Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 239-255    https://doi.org/10.1007/s11783-013-0536-x
RESEARCH ARTICLE
An interval joint-probabilistic programming method for solid waste management: a case study for the city of Tianjin, China
Yi XU, Shunze WU(), Hongkuan ZANG, Guiguang HOU
Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy for Environmental Planning, Beijing 100012, China
 Download: PDF(494 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Currently, environmental protection and resources conservation continue to be challenges faced by solid-waste managers in China. These challenges are being further compounded by rapid socioeconomic development and population growth associated with increased waste generation rates and decreased waste disposal capacities. In response to these challenges, an interval joint-probabilistic mixed-integer programming (IJMP) method is developed for supporting long-term planning of waste management activities in the city of Tianjin, which is one of the largest municipalities in the northern part of China. In the IJMP, joint probabilistic constraints are introduced into an interval-parameter mixed-integer programming framework, such that uncertainties presented in terms of interval values and random variables can be reflected. Moreover, a number of violation levels for the waste-management-capacity constraints are examined, which can facilitate in-depth analyses of tradeoffs among economic objective and system-failure risk. The results indicate that reasonable solutions have been generated. They are valuable for supporting the adjustment of the city’s existing waste-management practices and the long-term planning of the city’s waste-management facilities.

Keywords interval analysis      mixed integer      joint probabilistic constraint      planning      uncertainty      waste management     
Corresponding Author(s): WU Shunze,Email:wusz@caep.org.cn   
Issue Date: 01 April 2014
 Cite this article:   
Yi XU,Shunze WU,Hongkuan ZANG, et al. An interval joint-probabilistic programming method for solid waste management: a case study for the city of Tianjin, China[J]. Front Envir Sci Eng, 2014, 8(2): 239-255.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0536-x
https://academic.hep.com.cn/fese/EN/Y2014/V8/I2/239
Fig.1  Study area. (Symbols “A” denotes the “Hongqiao District,” “B” denotes the “Hebei District,” “C” denotes the “Nankai District,” “D” denotes the “Heping District,” “E” denotes the “Hedong District,” “F” denotes the “Hexi District”)
No.districtwaste generation amount,wjk±/(tonne·d-1)
k = 1k = 2k = 3
1Heping[547.1, 580.9][667.2, 708.5][813.7, 864.1]
2Hongqiao[651.8, 692.2][794.9, 844.2][969.6, 1029.5]
3Hebei[721.7, 766.3][880.2, 934.6][1073.4, 1139.8]
4Hedong[791.5, 840.5][965.3, 1025.0][1177.3, 1250.1]
5Nankai[919.6, 976.4][1121.5, 1190.9][1367.8, 1452.4]
6Hexi[861.4, 914.6][1050.5, 1115.5][1281.2,1360.4]
7Xiqing[384.1, 407.9][468.5, 497.4][571.3,606.7]
8Jinnan[442.3, 469.7][539.5, 572.8][657.9,698.6]
9Dongli[372.5, 395.5][454.3, 482.4][554.0,588.3]
10Beichen[372.5, 395.5][454.3, 482.4][554.0,588.3]
Tab.1  Waste generation amount in different districts
Fig.2  Waste flow in the city of Tianjin
time period
k = 1k = 2k = 3
operating costs of waste management facilities,LOPlk±,IOPik±,ROPrk±/$·tonne-1
landfill 1 (L1)[9.4, 10.1][9.6, 10.3][9.7, 10.5]
landfill 2 (L2)[5.7, 6.8][5.8, 6.9][5.9, 7.1]
incinerator 1 (I1)[15.7, 16.7][16.0, 17.0][16.3, 17.3]
incinerator 2 (I2)[15.4, 16.5][15.7, 16.8][16.0, 17.1]
incinerator 3 (I3)[15.4, 16.5][15.7, 16.8][16.0, 17.1]
transfer station 1[2.3, 3.2][2.3, 3.3][2.4, 3.3]
transfer station 2[2.4, 3.4][2.4, 3.5][25, 3.5]
revenues from waste management facilities, RL1k±,REik±,RTrk±/$·tonne-1
landfill 1 (L1)[3.5, 3.9][3.6, 4.0][3.7, 4.1]
incinerator 1 (I1)[6.2, 7.0][6.3, 7.2][6.5, 7.3]
incinerator 2 (I2)[6.5, 7.2][6.6, 7.4][6.8, 7.5]
incinerator 3 (I3)[6.5, 7.2][6.6, 7.4][6.8, 7.5]
transfer station 1[13.2, 14.2][13.4, 14.5][13.7, 14.7]
transfer station 2[13.2, 14.2][13.4, 14.5][13.7, 14.7]
Tab.2  Operating costs and revenues of facilities
time period
k = 1k = 2k = 3
capacity expansion option for landfill/106 tonnes
ΔTLl1k (option 1)2.42.42.4
ΔTLl2k (option 2)4.84.84.8
ΔTLl3k (option 2)6.06.06.0
capacity expansion option for incinerator/tonne·d-1
ΔTEi1k (option 1)200200200
ΔTEi2k (option 2)300300300
ΔTEi3k (option 2)800800800
capital cost of landfill expansion/$106 (present value)
ELl1k (option 1)[0.7, 0.9][0.6, 0.8][0.5, 0.7]
ELl2k (option 2)[1.4, 1.5][1.3, 1.4][1.2, 1.3]
ELl3k (option 3)[1.8, 1.9][1.7, 1.8][1.6, 1.7]
capital cost of incinerator expansion/$106 (present value)
EIi1k (option 1)[11.5, 11.6][11.2, 11.4][11.0, 11.1]
EIi2k (option 2)[17.2, 17.4][16.8, 17.0][16.4, 16.7]
EIi3k (option 3)[45.8, 46.4][44.8, 45.4][43.8, 44.4]
Tab.3  Capacity expansion options and costs
casejoint probabilityindividual probability
landfillsincinerators
1δ = 0.01ql = 0.004pi = 0.006
2δ = 0.05ql = 0.020pi = 0.030
3δ = 0.10ql = 0.010pi = 0.090
4δ = 0.10ql = 0.040pi = 0.060
5δ = 0.10ql = 0.070pi = 0.030
6δ = 0.15ql = 0.060pi = 0.090
Tab.4  Joint probability under different cases
δ levelL1/(106 tonne)L2/ (106 tonne)I1/(tonne·d-1)I2/(tonne·d-1)I3/ (tonne·d-1)
0.002[10.55, 12.56][3.98, 4.46][428.5, 471.0][938.5, 1023.5][768.5, 853.5]
0.005[10.58, 12.59][4.01, 4.49][437.0, 479.5][947.0, 1032.1][777.1, 862.0]
0.010[10.61, 12.61][4.04, 4.51][444.1, 486.6][954.1, 1039.1][784.1, 869.1]
0.020[10.64, 12.64][4.07, 4.54][451.8, 494.3][961.8, 1046.8][791.8, 876.8]
0.030[10.65, 12.66][4.08, 4.56][456.7, 499.2][966.7, 1051.7][796.7, 881.7]
0.035[10.66, 12.66][4.09, 4.56][458.7, 501.2][968.7, 1053.7][798.7, 883.7]
0.050[10.67, 12.68][4.11, 4.58][463.4, 505.9][973.4, 1058.4][803.4, 888.4]
0.500[10.93, 12.93][4.35, 4.83][509.5, 552.5][1019.7, 1104.9][850.7, 935.4]
Tab.5  Capacities of landfills and incinerators
Fig.3  Expansion schemes for the landfills: (a) lower bound and (b) upper bound
Fig.4  Expansion schemes for the incinerators: (a) lower bound and (b) upper bound
caseperiodfacilitywaste flows /(tonne·d-1)
11landfill 1[2451.2, 2611.7]
1landfill 2[1157.1, 1364.1]
1incinerator 1[613.2, 683.5]
1incinerator 2[1522.0, 1618.5]
1incinerator 3[929.9, 1023.5]
2landfill 1[2555.6, 2745. 8]
2landfill 2[1541.4, 1811.0
2incinerator 1[855.8, 938.5]
2incinerator 2[1757.9, 1873.5]
2incinerator 3[1589.3, 1703.5]
3landfill 1[3503.4, 3712.7]
3landfill 2[1984.5, 2294.9]
3incinerator 1[806.8, 904.7]
3incinerator 2[1904.6, 2043.5]
3incinerator 3[1819.2, 1958.5]
21landfill 1[2440.0, 2603.3]
1landfill 2[1133.1, 1339.6]
1incinerator 1[620.8, 699.1]
1incinerator 2[1545.8, 1634.1]
1incinerator 3[945.5, 1039.1]
2landfill 1[2528.2, 2719.2]
2landfill 2[1533.6, 1804.8]
2incinerator 1[871.4, 954.1]
2incinerator 2[1773.5, 1889.1]
2incinerator 3[1604.9, 1719.1]
3landfill 1[3566.3, 3777.8]
3landfill 2[2056.7, 2355.8]
3incinerator 1[850.4, 948.3]
3incinerator 2[1750.2, 1889.1]
3incinerator 3[1749.9, 1889.1]
31landfill 1[2430.3, 2594.4]
1landfill 2[1114.5, 1321.9]
1incinerator 1[632.2, 711.7]
1incinerator 2[1559.6, 1646.7]
1incinerator 3[958.1, 1051.7]
2landfill 1[2506.1, 2697.7]
2landfill 2[1527.3, 1799.8]
2incinerator 1[884.0, 966.7]
2incinerator 2[1786.1, 1901.7]
2incinerator 3[1617.6, 1731.7]
3landfill 1[3586.0, 3794.4]
3landfill 2[2064.4, 2364.8]
3incinerator 1[788.7, 886.6]
3incinerator 2[1762.8, 1901.7]
3incinerator 3[1762.5, 1901.7]
41landfill 1[2433.9, 2597.9]
1landfill 2[1121.9, 1328.8]
1incinerator 1[627.3, 706.8]
1incinerator 2[1554.7, 1641.8]
1incinerator 3[953.2, 1046.8]
2landfill 1[2578.5, 2765.6]
2landfill 2[1529.8, 1801.7]
2incinerator 1[794.1, 876.8]
2incinerator 2[1781.2, 1896.8]
2incinerator 3[1612.6, 1726.8]
3landfill 1[3545.4, 3751.6]
3landfill 2[2080.4, 2384.5]
3incinerator 1[746.4, 844.4]
3incinerator 2[1757.9, 1896.8]
3incinerator 3[1842.6, 1981.8]
51landfill 1[2440.0, 2603.3]
1landfill 2[1133.1, 1339.6]
1incinerator 1[620.8, 699.1]
1incinerator 2[1545.8, 1634.1]
1incinerator 3[945.5, 1039.1]
2landfill 1[2591.9, 2778.7]
2landfill 2[1533.6, 1804.8]
2incinerator 1[786.4, 869.1]
2incinerator 2[1773.5, 1889.1]
2incinerator 3[1604.9, 1719.1]
3landfill 1[3538.8, 3746.3]
3landfill 2[2080.6, 2384.0]
3incinerator 1[770.2, 868.2]
3incinerator 2[1750.2, 1889.1]
3incinerator 3[1834.9, 1974.1]
61landfill 1[2371.4, 2530.6]
1landfill 2[1188.9, 1398.7]
1incinerator 1[620.8, 693.2]
1incinerator 2[1550.3, 1646.7]
1incinerator 3[958.1, 1051.7]
2landfill 1[2506.1, 2697.7]
2landfill 2[1527.3, 1799.8]
2incinerator 1[884.0, 966.7]
2incinerator 2[1786.1, 1901.7]
2incinerator 3[1617.6, 1731.7]
3landfill 1[3683.6, 3896.5]
3landfill 2[2034.2, 2326.1]
3incinerator 1[868.8, 966.7]
3incinerator 2[1762.8, 1901.7]
3incinerator 3[1592.5, 1731.7]
Tab.6  Solutions of waste-flow allocation under different cases
Fig.5  Waste flows to different facilities (Symbols “WTI” and “WTL” denote the total amount of waste flows to incinerators and landfills, respectively): (a) period 1, (b) period 2 and (c) period 3
casetransportation cost/106$operation cost/106$expansion cost/106$system cost/106$
1[118.6, 156.8][561.2, 664.2][178.2, 192.0][507.9, 680.3]
2[118.9, 157.0][559. 6, 662.5][161.8, 175.3][491.2, 663.2]
3[118.8, 156.9][560.2, 663.2][161.8, 175.3][491.2, 663.3]
4[118.8, 157.0][558.7, 661. 6][172.6, 175.2][501.1, 662.1]
5[118.9, 157.0][558.1, 660.8][172.6, 175.2][501.0, 661.8]
6[119.1, 157.2][558.2, 661.1][161.8, 164.2][490.9, 651. 7]
Tab.7  Solutions for costs under different cases
Fig.6  Transportation, operation and expansion costs under different cases
Fig.7  The total expanded capacity for the three incinerators under the two scenarios
Fig.8  Costs and revenues under the two scenarios. (“TC” denotes the “transportation cost,” “OC” denotes the “operation cost,” “EC” denotes the “expansion cost,” “RE” denotes the “revenue of all the facilities,” “SC” denotes the “system cost”)
1 Li Y P, Huang G H. An inexact two-stage mixed integer linear programming method for solid waste management in the city of Regina. Journal of Environmental Management , 2006, 81(3): 188–209
doi: 10.1016/j.jenvman.2005.10.007 pmid:16678336
2 Shekdar A V. Sustainable solid waste management: an integrated approach for Asian countries. Waste Management (New York, N.Y.) , 2009, 29(4): 1438–1448
doi: 10.1016/j.wasman.2008.08.025 pmid:19081236
3 Huang Q F, Wang Q, Dong L, Xi B D, Zhou B Y. The current situation of solid waste management in China. Journal of Material Cycles and Waste Management , 2006, 8(1): 63–69
doi: 10.1007/s10163-005-0137-2
4 Dong S C, Kurt W T, Wu Y P. Municipal solid waste management in China: using commercial management to solve a growing problem. Utilities Policy , 2001, 10(1): 7–11
doi: 10.1016/S0957-1787(02)00011-5
5 Chen X D, Geng Y, Fujita T. An overview of municipal solid waste management in China. Waste Management (New York, N.Y.) , 2010, 30(4): 716–724
doi: 10.1016/j.wasman.2009.10.011 pmid:19932016
6 Zhang D Q, Tan S K, Gersberg R M. Municipal solid waste management in China: status, problems and challenges. Journal of Environmental Management , 2010, 91(8): 1623–1633
doi: 10.1016/j.jenvman.2010.03.012 pmid:20413209
7 Kühner J, Harrington J J. Mathematical models for developing regional solid waste management policies. Engineering Optimization , 1975, 1(4): 237–256
doi: 10.1080/03052157508960590
8 Jenkins L. Parametric mixed integer programming: an application to solid waste management. Management Science , 1982, 28(11): 1270–1285
doi: 10.1287/mnsc.28.11.1270
9 Baetz B W. Optimization/Simulation modeling for waste management capacity planning. Journal of Urban Planning and Development , 1990, 116(2): 59–79
doi: 10.1061/(ASCE)0733-9488(1990)116:2(59)
10 Huang G H, Baetz B W, Patry G G. Grey integer programming: an application to waste management planning under uncertainty. European Journal of Operational Research , 1995, 83(3): 594–620
doi: 10.1016/0377-2217(94)00093-R
11 Huang G H, Baetz B W, Patry G G, Terluk V. Capacity planning for an integrated waste management system under uncertainty: a North American case study. Waste Management & Research , 1997, 15(5): 523–546
12 Chang N B, Wang S F. Solid waste management system analysis by multiobjective mixed integer programming model. Journal of Environmental Management , 1996, 48(1): 17–43
doi: 10.1006/jema.1996.0064
13 Pertsinidis A, Grossmann I E, McRae G J. Parametric optimization of MILP programs and a framework for the parametric optimization of MINLPs. Computers & Chemical Engineering , 1998, 22(1): S205–S212
doi: 10.1016/S0098-1354(98)00056-8
14 Dua V, Pistikopoulos E N. An algorithm for the solution of multiparametric mixed integer linear programming problems. Annals of Operations Research , 2000, 99(1/4): 123–139
doi: 10.1023/A:1019241000636
15 Huang G H, Sae-Lim N, Chen Z, Liu L. Long-term planning of waste management system in the city of Regina- an integrated inexact optimization approach. Environmental Modeling & Assessment , 2001, 6(4): 285–296
doi: 10.1023/A:1013346202934
16 Chang G W, Aganagic M, Waight J G, Medina J, Burton T, Reeves S, Christoforidis M. Experiences with mixed integer linear programming based approaches on short-term hydro scheduling. Power Systems , 2001, 16(4): 743–749
doi: 10.1109/59.962421
17 Cheng S, Chan C W, Huang G H. An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Engineering Applications of Artificial Intelligence , 2003, 16(5–6): 543–554
doi: 10.1016/S0952-1976(03)00069-1
18 Camarena E A, Gracia C, Cabrera Sixto J M. A mixed integer linear programming machinery selection model for multifarm systems. Biosystems Engineering , 2004, 87(2): 145–154
doi: 10.1016/j.biosystemseng.2003.10.003
19 Neumaier A, Shcherbina O. Safe bounds in linear and mixed-integer linear programming. Mathematical Programming , 2004, 99(2): 283–296
doi: 10.1007/s10107-003-0433-3
20 Huang G H, Chi G F, Li Y P. Long-term planning of an integrated solid waste management system under uncertainty–I. model development. Environmental Engineering Science , 2005, 22(6): 823–834
doi: 10.1089/ees.2005.22.823
21 Liu Z F, Huang G H, Liao R F, He L. DIPIP: Dual interval probabilistic integer programming for solid waste management. Journal of Environmental Informatics , 2009, 14(1): 66–73
doi: 10.3808/jei.200900154
22 Charnes A, Cooper W W, Thompson G L. Critical path analyses via chance constrained and stochastic programming. Operations Research , 1964, 12(3): 460–470
doi: 10.1287/opre.12.3.460
23 Charnes A, Cooper W W. Response to “Decision problems under risk and chance constrained programming: dilemmas in the transitions”. Management Science , 1983, 29(6): 750–753
doi: 10.1287/mnsc.29.6.750
24 Li Y P, Huang G H, Nie S L, Qin X S. ITCLP: An inexact two-stage chance-constrained program for planning waste management systems. Resources, Conservation and Recycling , 2007, 49(3): 284–307
doi: 10.1016/j.resconrec.2006.03.017
25 Xu Y, Huang G H, Qin X S, Cao M F. SRCCP: a stochastic robust chance-constrained programming model for municipal solid waste management under uncertainty. Resources, Conservation and Recycling , 2009, 53(6): 352–363
doi: 10.1016/j.resconrec.2009.02.002
26 Sun Y, Huang G H, Li Y P. ICQSWM: An inexact chance-constrained quadratic solid waste management model. Resources, Conservation and Recycling , 2010, 54(10): 641–657
doi: 10.1016/j.resconrec.2009.11.004
27 Zhang Y, Monder D, Forbes Forbes J. Real-time optimization under parametric uncertainty: a probability constrained approach. Journal of Process Control , 2002, 12(3): 373–389
doi: 10.1016/S0959-1524(01)00047-6
28 Li Y P, Huang G H, Nie S L. Water resources management and planning under uncertainty: an inexact multistage joint-probabilistic programming method. Water Resources Management , 2008, 23(12): 2515–2538
doi: 10.1007/s11269-008-9394-x
29 Tianjin Municipal Bureau. Tianjin statistical yearbook. Beijing: China Statistics Press, 1998 (in Chinese)
30 Tianjin Municipal Bureau. Tianjin statistical yearbook. Beijing: China Statistics Press, 2008 (in Chinese)
31 Shen J, Spence N. Modelling regional population growth in China. Mathematical Population Studies , 1997, 6(3): 241–274
doi: 10.1080/08898489709525434 pmid:12292514
32 Zhao W, Van Der Voet E, Zhang Y F, Huppes G. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China. Science of the Total Environment , 2009, 407(5): 1517–1526
doi: 10.1016/j.scitotenv.2008.11.007 pmid:19068268
33 Ma T Y. Tianjin Municipal solid waste management status analysis and countermeasures. Dissertation for the Doctoral Degree . Shannxi: Agriculture Extension, Northwest Agriculture & Forestry University, 2009 (in Chinese)
34 Zhou J, Jia Y J. Study on present situation and strategy of MSW in Tianjin City. Journal of Tianjin Normal University , 2003, 23(3): 52–55 (Natural Science Edition)
35 Han L. Research on Tianjin’s municipal solid waste treatment. Dissertation for the Doctoral Degree . Tianjin: Tianjin University, 2003 (in Chinese)
36 Xiao H, Tan Y P. Developing Tendency of Domestic Garbage Disposing and Managing in Tianjin. Tianjin Construction Science and Technology , 2005, 15(2): 45–46 (in Chinese).
37 Tianjin Municipal Bureau. Tianjin Statistical Yearbook. Beijing: China Statistics Press, 2009 (in Chinese)
38 Geng Y, Zhu Q H, Haight M. Planning for integrated solid waste management at the industrial park level: a case of Tianjin, China. Waste Management , 2007, 27(1): 141–150
doi: 10.1016/j.wasman.2006.07.013 pmid:17055715
39 Miller B L, Wagner H M. Chance constrained programming with joint constraints. Operations Research , 1965, 13(6): 930–945
doi: 10.1287/opre.13.6.930
40 Lejeune M A, Ruszczyński A. An efficient trajectory method for probabilistic production-inventory-distribution problems. Operations Research , 2007, 55(2): 378–394
doi: 10.1287/opre.1060.0356
[1] Yangyang Liang, Qingbin Song, Naiqi Wu, Jinhui Li, Yuan Zhong, Wenlei Zeng. Repercussions of COVID-19 pandemic on solid waste generation and management strategies[J]. Front. Environ. Sci. Eng., 2021, 15(6): 115-.
[2] Jiping Jiang, Feng Han, Yi Zheng, Nannan Wang, Yixing Yuan. Inverse uncertainty characteristics of pollution source identification for river chemical spill incidents by stochastic analysis[J]. Front. Environ. Sci. Eng., 2018, 12(5): 6-.
[3] Ozan Capraz, Olcay Polat, Askiner Gungor. Performance evaluation of waste electrical and electronic equipment disassembly layout configurations using simulation[J]. Front. Environ. Sci. Eng., 2017, 11(5): 5-.
[4] Te Xu, Haifeng Jia, Zheng Wang, Xuhui Mao, Changqing Xu. SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin[J]. Front. Environ. Sci. Eng., 2017, 11(4): 1-.
[5] Sheng Huang, Xin Zhao, Yanqiu Sun, Jianli Ma, Xiaofeng Gao, Tian Xie, Dongsheng Xu, Yi Yu, Youcai Zhao. Pollution of hazardous substances in industrial construction and demolition wastes and their multi-path risk within an abandoned pesticide manufacturing plant[J]. Front. Environ. Sci. Eng., 2017, 11(1): 12-.
[6] Margarida OLIVEIRA,Elizabeth DUARTE. Integrated approach to winery waste: waste generation and data consolidation[J]. Front. Environ. Sci. Eng., 2016, 10(1): 168-176.
[7] Pingjian YANG,Feifei DONG,Yong LIU,Rui ZOU,Xing CHEN,Huaicheng GUO. A refined risk explicit interval linear programming approach for optimal watershed load reduction with objective-constraint uncertainty tradeoff analysis[J]. Front. Environ. Sci. Eng., 2016, 10(1): 129-140.
[8] Rongrong ZHANG,Chesheng ZHAN,Xiaomeng SONG,Baolin LIU. An enhanced environmental multimedia modeling system based on fuzzy-set approach: II. Model validation and application[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1025-1035.
[9] Zhuo CHEN, Huu Hao NGO, Wenshan GUO, Xiaochang WANG. Analysis of Sydney’s recycled water schemes[J]. Front Envir Sci Eng, 2013, 7(4): 608-615.
[10] Yongliang ZHANG, Bing ZHANG, Jun BI, Pan HE. Modeling the impact of uncertainty in emissions trading markets with bankable permits[J]. Front Envir Sci Eng, 2013, 7(2): 231-241.
[11] Yang DONG, Yi LIU, Jining CHEN, Yebin DONG, Benliang QU. Forecasting industrial emissions: a monetary approach vs. a physical approach[J]. Front Envir Sci Eng, 2012, 6(5): 734-742.
[12] Yongpeng Lü, Kai YANG, Yue CHE, Zhaoyi SHANG, Jun TAI, Yun JIAN. Industrial solid waste flow analysis of eco-industrial parks: implications for sustainable waste management in China[J]. Front Envir Sci Eng, 2012, 6(4): 575-587.
[13] Hongkuan ZANG, Yi XU, Wei LI, Guohe HUANG, Dan LIU. An uncertain energy planning model under carbon taxes[J]. Front Envir Sci Eng, 2012, 6(4): 549-558.
[14] ZHOU Jiquan, LIU Yi, CHEN Jining, YU Fanxian. Uncertainty analysis on aquatic environmental impacts of urban land use change[J]. Front.Environ.Sci.Eng., 2008, 2(4): 494-504.
[15] WANG Xiangrong, YONG Yi, ZHANG Hao, WANG Pingjian, WANG Shoubing, CHEN Weizhen, WANG Shixiong, HO Hing Hon. On eco-planning for an eco-demonstration park (EDP) and sustainability[J]. Front.Environ.Sci.Eng., 2008, 2(2): 178-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed