Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (4) : 997-1011    https://doi.org/10.1007/s11707-022-1082-2
Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau
Xiumei LI1, Sutao LIU1, Juzhi HOU2(), Zhe SUN3, Mingda WANG4, Xiaohuan HOU2, Minghua LIU1(), Junhui YAN1, Lifang ZHANG1
1. Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
2. Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
3. Institute of Geography and Resources Science, Sichuan Normal University, Chengdu 610066, China
4. School of Geography, Liaoning Normal University, Dalian 116029, China
 Download: PDF(27833 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a quantitative mean annual air temperature (MAAT) record spanning the past 4700 years based on the analysis of branched glycerol dialkyl glycerol tetraethers (brGDGTs) from a sediment core from Xiada Co, an alpine lake on the western Tibetan Plateau (TP). The record indicates a relatively stable and warm MAAT until 2200 cal yr BP; subsequently, the MAAT decreased by ~4.4°C at ~2100 cal yr BP and maintained a cooling trend until the present day, with centennial-scale oscillations centered at ~800 cal yr BP, ~600 cal yr BP, and ~190–170 cal yr BP. MAAT decreased abruptly at ~500–300 cal yr BP and reached its minimum for the past 4700 years. We assessed the representativeness of our record by comparing it with 15 published paleotemperature records from the TP spanning the past ~5000 years. The results show divergent temperature variations, including a gradual cooling trend, a warming trend, and no clear trend. We suggest that these discrepancies could be caused by factors such as the seasonality of the temperature proxies, the length of the freezing season of the lakes, the choice of proxy-temperature calibrations, and chronological errors. Our results highlight the need for more high-quality paleotemperature reconstructions with unambiguous climatic significance, clear seasonality, site-specific calibration, and robust dating, to better understand the processes, trends, and mechanisms of Holocene temperature changes on the TP.

Keywords Tibetan Plateau      lake sediments      branched GDGTs      paleotemperature     
Corresponding Author(s): Juzhi HOU,Minghua LIU   
Online First Date: 08 January 2024    Issue Date: 06 February 2024
 Cite this article:   
Xiumei LI,Sutao LIU,Juzhi HOU, et al. Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau[J]. Front. Earth Sci., 2023, 17(4): 997-1011.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1082-2
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I4/997
Fig.1  (a) Map showing the sites referenced in the text: Lugu Lake (1), Chongce ice core (2), Tengchongqinghai Lake (3), Xiada Co (4), Hehai Lake (5), Tiancai Lake (6), Guozha Co (7), Bangong Co (8), Hongyuan Peat (9), Aweng Co (10), Guliya ice core (11), Ngamring Co (12), Cuoqia Lake (13), Qinghai Lake (14), Lingge Co (15), Red circles indicate temperature records showing a long-term warming trend, blue circles indicate temperature records showing a long-term cooling trend, and black circles indicate temperature records with no clear trend. (b) Drainage basin of Xiada Co. The sampling site is represented by a red star at the depocenter at 19 m water depth.
Fig.2  Age-depth model for core XDC2014-1 adopted from Li et al. (2019). The ages of the upper 10 cm were determined by 210Pb and 137Cs dating (Fig. 2(a)), and those of the lower part by AMS 14C dating (Fig. 2(b)).
Fig.3  (a) Comparison of the fractional abundance of brGDGTs in core XDC2014-1 for Xiada Co (black, this study) with that in soils (purple, Ding et al., 2015) and lake surface sediments (red, Liang et al., 2022) from the Tibetan Plateau. (b) Comparison of the fractional abundances of tetramethylated, pentamethylated, and hexamethylated brGDGTs in the sediments from Xiada Co with lake surface sediments (Liang et al., 2022) and soils (Ding et al., 2015) from the Tibetan Plateau, and globally distributed soils (Naafs et al., 2017).
IndexDefinitionReference
MBTMBT=( Ia+Ib+Ic)/(Ia+Ib+Ic+IIa+IIa'+IIb+IIb'+IIc+IIc' +IIIa+IIIa'+IIIb+IIIb'+IIIc+IIIc')Naafs et al. (2017)
MBT'MBT'=(Ia+Ib+Ic)/(Ia+Ib+Ic+IIa+IIb+IIc+IIIa+IIa'+IIb'+IIc'+IIIa')De Jonge et al. (2014)
CBTCBT= –log[(Ib+ IIb+ IIb')/( Ia+ IIa+ IIa')]De Jonge et al. (2014)
MBT'5MEMBT '5ME =(Ia+Ib+Ic)/(Ia+Ib+Ic+IIa+IIb+IIc+IIIa)De Jonge et al. (2014)
MBT5/6MBT5/6 = (Ia+Ib+Ic+IIa')/(Ia+Ib+Ic+IIa+IIb+IIc+IIIa+IIIa')Ding et al. (2015)
MBT'6MEMBT '6ME =(Ia+Ib+Ic)/(Ia+Ib+Ic+IIa'+IIb'+IIc'+IIIa')Dang et al. (2018)
MaterialFunctionReference
Tibetan Planteau lakesMAAT= –3.75+40.92×MBT–6.03×CBTWang et al. (2016)
Global soilsMAAT= –6.1+50×MBT–9.35×CBTWeijers et al. (2007)
Global soilsMAAT = 0.81–5.67×CBT + 31.0×MBT'Peterse et al. (2012)
Tibetan soilsMAT= –20.14+39.51×MBT5/6Ding et al. (2015)
Global soilsMAT= –8.57+31.45×MBT'5MEDe Jonge et al. (2014)
Tibetan lakesMAAT= –3.84+5.92×MBT'+9.84×CBTGünther et al. (2014)
Tibetan Planteau lakesMAAT= 30.47×MBT '6ME – 5.92Liang et al. (2022)
Tab.1  Formulas used to calculate the brGDGTs indices and calibrations
Fig.4  Comparison of MAAT records for Xiada Co reconstructed using different calibrations: (a) MAAT based on Tibetan Lakes proposed by Liang et al. (2022), which is adopted in this study; (b) MAAT based on Tibetan Lakes proposed by Wang et al. (2016); (c) MAAT based on Tibetan soil proposed by Ding et al.(2015); (d) MAAT based on Tibetan Lakes proposed by Günther et al. (2014); (e) MAAT based on global soils proposed by De Jonge et al. (2014); (f) MAAT based on global soils proposed by Peterse et al. (2012); (g) MAAT based on global soils proposed by Weijers et al. (2007).
Fig.5  Comparison of brGDGTs-based MAAT at Xiada Co (a) with brGDGTs-based MAAT reconstruction for Tengchongqinghai Lake (Zhao et al., 2021) (b); brGDGTs-based MAAT reconstruction for Lugu Lake (Zhao et al., 2021) (c); global temperature reconstructions (Marcott et al., 2013) (d); MAAT reconstructed by a synthesis of fossil pollen records from the TP (Chen et al., 2020) (e); brGDGTs-based temperature reconstruction for Chongce ice core (Pang et al., 2020) (f); brGDGTs-based ice-free-season temperature (from March to October, TM-O) reconstruction for Cuoqia Lake (Zhang et al., 2022) (g); brGDGTs-based MAAT reconstruction for Ngamring Co (Sun et al., 2022) (h); brGDGTs-based MAAT reconstruction for Aweng Co (Li et al., 2017) (i); brGDGTs-based MAAT reconstruction from the alpine Sahara sand peatland in the southern Altai Mountains (Wu et al., 2020) (j); δ18O record of the Guliya ice cap (Thompson et al., 1997) (k); brGDGTs-based MAAT reconstruction for Bangong Co (Wang et al., 2021) (l); brGDGTs-based MAAT reconstruction for the Hongyuan peatland (Yan et al., 2021) (m).
Fig.6  Comparison of brGDGTs-based MAAT at Xiada Co (a) with summer temperature reconstructed by a synthesis of fossil pollen records from the TP (Chen et al., 2020) (b); summer temperature inferred from subfossil chironomid assemblages from Heihai Lake (Chang et al., 2017) (c); δ18O record of Guozha Co (Li et al., 2021b) (d); probability density plot of moraine ages on the TP (Chen et al., 2020) (e); alkenone-based summer temperature for Qinghai Lake (Hou et al., 2016) (f); summer temperature inferred from subfossil chironomid assemblages from Tiancai Lake (Zhang et al., 2017) (g).
1 P G, Appleby F Oldfield (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment.Catena, 5(1): 1–8
https://doi.org/10.1016/S0341-8162(78)80002-2
2 T, Bolch A, Kulkarni A, Kääb C, Huggel F, Paul J G, Cogley H, Frey J S, Kargel K, Fujita M, Scheel S, Bajracharya M Stoffel (2012). The state and fate of Himalayan glaciers.Science, 336(6079): 310–314
https://doi.org/10.1126/science.1215828
3 P, Braconnot S P, Harrison M, Kageyama P J, Bartlein V, Masson-Delmotte A, Abe-Ouchi B, Otto-Bliesner Y Zhao (2012). Evaluation of climate models using palaeoclimatic data.Nat Clim Chang, 2(6): 417–424
https://doi.org/10.1038/nclimate1456
4 R S, Bradley M, Vuille H F, Diaz W Vergara (2006). Threats to water supplies in the tropical Andes.Science, 312(5781): 1755–1756
https://doi.org/10.1126/science.1128087
5 M, Cao G, Rueda P, Rivas-Ruiz M C, Trapote M, Henriksen T, Vegas-Vilarrúbia A Rosell-Melé (2018). Branched GDGT variability in sediments and soils from catchments with marked temperature seasonality.Org Geochem, 122: 98–114
https://doi.org/10.1016/j.orggeochem.2018.05.007
6 J, Chang E, Zhang E, Liu J Shulmeister (2017). Summer temperature variability inferred from subfossil chironomid assemblages from the south-east margin of the Qinghai–Tibetan Plateau for the last 5000 years.Holocene, 27(12): 1876–1884
https://doi.org/10.1177/0959683617708456
7 D, Chen B, Xu T, Yao Z, Guo P, Cui F, Chen R, Zhang X, Zhang Y, Zhang J, Fan Z, Hou T Zhang (2015). Assessment of past, present and future environmental changes on the Tibetan Plateau.Chin Sci Bull, 60: 3025–3035
8 F, Chen J, Zhang J, Liu X, Cao J, Hou L, Zhu X, Xu X, Liu M, Wang D, Wu L, Huang T, Zeng S, Zhang W, Huang X, Zhang K Yang (2020). Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review.Quat Sci Rev, 243: 106444
https://doi.org/10.1016/j.quascirev.2020.106444
9 H, Cheng R L, Edwards G H Haug (2010). Comment on “On linking climate to Chinese dynastic change: spatial and temporal variations of monsoonal rain”.Chin Sci Bull, 55(32): 3734–3737
https://doi.org/10.1007/s11434-010-4122-3
10 G, Chu Q, Sun X, Wang M, Liu Y, Lin M, Xie W, Shang J Liu (2012). Seasonal temperature variability during the past 1600 years recorded in historical documents and varved lake sediment profiles from northeastern China.Holocene, 22(7): 785–792
https://doi.org/10.1177/0959683611430413
11 X, Dang W, Ding H, Yang R D, Pancost B D A, Naafs J, Xue X, Lin J, Lu S Xie (2018). Different temperature dependence of the bacterial brGDGT isomers in 35 Chinese lake sediments compared to that in soils.Org Geochem, 119: 72–79
https://doi.org/10.1016/j.orggeochem.2018.02.008
12 Jonge C, De E C, Hopmans C I, Zell J H, Kim S, Schouten Damsté J S Sinninghe (2014). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction.Geochim Cosmochim Acta, 141: 97–112
https://doi.org/10.1016/j.gca.2014.06.013
13 P B deMenocal (2001). Cultural responses to climate change during the late Holocene.Science, 292(5517): 667–673
https://doi.org/10.1126/science.1059287
14 L, Deng G, Jia C, Jin S Li (2016). Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate.Org Geochem, 96: 11–17
https://doi.org/10.1016/j.orggeochem.2016.03.004
15 S, Ding Y, Xu Y, Wang Y, He J, Hou L, Chen J S He (2015). Distributions of branched glycerol dialkyl glycerol tetraethers in surface soils of the Qinghai-Tibetan Plateau: implications of brGDGTs-based proxies in cold and dry regions.Biogeosciences, 12(11): 3141–3151
https://doi.org/10.5194/bg-12-3141-2015
16 S, Drotz T, Sparrman M, Nilsson J, Schleucheret M Öquist (2010). Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils.In: Proceedings of the National Academy of Sciences of the United States of America, 107(49): 21046–21051
https://doi.org/10.2307/25756829
17 X, Feng C, Zhao W J, D’Andrea J, Hou X, Yang X, Xiao J, Shen Y, Duan F Chen (2022). Evidence for a relatively warm mid- to late Holocene on the southeastern Tibetan Plateau.Geophys Res Lett, 49(15): e2022GL098740
https://doi.org/10.1029/2022GL098740
18 X, Feng C, Zhao W J, D’Andrea J, Liang A, Zhou J Shen (2019). Temperature fluctuations during the Common Era in subtropical southwestern China inferred from brGDGTs in a remote alpine lake.Earth Planet Sci Lett, 510: 26–36
https://doi.org/10.1016/j.epsl.2018.12.028
19 L C, Foster E J, Pearson S, Juggins D A, Hodgson K M, Saunders E, Verleyen S J Roberts (2016). Development of a regional glycerol dialkyl glycerol tetraether (GDGT)–temperature calibration for Antarctic and sub-Antarctic lakes.Earth Planet Sci Lett, 433: 370–379
https://doi.org/10.1016/j.epsl.2015.11.018
20 F, Günther A, Thiele G, Gleixner B, Xu T, Yao S Schouten (2014). Distribution of bacterial and archaeal ether lipids in soils and surface sediments of Tibetan lakes: implications for GDGT-based proxies in saline high mountain lakes.Org Geochem, 67: 19–30
https://doi.org/10.1016/j.orggeochem.2013.11.014
21 Y, He J, Hou M, Wang X, Li X, Liang S, Xie Y Jin (2020). Temperature variation on the central Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers from the sediment record of Lake Linggo Co since the last deglaciation.Front Earth Sci (Lausanne), 8: 574206
https://doi.org/10.3389/feart.2020.574206
22 J, Hou W J, D’Andrea Z Liu (2012). The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau.Quat Sci Rev, 48: 67–79
https://doi.org/10.1016/j.quascirev.2012.06.008
23 J, Hou Y, Huang J, Zhao Z, Liu S, Colman Z An (2016). Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau.Geophys Res Lett, 43(3): 1323–1330
https://doi.org/10.1002/2015GL067317
24 J, Hou C G, Li S Lee (2019a). The temperature record of the Holocene: progress and controversies.Sci Bull (Beijing), 64(9): 565–566
https://doi.org/10.1016/j.scib.2019.02.012
25 S, Hou W, Zhang H, Pang S Y, Wu T M, Jenk M, Schwikowski Y Wang (2019b). Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology.Cryosphere, 13(6): 1743–1752
https://doi.org/10.5194/tc-13-1743-2019
26 W W, Immerzeel Beek L P H, van M F P Bierkens (2010). Climate change will affect the Asian water towers.Science, 328(5984): 1382–1385
https://doi.org/10.1126/science.1183188
27 IPCC (2013). IPCC, 2013: Climate change 2013: the physical science basis. In: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Comput Geom, 18: 95–123
28 T, Jacob J, Wahr W T, Pfeffer S Swenson (2012). Recent contributions of glaciers and ice caps to sea level rise.Nature, 482(7386): 514–518
https://doi.org/10.1038/nature10847
29 G, Kathayat H, Cheng A, Sinha L, Yi X, Li H, Zhang H, Li Y, Ning R L Edwards (2017). The Indian monsoon variability and civilization changes in the Indian subcontinent.Sci Adv, 3(12): e1701296
https://doi.org/10.1126/sciadv.1701296
30 D J, Kennett S F, Breitenbach V V, Aquino Y, Asmerom J, Awe J U, Baldini P, Bartlein B J, Culleton C, Ebert C, Jazwa M J, Macri N, Marwan V, Polyak K M, Prufer H E, Ridley H, Sodemann B, Winterhalder G H Haug (2012). Development and disintegration of Maya political systems in response to climate change.Science, 338(6108): 788–791
https://doi.org/10.1126/science.1226299
31 Y, Lei H, Yang X, Dang S, Zhao S Xie (2016). Absence of a significant bias towards summer temperature in branched tetraether-based paleothermometer at two soil sites with contrasting temperature seasonality.Org Geochem, 94: 83–94
https://doi.org/10.1016/j.orggeochem.2016.02.003
32 C G, Li M, Wang W, Liu S Y, Lee F, Chen J Hou (2021b). Quantitative estimates of Holocene glacier meltwater variations on the Western Tibetan Plateau.Earth Planet Sci Lett, 559: 116766
https://doi.org/10.1016/j.epsl.2021.116766
33 X, Li B Fan (2019). Climatic changes during the past 2000 years based on lake biomarkers from the central and western Tibetan Plateau.J Xinyang Normal Univ (Nat Sci Ed), 32(2): 239–244
https://doi.org/10.3969/j.issn.1003-0972.2019.02.012
34 X, Li S, Liu B, Fan J, Hou M Wang (2023b). Validating the potential application of δ2Hwax and soil brGDGTs in paleoelevation estimates on the southern slopes of the Himalaya.Quat Sci Rev, 318: 108306
https://doi.org/10.1016/j.quascirev.2023.108306
35 X, Li S, Liu L, Zhang J, Yan B Fan (2023a). Spatio-temporal patterns of centennial scale temperature change over the Tibetan Plateau during the past two millennia.J Xinyang Normal Univ (Nat Sci Ed), 36(3): 451–456
https://doi.org/10.3969/j.issn.1003-0972.2023.03.018
36 , Li, X., Liu, S., Ji, K., Hou, X., Yuan, K., Hou, J., Niu, J., Yan, J., Yan, W., Wang, Y., WangY., 2023. Late Holocene human population change revealed by fecal stanol records and its response to environmental evolution at Xiada Co on the western Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 111993.
37 X, Li M, Wang J Hou (2019). Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau.Quat Int, 510: 65–75
https://doi.org/10.1016/j.quaint.2018.12.018
38 X, Li M, Wang Y, Zhang L, Lei J Hou (2017). Holocene climatic and environmental change on the western Tibetan Plateau revealed by glycerol dialkyl glycerol tetraethers and leaf wax deuterium-to-hydrogen ratios at Aweng Co.Quat Res, 87(3): 455–467
https://doi.org/10.1017/qua.2017.9
39 X, Li H, Yan B, Fan C, Zhang W Xing (2021a). Climatic changes during the last two millennia on the southern Tibetan Plateau based on lake sediment and its forcing mechanisms.J Xinyang Normal Univ (Nat Sci Ed), 34(4): 584–588
https://doi.org/10.3969/j.issn.1003-0972.2021.04.013
40 X, Li X, Zhang J, Wu Z, Shen Y, Zhang X, Xu Y, Fan Y, Zhao W Yan (2011). Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau.Environ Earth Sci, 64(7): 1911–1919
https://doi.org/10.1007/s12665-011-1004-1
41 J, Liang Y, Guo N, Richter H, Xie R S, Vachula R L, Lupien B, Zhao M, Wang Y, Yao J, Hou J, Liu J M Russell (2022). Calibration and application of branched GDGTs to Tibetan lake sediments: the influence of temperature on the fall of the Guge Kingdom in Western Tibet, China. Paleoceanogr Paleoclimatol, 37(5)
42 Z, Liu J, Zhu Y, Rosenthal X, Zhang B L, Otto-Bliesner A, Timmermann R S, Smith G, Lohmann W, Zheng Timm O Elison (2014). The Holocene temperature conundrum.Proc Natl Acad Sci USA, 111(34): E3501–E3505
https://doi.org/10.1073/pnas.1407229111
43 S A, Marcott J D, Shakun P U, Clark A C Mix (2013). A reconstruction of regional and global temperature for the past 11300 years.Science, 339(6124): 1198–1201
https://doi.org/10.1126/science.1228026
44 Research Initiative EDW Working Group Mountain (2015). Elevation-dependent warming in mountain regions of the world.Nature Climate Change, 5: 424–430
https://doi.org/10.1038/NCLIMATE2563
45 B D A, Naafs G N, Inglis C, Zheng M J, Amesbury H, Biester R, Bindler J, Blewett M A, Burrows Castillo Torres D, del F M, Chambers A D, Cohen R P, Evershed S J, Feakins M, Gałka A, Gallego-Sala L, Gandois D M, Gray P G, Hatcher Coronado E N, Honorio P D M, Hughes A, Huguet M, Könönen F, Laggoun-Défarge O, Lähteenoja M, Lamentowicz R, Marchant E, McClymont X, Pontevedra-Pombal C, Ponton A, Pourmand A M, Rizzuti L, Rochefort J, Schellekens Vleeschouwer F, De R D Pancost (2017). Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids.Geochim Cosmochim Acta, 208: 285–301
https://doi.org/10.1016/j.gca.2017.01.038
46 S, Naeher F, Peterse R H, Smittenberg H, Niemann P K, Zigah C J Schubert (2014). Sources of glycerol dialkyl glycerol tetraethers (GDGTs) in catchment soils, water column and sediments of Lake Rotsee (Switzerland) – implications for the application of GDGT-based proxies for lakes.Org Geochem, 66: 164–173
https://doi.org/10.1016/j.orggeochem.2013.10.017
47 H, Pang S, Hou W, Zhang S, Wu T M, Jenk M, Schwikowski J (2020) Jouzel . Temperature trends in the northwestern Tibetan Plateau constrained by ice core water isotopes over the past 7000 years. J Geophys Res Atmos, 125(19)
48 F, Peterse der Meer J, van S, Schouten J W H, Weijers N, Fierer R B, Jackson J H, Kim Damsté J S Sinninghe (2012). Revised calibration of the MBT–CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils.Geochim Cosmochim Acta, 96: 215–229
https://doi.org/10.1016/j.gca.2012.08.011
49 S, Qian H, Yang C, Dong Y, Wang J, Wu H, Pei X, Dang J, Lu S, Zhao S Xie (2019). Rapid response of fossil tetraether lipids in lake sediments to seasonal environmental variables in a shallow lake in central China: implications for the use of tetraether-based proxies.Org Geochem, 128: 108–121
https://doi.org/10.1016/j.orggeochem.2018.12.007
50 J M, Russell E C, Hopmans S E, Loomis J, Liang Damsté J S Sinninghe (2018). Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: effects of temperature, pH, and new lacustrine paleotemperature calibrations.Org Geochem, 117: 56–69
https://doi.org/10.1016/j.orggeochem.2017.12.003
51 S, Schouten E C, Hopmans Damsté J S Sinninghe (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review.Org Geochem, 54: 19–61
https://doi.org/10.1016/j.orggeochem.2012.09.006
52 T M, Shanahan K A, Hughen Mooy B A S Van (2013). Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes.Org Geochem, 64: 119–128
https://doi.org/10.1016/j.orggeochem.2013.09.010
53 Damsté J S Sinninghe (2016). Spatial heterogeneity of sources of branched tetraethers in shelf systems: the geochemistry of tetraethers in the Berau River delta (Kalimantan, Indonesia).Geochim Cosmochim Acta, 186: 13–31
https://doi.org/10.1016/j.gca.2016.04.033
54 C W Snyder (2010). The value of paleoclimate research in our changing climate.Clim Change, 100(3–4): 407–418
https://doi.org/10.1007/s10584-010-9842-5
55 Q, Sun G, Chu M, Liu M, Xie S, Li Y, Ling X, Wang L, Shi G, Jia H Lü (2011). Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal.J Geophys Res, 116: G01008
https://doi.org/10.1029/2010JG001365
56 Z, Sun X, Hou K, Ji K, Yuan C, Li M, Wang J Hou (2022). Potential winter-season bias of annual temperature variations in monsoonal Tibetan Plateau since the last deglaciation.Quat Sci Rev, 292: 107690
https://doi.org/10.1016/j.quascirev.2022.107690
57 L G, Thompson E, Mosley-Thompson H, Brecher M, Davis B, León D, Les P N, Lin T, Mashiotta K Mountain (2006). Abrupt tropical climate change: past and present.Proc Natl Acad Sci USA, 103(28): 10536–10543
https://doi.org/10.1073/pnas.0603900103
58 L G, Thompson T, Yao M, Davis K, Henderson E, Mosley-Thompson P N, Lin J, Beer H A, Synal J, Cole-Dai J Bolzan (1997). Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core.Science, 276(5320): 1821–1825
https://doi.org/10.1126/science.276.5320.1821
59 J E, Tierney J M, Russell H, Eggermont E, Hopmans D, Verschuren Damsté J S Sinninghe (2010). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments.Geochim Cosmochim Acta, 74(17): 4902–4918
https://doi.org/10.1016/j.gca.2010.06.002
60 H, Wang H, Dong C L, Zhang H, Jiang Z, Liu M, Zhao W Liu (2015a). Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai–Tibetan Plateau.Quat Res, 83(1): 116–126
https://doi.org/10.1016/j.yqres.2014.10.003
61 M D, Wang J, Liang J Z, Hou L Hu (2016). Distribution of GDGTs in lake surface sediments on the Tibetan Plateau and its influencing factors.Sci China Earth Sci, 59(5): 961–974
https://doi.org/10.1007/s11430-015-5214-3
62 M, Wang J, Hou Y, Duan J, Chen X, Li Y, He S Y, Lee F Chen (2021). Internal feedbacks forced Middle Holocene cooling on the Qinghai Tibetan Plateau.Boreas, 50(4): 1116–1130
https://doi.org/10.1111/bor.12531
63 Z, Wang Z, Liu F, Zhang M, Fu Z An (2015b). A new approach for reconstructing Holocene temperatures from a multi-species long chain alkenone record from Lake Qinghai on the northeastern Tibetan Plateau.Org Geochem, 88: 50–58
https://doi.org/10.1016/j.orggeochem.2015.08.006
64 Z, Wang F, Zhang Y, Cao J, Hu H, Wang H, Lu J, Dong M, Xing H, Liu H, Wang H Liu (2022). Linking sedimentary and speleothem precipitation isotope proxy records to improve lacustrine and marine 14C chronologies.Quat Sci Rev, 282: 107444
https://doi.org/10.1016/j.quascirev.2022.107444
65 J W H, Weijers B, Bernhardt F, Peterse J P, Werne J A J, Dungait S, Schouten Damsté J S Sinninghe (2011). Absence of seasonal patterns in MBT–CBT indices in mid-latitude soils.Geochim Cosmochim Acta, 75(11): 3179–3190
https://doi.org/10.1016/j.gca.2011.03.015
66 J W H, Weijers S, Schouten O C, Spaargaren Damsté J S Sinninghe (2006). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX 86 proxy and the BIT index.Org Geochem, 37(12): 1680–1693
https://doi.org/10.1016/j.orggeochem.2006.07.018
67 J W H, Weijers S, Schouten den Donker J C, van E C, Hopmans Damsté J S Sinninghe (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils.Geochim Cosmochim Acta, 71(3): 703–713
https://doi.org/10.1016/j.gca.2006.10.003
68 D, Wu J, Cao G, Jia H, Guo F, Shi X, Zhang Z Rao (2020). Peat brGDGTs-based Holocene temperature history of the Altai Mountains in arid Central Asia.Palaeogeogr Palaeoclimatol Palaeoecol, 538: 109464
https://doi.org/10.1016/j.palaeo.2019.109464
69 X, Wu H, Dong C L, Zhang X, Liu W, Hou J, Zhang H Jiang (2013). Evaluation of glycerol dialkyl glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan Plateau.Org Geochem, 61: 45–56
https://doi.org/10.1016/j.orggeochem.2013.06.002
70 T, Yan C, Zhao H, Yan G, Shi X, Sun C, Zhang X, Feng C Leng (2021). Elevational differences in Holocene thermal maximum revealed by quantitative temperature reconstructions at ~30° N on eastern Tibetan Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 570: 110364
https://doi.org/10.1016/j.palaeo.2021.110364
71 G, Yancheva N R, Nowaczyk J, Mingram P, Dulski G, Schettler J F, Negendank J, Liu D M, Sigman L C, Peterson G H Haug (2007). Influence of the intertropical convergence zone on the East Asian monsoon.Nature, 445(7123): 74–77
https://doi.org/10.1038/nature05431
72 H, Yang X, Lü W, Ding Y, Lei X, Dang S Xie (2015). The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia.Org Geochem, 82: 42–53
https://doi.org/10.1016/j.orggeochem.2015.02.003
73 T, Yao L, Thompson W, Yang W, Yu Y, Gao X, Guo X, Yang K, Duan H, Zhao B, Xu J, Pu A, Lu Y, Xiang D B, Kattel D Joswiak (2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.Nat Clim Chang, 2(9): 663–667
https://doi.org/10.1038/nclimate1580
74 T, Yao Y, Xue D, Chen F, Chen L, Thompson P, Cui T, Koike K M, Lau D, Lettenmaier V, Mosbrugger R, Zhang B, Xu J, Dozier T, Gillespie Y, Gu S, Kang S, Piao S, Sugimoto K, Ueno L, Wang W, Wang F, Zhang Y, Sheng W, Guo , Ailikun X, Yang Y, Ma S S P, Shen Z, Su F, Chen S, Liang Y, Liu V P, Singh K, Yang D, Yang X, Zhao Y, Qian Y, Zhang Q Li (2019). Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multi-disciplinary approach with observation, modeling and analysis.Bull Am Meteorol Soc, 100(3): 423–444
https://doi.org/10.1175/BAMS-D-17-0057.1
75 C, Zhang C, Zhao S Y, Yu X, Yang J, Cheng X, Zhang B, Xue J, Shen F Chen (2022). Seasonal imprint of Holocene temperature reconstruction on the Tibetan Plateau.Earth Sci Rev, 226: 103927
https://doi.org/10.1016/j.earscirev.2022.103927
76 E, Zhang J, Chang Y, Cao W, Sun J, Shulmeister H, Tang P G, Langdon X, Yang J Shen (2017). Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau.Quat Sci Rev, 165: 1–12
https://doi.org/10.1016/j.quascirev.2017.04.008
77 Z, Zhang H, Tian B, Cazelles K L, Kausrud A, Bräuning F, Guo N C Stenseth (2010). Periodic climate cooling enhanced natural disasters and wars in China during AD 10-1900.Proc Biol Sci, 277(1701): 3745–3753
https://doi.org/10.1098/rspb.2010.0890
78 C, Zhao E J, Rohling Z, Liu X, Yang E, Zhang J, Cheng Z, Liu Z, An X, Yang X, Feng X, Sun C, Zhang T, Yan H, Long H, Yan Z, Yu W, Liu S Y, Yu J Shen (2021). Possible obliquity-forced warmth in southern Asia during the last glacial stage.Sci Bull (Beijing), 66(11): 1136–1145
https://doi.org/10.1016/j.scib.2020.11.016
79 W, Zhou P, Cheng A, Jull X, Lu Z, An H, Wang Y, Zhu Z Wu (2014). 14C chronostratigraphy for Qinghai Lake in China.Radiocarbon, 56: 143–155
https://doi.org/10.2458/56.16470
80 Z, Zhu J, Wu P, Rioual J, Mingram H, Yang B, Zhang G, Chu J Liu (2021). Evaluation of the sources and seasonal production of brGDGTs in lake Sihailongwan (N.E. China) and application to reconstruct paleo-temperatures over the period 60–8 ka BP.Quat Sci Rev, 261: 106946
https://doi.org/10.1016/j.quascirev.2021.106946
[1] Zeyu ZHENG, Liya JIN, Jinjian LI, Xiaojian ZHANG, Jie CHEN. Detecting the spatial-temporal pattern of moisture evolution on the Tibetan Plateau during the Holocene by model-proxy comparison[J]. Front. Earth Sci., 2023, 17(4): 981-996.
[2] Hongliang ZHANG, Hucai ZHANG, Yanbin LEI. Lacustrine record of 800 yr hydrological variations on the central Tibetan Plateau[J]. Front. Earth Sci., 2023, 17(4): 945-955.
[3] Mingda WANG, Qin LI, Jaime TONEY, David HENDERSON, Juzhi HOU. A re-evaluation of the average chain length of lacustrine sedimentary n-alkanes as a paleoproxy on the Qinghai-Tibet Plateau[J]. Front. Earth Sci., 2023, 17(4): 905-919.
[4] Cai LIU, Haiyan ZHANG, Fuping GAN, Yunge LU, Hao WANG, Jiahong ZHANG, Xing JU. Identifying the spatio-temporal variability of human activity intensity and associated drivers: a case study on the Tibetan Plateau[J]. Front. Earth Sci., 2022, 16(3): 744-756.
[5] Xiaoqing LUO, Jianjun XU, Yu ZHANG, Kai LI. Relationship between the Tibetan Plateau–tropical Indian Ocean thermal contrast and the South Asian summer monsoon[J]. Front. Earth Sci., 2021, 15(1): 151-166.
[6] Zhengjia LIU,Mei HUANG. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Front. Earth Sci., 2016, 10(4): 784-793.
[7] Tongtiegang ZHAO, Jianshi ZHAO, Hongchang Hll, Guangheng NI. Source of atmospheric moisture and precipitation over China’s major river basins[J]. Front. Earth Sci., 2016, 10(1): 159-170.
[8] Hongxia LIU, Ying HU, Shihua QI, Xinli XING, Yuan ZHANG, Dan YANG, Chengkai QU. Organochlorine pesticide residues in surface water from Sichuan Basin to Aba Prefecture profile, east of the Tibetan Plateau[J]. Front. Earth Sci., 2015, 9(2): 248-258.
[9] Yu LI, Nai’ang WANG, Zhuolun LI, Xuehua ZHOU, Chengqi ZHANG, Yue WANG. Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China[J]. Front Earth Sci, 2013, 7(4): 487-500.
[10] Fang HAN, Kexin ZHANG, Junliang JI, Yadong XU, Fenning CHEN, Xiaohu KOU. Late Pleistocene sedimentary sequences and paleoclimate changes in Xunhua basin in the upper reach of Yellow River in China[J]. Front Earth Sci, 2012, 6(3): 297-305.
[11] Furong LI, Yan ZHAO, Jinghui SUN, Wenwei ZHAO, Xiaoli GUO, Ke ZHANG. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau[J]. Front Earth Sci, 2011, 5(3): 252-261.
[12] GUO Zhengfu, CHEN Xiaoyu, LIU Jiaqi. Effect of volatiles erupted from Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China[J]. Front. Earth Sci., 2008, 2(4): 393-396.
[13] WEI Hualing, FANG Nianqiao, DING Xuan, LIU Xiuming, NIE Lanshi. Pelagic records from the Equatorial Ninetyeast Ridge and significant environmental events during the past 3.5 Ma[J]. Front. Earth Sci., 2008, 2(2): 162-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed