] Rongze YU, Wei GUO, Lin DING, Meizhu WANG, Feng CHENG, Xiaowei ZHANG, Shangwen ZHOU, Leifu ZHANG. Quantitative characterization of horizontal well production performance with multiple indicators: a case study on the Weiyuan shale gas field in the Sichuan Basin, China[J]. Front. Earth Sci., 2021, 15(2): 395-405.
[5] Weidong XIE, Meng WANG, Hua WANG, Ruying MA, Hongyue DUAN. Diagenesis of shale and its control on pore structure, a case study from typical marine, transitional and continental shales[J]. Front. Earth Sci., 2021, 15(2): 378-394.
[6] Shuai TANG, Jinchuan ZHANG, Weiyao ZHU. Quantitative evaluation of organic richness from correlation of well logs and geochemical data: a case study of the Lower Permian Taiyuan shales in the southern North China Basin[J]. Front. Earth Sci., 2021, 15(2): 360-377.
[7] Shangbin CHEN, Huijun WANG, Yang WANG, Tianguo JIANG, Yingkun ZHANG, Zhuo GONG. Differences in shale gas accumulation process and its significance in exploration of Lower Silurian Longmaxi Formation in northeast Yunnan[J]. Front. Earth Sci., 2021, 15(2): 343-359.
[8] Xin CHEN, Lei CHEN, Xiucheng TAN, Shu JIANG, Chao WANG. Impact of pyrite on shale gas enrichment—a case study of the Lower Silurian Longmaxi Formation in southeast Sichuan Basin[J]. Front. Earth Sci., 2021, 15(2): 332-342.
[9] Lulu XU, Saipeng HUANG, Zaoxue LIU, Yaru WEN, Xianghui ZHOU, Yanlin ZHANG, Xiongwei LI, Deng WANG, Fan LUO, Cheng CHEN. Geological controls of shale gas accumulation and enrichment mechanism in Lower Cambrian Niutitang Formation of western Hubei, Middle Yangtze, China[J]. Front. Earth Sci., 2021, 15(2): 310-331.
[10] Xin NIE, Yu WAN, Da GAO, Chaomo ZHANG, Zhansong ZHANG. Evaluation of the in-place adsorbed gas content of organic-rich shales using wireline logging data: a new method and its application[J]. Front. Earth Sci., 2021, 15(2): 301-309.
[11] Xiangzeng WANG, Junping ZHOU, Xiao SUN, Shifeng TIAN, Jiren TANG, Feng SHEN, Jinqiao WU. The influences of composition and pore structure on the adsorption behavior of CH4 and CO2 on shale[J]. Front. Earth Sci., 2021, 15(2): 283-300.
[12] Bing YANG, Xionghua ZHANG, Wenkun QIE, Yi WEI, Xing HUANG, Haodong XIA. Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China[J]. Front. Earth Sci., 2020, 14(2): 344-359.
[13] Jingwei CUI, Rukai ZHU, Zhiguo MAO, Shixiang LI. Accumulation of unconventional petroleum resources and their coexistence characteristics in Chang7 shale formations of Ordos Basin in central China[J]. Front. Earth Sci., 2019, 13(3): 575-587.
[14] Xin SHA, Jinrong WANG, Wanfeng CHEN, Zheng LIU, Xinwei ZHAI, Jinlong MA, Shuhua WANG. Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China[J]. Front. Earth Sci., 2018, 12(1): 191-214.
[15] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed