Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2013, Vol. 7 Issue (2) : 200-210    https://doi.org/10.1007/s11783-012-0457-0
RESEARCH ARTICLE
Enhanced production of laccase by Coriolus hirsutus using molasses distillery wastewater
Wei SUN1,2,3,4, Meiying XU1,2,3, Chunyu XIA1,2,3, Anhua LI1,2,3, Guoping SUN1,2,3()
1. Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; 2. Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, China; 3. State Key Laboratory of Applied Microbiology (Ministry—Guangdong Province Jointly Breeding Base), South China, Guangzhou 510070, China; 4. School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
 Download: PDF(459 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of physical parameters of cultivation (load volume, temperature, pH, agitation, inoculum size, and incubation period) in the production of laccase by wood-rotting basidiomycete Coriolus hirsutus were studied using diluted molasses distillery wastewater (MDW) as a major composition. Using fractional factorial design, our study first identified load volume, agitation, and inoculum size as statistically significant factors. Optimal preferences and mutual interactions of the factors were then determined by the response surface method, which is based on the center composite design. A quadratic model was used to fit the experimental data. The optimized operational parameters for laccase production were determined to be the following: culture temperature of 25°C, pH 4, load volume of 40 mL diluted MDW in 150 mL flask, agitation rate of 183 r·min-1, inoculation of 11.5% v/v, and cultivation time of 6 d. The experimental validation under these conditions (the maximum laccase production of 2198.2 U·mL-1 was within the confidence interval) subsequently verified the accuracy of the constructed model. Moreover, the removal of chemical oxygen demand and nitrogen of MDW reached 62.85% and 48.00% respectively, and the decolorization ratio under the optimal condition was 41.85%. The enhanced production of laccase by C. hirsutus is a new recovery strategy for MDW.

Keywords laccase      Coriolus hirsutus      fractional factorial design      response surface method      molasses distillery wastewater     
Corresponding Author(s): SUN Guoping,Email:guopingsun@163.com   
Issue Date: 01 April 2013
 Cite this article:   
Wei SUN,Guoping SUN,Meiying XU, et al. Enhanced production of laccase by Coriolus hirsutus using molasses distillery wastewater[J]. Front Envir Sci Eng, 2013, 7(2): 200-210.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0457-0
https://academic.hep.com.cn/fese/EN/Y2013/V7/I2/200
chemical componentsconcentration /(mg·L-1)
total organic carbon56910±500
total nitrogen9890±350
calcium7360±200
total phosphorus111±5
magnesium6920±430
sulfate7520±610
chemical oxygen demand (COD)171200±2600
total sugar132700±2800
reducing sugar16170±400
pH4.16±0.10
Tab.1  Composition of molasses distillery wastewater
factorsSignslow level (-1)high level (+1)
load volume /mLX13050
temperature /°CX22528
pHX346
agitation /(r·min-1)X4130150
inoculum size /(% v/v)X5810
incubation period /dX668
Tab.2  Coded and real values of experiment factors in FFD
run numberX1X2X3X4X5X6Y/(U·mL-1)
1-1-1-1-1-1-1623.1
21-1-1-11-11087.5
3-11-1-111850.8
411-1-1-11954.9
5-1-11-1111233.5
61-11-1-111480.9
7-111-1-1-11090.3
8111-11-11514.3
9-1-1-11-111387.3
101-1-11111734.4
11-11-111-11599.5
1211-11-1-11636.9
13-1-1111-11460.8
141-111-1-11414.3
15-1111-111256.9
161111111463.0
Tab.3  Experimental design and response values of FFD ( = 16)
factorssignst-valuep-valuereliability
load volume /mLX17.18130.0188>95%
temperature /°CX2-0.22200.8449-
pHX34.18540.0526-
agitation /(r·min-1)X412.55150.0063>99%
inoculum size /(% v/v)X54.42470.0475>95%
incubation period /dX6-0.26050.8189-
Tab.4  Levels of variables and analysis of the main effect for FFD
factorssignscode number
low star point-1.68low level-1center point0high level1high star point1.68
load volume/mLX12330405057
agitation/(r·min-1)X4116130150170184
inoculum size/(% v/v)X56.68101213.4
Tab.5  Coded and real values of the selected experiment factors
run numberX1X4X5Y/(U·mL-1)
1-1-1-11929.8
2-1-111967.8
3-11-12053.7
4-1112117.4
51-1-11654.7
61-111924.7
711-11916.0
81112089.0
9-1.68001873.1
101.68001520.9
110-1.6801880.9
1201.6802211.8
1300-1.681918.3
14001.682045.2
150002145.5
160002148.1
170002136.1
180002135.4
190002146.3
200002157.8
Tab.6  Design and results of the central composite experiment
sourceDFa)sum of squaremean squareF-valuep-value
X1184874.6984874.6934.40260.0002
X41115439.80115439.8046.79170.0001
X5142084.8242084.8217.05840.0020
X121303545.30303545.30123.03720.0001
X1?X412891.802891.801.17210.3044
X1?X5114560.7114560.715.90190.0355
X4216734.426734.422.72970.1295
X4?X51635.46635.460.25760.6228
X52128482.4928482.4911.54490.0068
model9577468.8064163.2126.00750.0001
error1024671.012467.10
total19602139.90
Tab.7  Variance analysis of the result of the central composite experiment
Fig.1  2D contour plot and corresponding 3D response surface curve for effects of load volume (), agitation (), and their mutual interaction (a); effects of load volume (), inoculum size (), and their mutual interaction (b); effects of agitation (), inoculum size (), and their mutual interaction (c) on laccase production
Fig.2  Metabolism curve of cultivated in MDW
Fig.3  Effect of on quality of MDW
1 D’Souza-Ticlo D, Sharma D, Raghukumar C. A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Marine Biotechnology (New York, N.Y.) , 2009, 11(6): 725-737
doi: 10.1007/s10126-009-9187-0 pmid:19283431
2 Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P. A typical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme and Microbial Technology , 2003, 33(2-3): 220-230
doi: 10.1016/S0141-0229(03)00117-0
3 Meza J C, Auria R, Lomascolo A, Sigoillot J C, Casalot L. Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3. Enzyme and Microbial Technology , 2007, 41(1-2): 162-168
doi: 10.1016/j.enzmictec.2006.12.018
4 Kahraman S S, Gurdal I H. Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresource Technology , 2002, 82(3): 215-217
doi: 10.1016/S0960-8524(01)00193-6 pmid:11991068
5 Kannan A, Upreti R K. Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds. Journal of Hazardous Materials , 2008, 153(1-2): 609-615
doi: 10.1016/j.jhazmat.2007.09.004 pmid:17928137
6 Singh A, Bajar S, Bishnoi N R, Singh N. Laccase production by Aspergillus heteromorphus using distillery spent wash and lignocellulosic biomass. Journal of Hazardous Materials , 2010, 176(1-3): 1079-1082
doi: 10.1016/j.jhazmat.2009.10.120 pmid:20036461
7 Lata K, Kansal A, Balakrishnan M, Rajeshwari K V, Kishore V V N. Assessment of biomethanation potential of selected industrial organic effluents in India. Resources, Conservation and Recycling , 2002, 35(3): 147-161
doi: 10.1016/S0921-3449(01)00112-4
8 Pathak H, Joshi H C, Chaudhary A, Chaudhary R, Kalra N, Dwiwedi M K. Soil amendment with distillery effluent for wheat and rice cultivation. Water, Air, and Soil Pollution , 1999, 113(1-4): 133-140
doi: 10.1023/A:1005058321924
9 Shojaosadati S A, Khalilzadeh R, Jalilzadeh A, Sanaei H R. Bioconversion of molasses stillage to protein as an economic treatment of this effluent. Resources, Conservation and Recycling , 1999, 27(1-2): 125-138
doi: 10.1016/S0921-3449(98)00092-5
10 Wilkie A C, Riedesel K J, Owens J M. Stillage characterization and anaerobic treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass and Bioenergy , 2000, 19(2): 63-102
doi: 10.1016/S0961-9534(00)00017-9
11 Dubey K, Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World Journal of Microbiology & Biotechnology , 2001, 17(1): 61-69
doi: 10.1023/A:1016606509385
12 Khardenavis A A, Suresh Kumar M, Mudliar S N, Chakrabarti T. Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly beta-hydroxybutyrate. Bioresource Technology , 2007, 98(18): 3579-3584
doi: 10.1016/j.biortech.2006.11.024 pmid:17207999
13 Mohana S, Shah A, Divecha J, Madamwar D. Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresource Technology , 2008, 99(16): 7553-7564
doi: 10.1016/j.biortech.2008.02.009 pmid:18374565
14 Pant D, Reddy U, Adholeya A. Cultivation of oyster mushrooms on wheat straw and bagasse substrate amended with distillery effluent. World Journal of Microbiology & Biotechnology , 2006, 22(3): 267-275
doi: 10.1007/s11274-005-9031-2
15 Silva J P A, Mussatto S I, Roberto I C. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Applied Biochemistry and Biotechnology , 2010, 162(5): 1306-1315
doi: 10.1007/s12010-009-8867-6 pmid:19946760
16 Sun W, Xu M Y, Sun G P. Culture medium optimization for laccase production by Coriolus hirsutus using molasses distillery wastewater. Microbiology China , 2011, 38(4): 516-522
17 Li A H, Xu M Y, Sun W, Sun G P. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Applied Biochemistry and Biotechnology , 2011, 163(5): 600-611
doi: 10.1007/s12010-010-9066-1 pmid:20830582
18 Bourbonnais R, Paice M G. Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Applied Microbiology and Biotechnology , 1992, 36(6): 823-827
doi: 10.1007/BF00172202
19 Yesilada O, Fiskin K, Yesilada E. The use of white rot fungus Funalia trogii (Malatya) for the decolorization and phenol removal from olive oil mill wastewater. Environmental Technology , 1995, 16(1): 95-100
doi: 10.1080/09593331608616250
20 Kahraman S, Ye?ilada O. Decolorization and bioremediation of molasses wastewater by white-rot fungi in a semi-solid-state condition. Folia Microbiologica , 2003, 48(4): 525-528
doi: 10.1007/BF02931335 pmid:14533485
21 Yang Y G, Sun G P, Guo J, Xu M Y. Differential biofilms characteristics of Shewanella decolorationis microbial fuel cells under open and closed circuit conditions. Bioresource Technology , 2011, 102(4): 7093-7098
22 Breuil C, Saddler J N. Comparision of the 3,5-dinitrosalicylic acid and nelson-somogyi methods of assaying for reducing sugars and determining cellulase activity. Enzyme and Microbial Technology , 1985, 7(7): 327-332
doi: 10.1016/0141-0229(85)90111-5
23 Annadurai G, Juang R S, Lee D J. Factorial design analysis for adsorption of dye on activated carbon beads incorporated with calcium alginate. Advances in Environmental Research , 2002, 6(2): 191-198
doi: 10.1016/S1093-0191(01)00050-8
24 Levin L, Forchiassin F, Viale A. Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett-Burman experimental design to evaluate nutritional requirements. Process Biochemistry (Barking, London, England) , 2005, 40(3-4): 1381-1387
doi: 10.1016/j.procbio.2004.06.005
25 Ferreira S L C, Bruns R E, Ferreira H S, Matos G D, David J M, Brand?o G C, da Silva E G P, Portugal L A, dos Reis P S, Souza A S, dos Santos W N L. Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta , 2007, 597(2): 179-186
doi: 10.1016/j.aca.2007.07.011 pmid:17683728
26 Zhou Q, Su J J, Jiang H X, Huang X Q, Xu Y Q. Optimization of phenazine-1-carboxylic acid production by a gacA/qscR-inactivated Pseudomonas sp. M18GQ harboring pME6032Phz using response surface methodology. Applied Microbiology and Biotechnology , 2010, 86(6): 1761-1773
doi: 10.1007/s00253-010-2464-z pmid:20155354
27 Li Y, Lu J, Gu G X, Mao Z G. Characterization of the enzymatic degradation of arabinoxylans in grist containing wheat malt using response surface methodology. Journal of the American Society of Brewing Chemists , 2005, 63(4): 171-176
28 Amini M, Younesi H, Bahramifar N, Lorestani A A Z, Ghorbani F, Daneshi A, Sharifzadeh M. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. Journal of Hazardous Materials , 2008, 154(1-3): 694-702
doi: 10.1016/j.jhazmat.2007.10.114 pmid:18068898
29 Muralidhar R V, Chirumamila R R, Marchant R, Nigam P. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal , 2001, 9(1): 17-23
doi: 10.1016/S1369-703X(01)00117-6
30 Wang Z W, Liu X L. Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technology , 2008, 99(17): 8245-8251
doi: 10.1016/j.biortech.2008.03.039 pmid:18448333
31 Lee J Y, Kang S W, Kim S W. Relationship between agitation speed and the morphological characteristics of Verticillium lecanii CS-625 during spore production. Biotechnology and Bioprocess Engineering , 2008, 13(1): 1-6
doi: 10.1007/s12257-007-0109-6
32 Kamble A L, Meena V S, Banerjee U C. Effect of agitation and aeration on the production of nitrile hydratase by Rhodococcus erythropolis MTCC 1526 in a stirred tank reactor. Letters in Applied Microbiology , 2010, 51(4): 413-420
doi: 10.1111/j.1472-765X.2010.02909.x pmid:20723042
33 Matousek J L, Campbell K L, Kakoma I, Solter P F, Schaeffer D J. Evaluation of the effect of pH on in vitro growth of Malassezia pachydermatis. Canadian journal of veterinary research , 2003, 67(1): 56-59
pmid:12528830
34 Ali S, Rafi H, Ul Hag I. Production of an extracellular lipase from Candida lipolytica and parameter significance analysis by Plackett-Burman design. Engineering in Life Sciences , 2010, 10(5): 465-473
doi: 10.1002/elsc.200900099
35 Emelyanova E V. Effects of cultivation conditions on the growth of the basidiomycete Coriolus hirsutus in a medium with pentose wood hydrolyzate. Process Biochemistry (Barking, London, England) , 2005, 40(3-4): 1119-1124
doi: 10.1016/j.procbio.2004.03.016
36 Koroleva O V, Stepanova E V, Gavrilova V P, Yakovleva N S, Landesman E O, Yavmetdinov I S, Yaropolov A I. Laccase and Mn-peroxidase production by Coriolus hirsutus strain 075 in a jar fermentor. Journal of Bioscience and Bioengineering , 2002, 93(5): 449-455
pmid:16233231
37 Staszczak M, Nowak G, Grzywnowicz K, Leonowicz A. Proteolytic activities in cultures of selected white-rot fungi. Journal of Basic Microbiology , 1996, 36(3): 193-203
doi: 10.1002/jobm.3620360306
38 Cabaleiro D R, Rodriguez S, Sanroman A, Longo M A. Characterisation of deactivating agents and their influence on the stability of manganese-dependent peroxidase from Phanerochaete chrysosporium. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2001, 76(8): 867-872
doi: 10.1002/jctb.460
39 Fu Y Z, Viraraghavan T. Fungal decolorization of dye wastewaters: a review. Bioresource Technology , 2001, 79(3): 251-262
doi: 10.1016/S0960-8524(01)00028-1 pmid:11499579
40 Coulibaly L, Gourene G, Agathos N S. Utilization of fungi for biotreatment of raw wastewaters. African Journal of Biotechnology , 2003, 2(12): 620-630
41 Vahabzadeh F, Mehranian M, Saatari A R. Color removal ability of Phanerochaete chrysosporium in relation to lignin peroxidase and manganese peroxidase produced in molasses wastewater. World Journal of Microbiology & Biotechnology , 2004, 20(8): 859-864
doi: 10.1007/s11274-004-9005-9
[1] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[2] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
[3] Xiangyu Wang, Yu Xie, Guizhen Yang, Jiming Hao, Jun Ma, Ping Ning. Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach[J]. Front. Environ. Sci. Eng., 2020, 14(2): 22-.
[4] Ziming Zhao, Wenjun Sun, Madhumita B. Ray, Ajay K Ray, Tianyin Huang, Jiabin Chen. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(5): 75-.
[5] Xiaomeng Wang, Ning Li, Jianye Li, Junjun Feng, Zhun Ma, Yuting Xu, Yongchao Sun, Dongmei Xu, Jian Wang, Xueli Gao, Jun Gao. Fluoride removal from secondary effluent of the graphite industry using electrodialysis: Optimization with response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(4): 51-.
[6] Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14-.
[7] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[8] Yuanyuan Shi, Deyang Kong, Jiayang Liu, Junhe Lu, Xiaoming Yin, Quansuo Zhou. Transformation of triclosan by a novel cold-adapted laccase from Botrytissp. FQ[J]. Front. Environ. Sci. Eng., 2017, 11(3): 6-.
[9] Yan GUO, Chuanfu WU, Qunhui WANG, Min YANG, Qiqi HUANG, Markus MAGEP, Tianlong ZHENG. Wastewater-nitrogen removal using polylactic acid/starch as carbon source: Optimization of operating parameters using response surface methodology[J]. Front. Environ. Sci. Eng., 2016, 10(4): 6-.
[10] Lei YU,Chen TU,Yongming LUO. Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example[J]. Front. Environ. Sci. Eng., 2015, 9(2): 206-215.
[11] Liangzhi LI,Xiaolin LI,Ci YAN,Weiqiang GUO,Tianyi YANG,Jiaolong FU,Jiaoyan TANG,Cuiying HU. Optimization of methyl orange removal from aqueous solution by response surface methodology using spent tea leaves as adsorbent[J]. Front.Environ.Sci.Eng., 2014, 8(4): 496-502.
[12] XIA Qing,KONG Deyang,LIU Guoqiang,HUANG Qingguo,ALALEWI Aamr,LU Junhe. Removal of 17β-estradiol in laccase catalyzed treatment processes[J]. Front.Environ.Sci.Eng., 2014, 8(3): 372-378.
[13] Guangyin ZHEN, Xueqin LU, Baoying WANG, Youcai ZHAO, Xiaoli CHAI, Dongjie NIU, Tiantao ZHAO. Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: effectiveness and statistical optimization[J]. Front Envir Sci Eng, 2014, 8(2): 267-276.
[14] Chengyuan SU, Weiguang LI, Yong WANG. Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption conditions using Box-Behnken response surface methodology[J]. Front Envir Sci Eng, 2013, 7(4): 503-511.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed