Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2009, Vol. 3 Issue (1) : 56-61    https://doi.org/10.1007/s11783-009-0003-x
RESEARCH ARTICLE
Pyrene partition behavior to the NOM: Effect of NOM characteristics and its modification by ozone preoxidation
Jin GUO1, Jun MA1,2(email.png)
1. 1. School of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China; 2. 2. School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(156 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrophobic organic contaminants (HOCs)—pyrene, and natural organic matters (NOM) from different sources were taken as the test compounds to investigate the impact of physicochemical characteristics of NOM on HOCs’ partition to the NOM in this study. The effects of solution property, NOM characteristics, and modification by ozone preoxidation on pyrene partition to NOM were systematically evaluated. According to the fluorescence quenching method, the partition coefficient Koc of pyrene to NOM was calculated, which was found to have a great relationship with the aromatic structures and hydrophobic functional groups of the NOM. The NOM characteristic modification corresponding to solution property could influence the interactions between the NOM and pyrene. Preozonation could destroy the aromatic or hydrophobic structures of the NOM and decrease Koc of pyrene.

Keywords natural organic matters (NOM)      pyrene      partition coefficient      ozone     
Corresponding Author(s): MA Jun,Email:majun@hit.edu.cn   
Issue Date: 05 March 2009
 Cite this article:   
Jin GUO,Jun MA. Pyrene partition behavior to the NOM: Effect of NOM characteristics and its modification by ozone preoxidation[J]. Front Envir Sci Eng Chin, 2009, 3(1): 56-61.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-009-0003-x
https://academic.hep.com.cn/fese/EN/Y2009/V3/I1/56
sampleE4/E6SUVAMwMnρ (Mw/Mn)*RT/min
HyO6.251.80325816471.982.075
HyI6.51.10422817762.382.058
CHA12.464.1729989651.752.083
Tab.1  Comparison of the characteristics of the CHA, HyO, and HyI
Fig.1  Stern-Volmer plots obtained for the binding of pyrene to the NOM
CHA: commercial humic acid; HyO: hydrophobic fraction; HyI: hydrophilic fraction
Fig.2  Correlation between log of pyrene and the NOM characteristic parameters of CHA, HyO, and HyI
Fig.3  changes of pyrene with pH
CHA: commercial humic acid; HyO: hydrophobic fraction; HyI: hydrophilic fraction
Fig.4  change of pyrene with ion strength and Ca
CHA: commercial humic acid; HyO: hydrophobic fraction; HyI: hydrophilic fraction
Fig.5  change of pyrene with ozonation
CHA: commercial humic acid; HyO: hydrophobic fraction; HyI: hydrophilic fraction.
1 Gauthier T D, Shane E C, Guerin W F, Seitz W R, Grant C L. Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol ., 1986, 20(11): 1162-1166
doi: 10.1021/es00153a012
2 Schlautman M A, Morgan J J. Binding of a fluorescent hydrophobic organic probe by dissolved humic substances and organically-coated aluminum oxide surfaces. Environ. Sci. Technol ., 1993a, 27(12): 2523-2532
doi: 10.1021/es00048a033
3 Schlautman M A, Morgan J J. Effects of aqueous chemistry on the binding of polycyclic aromatic hydrocarbons by dissolved humic materials. Environ. Sci. Technol ., 1993b, 27(5): 961-969
doi: 10.1021/es00042a020
4 Murphy E M, Zachara J M, Smith S C, Phillips J L, Wietsma T W. Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environ. Sci. Technol ., 1994, 28(7): 1291-1299
doi: 10.1021/es00056a017
5 Jones K D, Tiller C L. Effect of solution chemistry on the extent of binding of phenanthrene by a soil humic acid: A comparison of dissolved and clay bound humic. Environ. Sci. Technol ., 1999, 33(4): 580-587
doi: 10.1021/es9803207
6 Lee C L, Kuo L J, Wang H L, Hsieh P C. Effects of ionic strength on the binding of phenanthrene and pyrene to humic substances: Three-stage variation model. Water Res. , 2003, 37: 4250-4258
doi: 10.1016/S0043-1354(03)00309-9
7 Gauthier T D, Seltz W R, Grant C L. Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values. Environ. Sci. Technol ., 1987, 21(3): 243-248
doi: 10.1021/es00157a003
8 Tanaka S, Oba K, Fukushima M, Nakayasu K, Hasebe K. Water solubility enhancement of pyrene in the presence of humic substances. Anal. Chim. Acta , 1997, 337: 351-357
doi: 10.1016/S0003-2670(96)00422-9
9 Chin Y, Aiken G R, Danielsen K M. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity. Environ. Sci. Technol ., 1997, 31(6): 1630-1635
doi: 10.1021/es960404k
10 Perminova I V, Grechishcheva N Y, Petrosyan V S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: Relevance of molecular descriptors. Environ. Sci. Technol ., 1999, 33(21): 3781-3787
doi: 10.1021/es990056x
11 Chefetz B, Deshmukh A P, Hatcher P G, Guthrie E A. Pyrene sorption by natural organic matter. Environ. Sci. Technol ., 2000, 34(14): 2925-2930
doi: 10.1021/es9912877
12 Kramer G, Somasundaran P. Conformational behavior of polyelectrolyte complexes at the solid/liquid interface. Langmuir , 2002, 18 (24): 9357-9361
doi: 10.1021/la020436n
13 Chandrakanth M S, Amy G L. Effects of NOM source variations and calcium complexation capacity on ozone-induced particle destabilization. Water Res. , 1998, 32(1): 115-124
doi: 10.1016/S0043-1354(97)00104-8
14 Owen D M, Amy G L, Chowdhury Z K, Paode R, Mccoy G, Viscosil K. NOM characterization and treatability. J. AWWA , 1995, 1: 46-63
15 Rositano J, Newcombe G, Nicholson B, Sztajnbok P. Ozonation of NOM and algal toxins in four treated waters. Water Res ., 2001, 35(1): 23-32
doi: 10.1016/S0043-1354(00)00252-9
16 Galapate R P, Baes A U, Okada M. Transformation of dissolved organic matter during ozonation: Effects on trihalomethane formation potential. Water Res. , 2001, 35(9): 2201-2206
doi: 10.1016/S0043-1354(00)00489-9
17 Fahmi N W, Okada M. Characterization of organic matter in ozonation and biological treatment. J. Water Supply: Res. Technol. – AQUA . 2003, 52(4): 291-297
18 Zhou Q, Cabaniss S E, Maurice P A. Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances. Water Res ., 2000, 34(14): 3505-3514
doi: 10.1016/S0043-1354(00)00115-9
19 Egeberg P K, Alberts J J. Determination of hydrophobicity of NOM by RP-HPLC, and the effect of pH and ionic strength. Water Res ., 2002, 36: 4997-5004
doi: 10.1016/S0043-1354(02)00228-2
20 Namjesnik-Dejanovic K, Cabaniss S E. Reverse-phase HPLC method for measuring polarity distributions of natural organic matter. Environ. Sci. Technol ., 2004, 38(4): 1108-1114
doi: 10.1021/es0344157
21 Guo J, Ma J. AFM study on the sorbed NOM and its fractions isolated from River Songhua. Water Res ., 2006, 40: 1975-1984
doi: 10.1016/j.watres.2006.03.012
[1] Majid Mustafa, Huijiao Wang, Richard H. Lindberg, Jerker Fick, Yujue Wang, Mats Tysklind. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106-.
[2] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[3] Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long. Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity[J]. Front. Environ. Sci. Eng., 2021, 15(2): 31-.
[4] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[5] Yulu Qiu, Zhiqiang Ma, Weili Lin, Weijun Quan, Weiwei Pu, Yingruo Li, Liyan Zhou, Qingfeng Shi. A study of peroxyacetyl nitrate at a rural site in Beijing based on continuous observations from 2015 to 2019 and the WRF-Chem model[J]. Front. Environ. Sci. Eng., 2020, 14(4): 71-.
[6] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[7] Xuehao Zhao, Yinhu Wu, Xue Zhang, Xin Tong, Tong Yu, Yunhong Wang, Nozomu Ikuno, Kazuki Ishii, Hongying Hu. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Front. Environ. Sci. Eng., 2019, 13(4): 55-.
[8] In-Sun Kang, Jinying Xi, Hong-Ying Hu. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms[J]. Front. Environ. Sci. Eng., 2018, 12(3): 8-.
[9] Fariba Mahmoudkhani, Maryam Rezaei, Vahid Asili, Mahsasadat Atyabi, Elena Vaisman, Cooper H. Langford, Alex De Visscher. Benzene degradation in waste gas by photolysis and photolysis-ozonation: experiments and modeling[J]. Front. Environ. Sci. Eng., 2016, 10(6): 10-.
[10] Lyumeng Ye,Xuemei Wang,Shaofeng Fan,Weihua Chen,Ming Chang,Shengzhen Zhou,Zhiyong Wu,Qi Fan. Photochemical indicators of ozone sensitivity: application in the Pearl River Delta, China[J]. Front. Environ. Sci. Eng., 2016, 10(6): 15-.
[11] He NIU,Ziwei MO,Min SHAO,Sihua LU,Shaodong XIE. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation[J]. Front. Environ. Sci. Eng., 2016, 10(5): 1-.
[12] David D. Parrish,Jin Xu,Bart Croes,Min Shao. Air quality improvement in Los Angeles—Perspectives for developing cities[J]. Front. Environ. Sci. Eng., 2016, 10(5): 11-.
[13] Wendi XU,Shuhai GUO,Gang LI,Fengmei LI,Bo WU,Xinhong GAN. Combination of the direct electro-Fenton process and bioremediation for the treatment of pyrene-contaminated soil in a slurry reactor[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1096-1107.
[14] Jingyun FANG,Huiling LIU,Chii SHANG,Minzhen ZENG,Mengling NI,Wei LIU. E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes[J]. Front.Environ.Sci.Eng., 2014, 8(4): 547-552.
[15] Kai LIU, Fengkui DUAN, Kebin HE, Yongliang MA, Yuan CHENG. Investigation on sampling artifacts of particle associated PAHs using ozone denuder systems[J]. Front Envir Sci Eng, 2014, 8(2): 284-292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed