Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front.Environ.Sci.Eng.    0, Vol. Issue () : 433-440    https://doi.org/10.1007/s11783-013-0594-0
RESEARCH ARTICLE
Evaluation of endocrine disruption and dioxin-like effects of organic extracts from sewage sludge in autumn in Beijing, China
LIU Cao1,2,XU Yiping,MA Mei,HUANG Bingbin2,WU Jingdong2,MENG Qingyi2,WANG Zijian1,(),GEARHEART Robert Alan3
State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Beijing Water Science and Technology Institute, Beijing 100048, China
Environmental Engineering Department, Humboldt State University, Arcata, CA95521, USA
 Download: PDF(147 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Study on effective disposal and utilization of sewage sludge has recently been the target of growing interest in China. However, potential risks are associated with the use of sludge due to its contamination with toxic organics, heavy metals and pathogenic microorganisms. In this study, a screening assessment was conducted on sewage sludge samples collected from 17 different sewage treatment plants in Beijing, based on a batch of in vitro bioassays, including a set of recombinant gene yeast assays for endocrine disruption, and an ethoxy resorufin-O-deethylase (EROD) assay using H4IIE cells for aryl hydrocarbon receptor (Ah-R) agonistic activities. Our results suggested that moderate levels of estrogen receptor agonistic activities (0.9 ng E2·g-1 to 6.8 ng E2·g-1, dw), but relative higher androgen receptor antagonistic activities (nd to 45%), progestin receptor antagonistic activities (nd to 80%) and Ah-R agonistic activities (1390 to 6740 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)·g-1, dw) were found in sewage sludge samples. However, there were no significant correlations between the toxic effects of sewage sludge and the sewage treatment processes. In addition, the 17β-estradiol (E2) equivalent quantity (EEQ) level of the sewage sludge was increased after the composting treatment, whereas the 2,3,7,8-tetrachlorodibenzo-p-dioxin toxic equivalent quantity (TEQ) level of sewage sludge composted was much lower than that of sewage sludge.

Keywords sewage sludge      in vitro bioassay      endocrine disruption      dioxin-like effect     
Corresponding Author(s): WANG Zijian   
Issue Date: 19 May 2014
 Cite this article:   
LIU Cao,XU Yiping,MA Mei, et al. Evaluation of endocrine disruption and dioxin-like effects of organic extracts from sewage sludge in autumn in Beijing, China[J]. Front.Environ.Sci.Eng., 0, (): 433-440.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0594-0
https://academic.hep.com.cn/fese/EN/Y0/V/I/433
Fig.1  Locations of sewage sludge sampling sites in Beijing

S1- Fangzhuang, S2- Jiuxianqiao, S3- Wujiacun, S4- Qinghe, S5- Lugouqiao, S6- Yanqing, S7- Miyun, S8- Changping, S9- Changping composted, S10- Huairou, S11- Shunyi, S12- Pinggu, S13- Huangcun, S14- Panggezhuang, S15- Yizhuang, S16- Liangxiang, S17- Mentougou

pathway of endocrine disruptionin vitro bioassayreferencematerialendpoint
estrogen disruptionrecombinant ER gene two-hybrid yeast17β-estradiolER agonistic activity
androgen disruptionrecombinant AR gene two-hybrid yeastdihydrotestoster-oneAR agonistic activity
flutamideAR antagonistic activity
progestin-based endocrine disruptionrecombinant PR gene yeastprogesteronePR agonistic activity
mifepristonePR antagonistic activity
Tab.1  
sewage sludgesampleagonistic activityrate of antagonistic activity suppression
ARPRARPR
Fangzhuang<dl<dl26%±8%58%±7%
Jiuxianqiao<dl<dl32%±6%79%±4%
Wujiacun<dl<dl31%±6%73%±7%
Qinghe<dl<dl<dl43%±8%
Lugouqiao<dl<dl45%±3%80%±7%
Yanqing<dl<dl29%±1%<dl
Miyun<dl<dl18%±2%61%±4%
Changping<dl<dl34%±4%67%±3%
Changping Composted<dl<dl<dl<dl
Huairou<dl<dl12%±6%60%±1%
Shunyi<dl<dl18%±2%59%±7%
Pinggu<dl<dl<dl32%±5%
Huangcun<dl<dl40%±4%78%±2%
Panggezhuang<dl<dl41%±3%<dl
Yizhuang<dl<dl33%±4%46%±8%
Liangxiang<dl<dl31%±6%20%±7%
Mentougou<dl<dl28%±7%46%±11%
Tab.2  
Fig.2  Estrogen receptor agonistic activities of sewage sludge samples in Beijing (expressed as EEQ with the method detection limit of 0.9 ng E2·g-1)

S1- Fangzhuang, S2- Jiuxianqiao, S3- Wujiacun, S4- Qinghe, S5- Lugouqiao, S6- Yanqing, S7- Miyun, S8- Changping, S9- Changping composted, S10- Huairou, S11- Shunyi, S12- Pinggu, S13- Huangcun, S14- Panggezhuang, S15- Yizhuang, S16- Liangxiang, S17- Mentougou

Fig.3  Fig. 3 Detection results of dioxin-like effects of sewage sludge samples in Beijing

S1- Fangzhuang, S2- Jiuxianqiao, S3- Wujiacun, S4- Qinghe, S5- Lugouqiao, S6- Yanqing, S7- Miyun, S8- Changping, S9- Changping composted, S10- Huairou, S11- Shunyi, S12- Pinggu, S13- Huangcun, S14- Panggezhuang, S15- Yizhuang, S16- Liangxiang, S17- Mentougou

sampling siteER agonistic activity (EEQ)/(ng E2·g-1)
sludge from STPs (The Netherlands) [25]<dl–3.6
sludge from a STP (Germany) [26]0.3–3.7
sludge from STPs (Korea) [27]3–444
soils from reclaimed water irrigated plots (Tunisia) [28]<dl
sediments of Wenyuhe River in Beijing (China) [29]0.8–19.8
sediments of Daguhe River (China) [30]37–95
soils in Beijing and Tianjin (China) [31]<dl–0.14
sewage sludge in Beijing (current study)0.9–6.8
Tab.3  
sampling sitesAh-R agonistic activity (TEQ)/(pg TCDD·g-1)
sewage sludge (UK) [38]20–220
sewage sludge (Australia) [39]1200–15300
sewage sludge in Catalonia (Spain) [40]10–30
soils from reclaimed water irrigated plots (Tunisia) [28]26600–67900
sediments of Wenyuhe River in Beijing (China) [29]10–340
sediments of Daguhe River (China) [41]1200–13900
sewage sludge in Beijing (current study)1390–6740
Tab.4  
1 Wu J D, Xiong J X, Huang B B, Li W Z, Meng Q Y, He C L. Status and countermeasures of the sludge treatment and disposal in Beijing Municipal Sewage Treatment Plants. Beijing Water, 2010, (5): 4–6 (in Chinese)
2 Cargouët M, Perdiz D, Mouatassim-Souali A, Tamisier-Karolak S, Levi Y. Assessment of river contamination by estrogenic compounds in Paris area (France). The Science of the Total Environment, 2004, 324(1–3): 55–66
doi: 10.1016/j.scitotenv.2003.10.035 pmid: 15081696
3 Chen J, Ahn K C, Gee N A, Gee S J, Hammock B D, Lasley B L. Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicology and Applied Pharmacology, 2007, 221(3): 278–284
doi: 10.1016/j.taap.2007.03.015 pmid: 17481686
4 Roy P, Pereira B M. A treatise on hazards of endocrine disruptors and tool to evaluate them. Indian Journal of Experimental Biology, 2005, 43(11): 975–992
pmid: 16313061
5 Sumpter J P, Jobling S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environmental Health Perspectives, 1995, 103(Suppl 7): 173–178
pmid: 8593867
6 Leusch F D L, van den Heuvel M R, Chapman H F, Gooneratne S R, Eriksson A M E, Tremblay L A. Development of methods for extraction and in vitro quantification of estrogenic and androgenic activity of wastewater samples. Comparative biochemistry and physiology. Toxicology & pharmacology, 2006, 143(1): 117–126
doi: 10.1016/j.cbpc.2005.12.010 pmid: 16473560
7 Kumar V, Chakraborty A, Viswanath G, Roy P. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: their influence on reproductive processes and systemic toxicity in male rats. Toxicology and Applied Pharmacology, 2008, 226(1): 60–73
doi: 10.1016/j.taap.2007.08.023 pmid: 18001809
8 Sharpe R M, Skakkebaek N E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet, 1993, 341(8857): 1392–1396
doi: 10.1016/0140-6736(93)90953-E pmid: 8098802
9 Leon D Betowski, Douglas S Kendall, Christopher M Pace, Joseph R Donnelly. Characterization of groundwater samples from superfund sites by gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Environmental Science & Technology, 1996, 30(12): 3558–3564
doi: 10.1021/es9602206
10 Giesy J P, Hilscherova K, Jones P D, Kannan K, Machala M.Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples. Marine Pollutution Bulletin, 2002, 45(1–12): 3–16
11 Qiao M, Chen Y, Zhang Q H, Huang S B, Ma M, Wang C, Wang Z J. Identification of Ah receptor agonists in sediment of Meiliang Bay, Taihu Lake, China. Environmental Science & Technology, 2006, 40(5): 1415–1419
doi: 10.1021/es051456p pmid: 16568750
12 Shen C F, Huang S B, Wang Z J, Qiao M, Tang X J, Yu C N, Shi D Z, Zhu Y, Shi J Y, Chen X C, Setty K, Chen Y X. Identification of Ah receptor agonists in soil of E-waste recycling sites from Taizhou area in China. Environmental Science & Technology, 2008, 42(1): 49–55
doi: 10.1021/es071162z pmid: 18350874
13 Li J, Wang Z J, Ma M, Peng X Z. Analysis of environmental endocrine disrupting activities using recombinant yeast assay in wastewater treatment plant effluents. Bulletin of Environmental Contamination and Toxicology, 2010, 84(5): 529–535
doi: 10.1007/s00128-010-0004-2 pmid: 20407748
14 Gaido K W, Leonard L S, Lovell S, Gould J C, Babaï D, Portier C J, McDonnell D P. Evaluation of chemicals with endocrine modulating activity in a yeast-based steroid hormone receptor gene transcription assay. Toxicology and Applied Pharmacology, 1997, 143(1): 205–212
doi: 10.1006/taap.1996.8069 pmid: 9073609
15 Ma M, Li J, Wang Z J. Assessing the detoxication efficiencies of wastewater treatment processes using a battery of bioassays/biomarkers. Archives of Environmental Contamination and Toxicology, 2005, 49(4): 480–487
doi: 10.1007/s00244-004-0204-z pmid: 16205990
16 Routledge E J, Sumpter J P. Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry, 1996, 15(3): 241–248
doi: 10.1002/etc.5620150303
17 Wang J, Xie P, Kettrup A, Schramm K W. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials. The Science of the Total Environment, 2005, 349(1–3): 120–128
doi: 10.1016/j.scitotenv.2005.01.019 pmid: 16198674
18 Donato M T, Gómez-Lechón M J, Castell J V. A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates. Analytical Biochemistry, 1993, 213(1): 29–33
19 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1–2): 248–254
doi: 10.1016/0003-2697(76)90527-3 pmid: 942051
20 Hanberg A, Stahlberg M, Georgellis A, de Wit C, Ahlborg U G. Swedish dioxin survey: evaluation of the H-4-II E bioassay for screening environmental samples for dioxin-like enzyme induction. Pharmacology & Toxicology, 1991, 69(6): 442–449
doi: 10.1111/j.1600-0773.1991.tb01327.x pmid: 1766920
21 Pöch G, Köck P, Reiffenstein R J, Pancheva S N. Uniform characterization of potentiation in simple and complex situations when agents bind to different molecular sites. Canadian Journal of Physiology and Pharmacology, 1995, 73(11): 1574–1581
doi: 10.1139/y95-217 pmid: 8789410
22 Ma M, Rao K F, Wang Z J. Occurrence of estrogenic effects in sewage and industrial wastewaters in Beijing, China. Environmental pollution (Barking, Essex: 1987), 2007, 147(2): 331–336
doi: 10.1016/j.envpol.2006.05.032 pmid: 16872730
23 C Desbrow, E J Routledge, G C Brighty, J P Sumpter, M Waldock. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 1998, 32(11): 1549–1558
doi: 10.1021/es9707973
24 Viganò L, Benfenati E, Cauwenberge A, Eidem J K, Erratico C, Goksøyr A, Kloas W, Maggioni S, Mandich A, Urbatzka R. Estrogenicity profile and estrogenic compounds determined in river sediments by chemical analysis, ELISA and yeast assays. Chemosphere, 2008, 73(7): 1078–1089
doi: 10.1016/j.chemosphere.2008.07.057 pmid: 18799186
25 Murk A J, Legler J, van Lipzig M M H, Meerman J H N, Belfroid A C, Spenkelink A, van der Burg B, Rijs G B J, Vethaak D. Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. Environmental toxicology and chemistry/SETAC, 2002, 21(1): 16–23
doi: 10.1002/etc.5620210103 pmid: 11808534
26 Körner W, Bolz U, Süßmuth W, Hiller G, Schuller W, Hanf V, Hagenmaier H. Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany. Chemosphere, 2000, 40(9–11): 1131–1142
doi: 10.1016/S0045-6535(99)00362-8 pmid: 10739055
27 Sim W J, Lee J W, Shin S K, Song K B, Oh J E. Assessment of fates of estrogens in wastewater and sludge from various types of wastewater treatment plants. Chemosphere, 2011, 82(10): 1448–1453
doi: 10.1016/j.chemosphere.2010.11.045 pmid: 21146855
28 Mahjoub O, Leclercq M, Bachelot M, Casellas C, Escande A, Balaguer P, Bahri A, Gomez E, Fenet H. Estrogen, aryl hysdrocarbon and pregnane X receptors activities in reclaimed water and irrigated soils in Oued Souhil area (Nabeul, Tunisia). Desalination, 2009, 246(1–3): 425–434
doi: 10.1016/j.desal.2008.03.064
29 Luo J, Ma M, Wang D, Rao K, Wang Z. Assessing potential toxicities of sediments from typical rivers in Tianjin, China by using in vitro bioassays. China Environmental Science, 2008, 28(11): 968–973
30 Song M, Xu Y, Jiang Q, Lam P K, O’Toole D K, Giesy J P, Jiang G. Measurement of estrogenic activity in sediments from Haihe and Dagu River, China. Environment International, 2006, 32(5): 676–681
doi: 10.1016/j.envint.2006.03.002 pmid: 16624408
31 Xiao R Y, Wang Z J, Wang C X, Yu G. Soil screening for identifying ecological risk stressors using a battery of in vitro cell bioassays. Chemosphere, 2006, 64(1): 71–78
doi: 10.1016/j.chemosphere.2005.11.048 pmid: 16406055
32 Dray J, Dray T F, Ullmann A. Hydrolyse des métabolites urinaires de différentes hormones stéroïdes par la-glucuronidase de “Escherichia coli”. Annales de l’Institut Pasteur, 1972, 123(6): 853–857
pmid: 4570336
33 Tollefsen K E, Harman C, Smith A, Thomas K V. Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. Marine Pollutution Bulletin, 2007, 54(3): 277–283
doi: 10.1016/j.marpolbul.2006.07.012 pmid: 17258235
34 Sohoni P, Sumpter J P. Several environmental oestrogens are also anti-androgens. The Journal of Endocrinology, 1998, 158(3): 327–339
doi: 10.1677/joe.0.1580327 pmid: 9846162
35 Tamura H, Ishimoto Y, Fujikawa T, Aoyama H, Yoshikawa H, Akamatsu M. Structural basis for androgen receptor agonists and antagonists: interaction of SPEED 98-listed chemicals and related compounds with the androgen receptor based on an in vitro reporter gene assay and 3D-QSAR. Bioorganic & Medicinal Chemistry, 2006, 14(21): 7160–7174
doi: 10.1016/j.bmc.2006.06.064 pmid: 16876421
36 Tran D Q, Klotz D M, Ladlie B L, Ide C F, McLachlan J A, Arnold S F. Inhibition of progesterone receptor activity in yeast by synthetic chemicals. Biochemical and Biophysical Research Communications, 1996, 229(2): 518–523
doi: 10.1006/bbrc.1996.1836 pmid: 8954930
37 Li J, Li N, Ma M, Giesy J P, Wang Z J. In vitro profiling of the endocrine disrupting potency of organochlorine pesticides. Toxicology Letters, 2008, 183(1–3): 65–71
pmid: 18992306
38 Stevens J, Green N J L, Jones K C. Survey of PCDD/Fs and non-ortho PCBs in UK sewage sludges. Chemosphere, 2001, 44(6): 1455–1462
doi: 10.1016/S0045-6535(00)00474-4 pmid: 11513125
39 Clarke B, Porter N, Symons R, Blackbeard J, Ades P, Marriott P. Dioxin-like compounds in Australian sewage sludge—review and national survey. Chemosphere, 2008, 72(8): 1215–1228
doi: 10.1016/j.chemosphere.2008.01.076 pmid: 18452969
40 Eljarrat E, Caixach J, Rivera J. A comparison of TEQ contributions from PCDDs, PCDFs and dioxin-like PCBs in sewage sludges from Catalonia, Spain. Chemosphere, 2003, 51(7): 595–601
doi: 10.1016/S0045-6535(02)00785-3 pmid: 12615114
41 Song M, Jiang Q, Xu Y, Liu H, Lam P K, O’Toole D K, Zhang Q, Giesy J P, Jiang G. AhR-active compounds in sediments of the Haihe and Dagu Rivers, China. Chemosphere, 2006, 63(7): 1222–1230
doi: 10.1016/j.chemosphere.2005.08.065 pmid: 16325885
42 Engwall M, Schnürer A. Fate of Ah-receptor agonists in organic household waste during anaerobic degradation—estimation of levels using EROD induction in organ cultures of chick embryo livers. The Science of the Total Environment, 2002, 297(1–3): 105–108
doi: 10.1016/S0048-9697(02)00091-8 pmid: 12389782
[1] Zhihua Li, Yuchao Shao, Wenjing He, Zhangrui Luo, Weizhong Huo, Rong Ye, Wenjing Lu. Insight into the co-hydrothermal humification of corn stalk and sewage sludge for enhanced nitrogen-rich humic acid production[J]. Front. Environ. Sci. Eng., 2024, 18(12): 153-.
[2] Qian Li, Zhaoping Zhong, Haoran Du, Xiang Zheng, Bo Zhang, Baosheng Jin. Co-pyrolysis of sludge and kaolin/zeolite in a rotary kiln: Analysis of stabilizing heavy metals[J]. Front. Environ. Sci. Eng., 2022, 16(7): 85-.
[3] Xianke Lin, Xiaohong Chen, Sichang Li, Yangmei Chen, Zebin Wei, Qitang Wu. Sewage sludge ditch for recovering heavy metals can improve crop yield and soil environmental quality[J]. Front. Environ. Sci. Eng., 2021, 15(2): 22-.
[4] Milan Malhotra, Anurag Garg. Characterization of value-added chemicals derived from the thermal hydrolysis and wet oxidation of sewage sludge[J]. Front. Environ. Sci. Eng., 2021, 15(1): 13-.
[5] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[6] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
[7] Lin Lin, Ying-yu Li, Xiao-yan Li. Acidogenic sludge fermentation to recover soluble organics as the carbon source for denitrification in wastewater treatment: Comparison of sludge types[J]. Front. Environ. Sci. Eng., 2018, 12(4): 3-.
[8] Xuemin Wu,Fenfen Zhu,Juanjuan Qi,Luyao Zhao,Fawei Yan,Chenghui Li. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO[J]. Front. Environ. Sci. Eng., 2017, 11(2): 3-.
[9] Yuning YANG,Huan LI. Recovering humic substances from the dewatering effluent of thermally treated sludge and its performance as an organic fertilizer[J]. Front. Environ. Sci. Eng., 2016, 10(3): 578-584.
[10] Liangliang WEI,Kun WANG,Xiangjuan KONG,Guangyi LIU,Shuang CUI,Qingliang ZHAO,Fuyi CUI. Application of ultra-sonication, acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J]. Front. Environ. Sci. Eng., 2016, 10(2): 327-335.
[11] Hui ZHANG, Le XU, Yifei ZHANG, Mengchan JIANG. The transformation of PAHs in the sewage sludge incineration treatment[J]. Front. Environ. Sci. Eng., 2016, 10(2): 336-340.
[12] Yiying JIN,Yangyang LI,Fuqiang LIU. Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge[J]. Front. Environ. Sci. Eng., 2016, 10(1): 201-210.
[13] Yuyao ZHANG,Huan LI,Can LIU,Yingchao CHENG. Influencing mechanism of high solid concentration on anaerobic mono-digestion of sewage sludge without agitation[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1108-1116.
[14] DING Wenchuan,PENG Wenlong,ZENG Xiaolan,TIAN Xiumei. Effects of phosphorus concentration on Cr(VI) sorption onto phosphorus-rich sludge biochar[J]. Front.Environ.Sci.Eng., 2014, 8(3): 379-385.
[15] Wei WANG, Yuxiang LUO, Wei QIAO, . Possible solutions for sludge dewatering in China[J]. Front.Environ.Sci.Eng., 2010, 4(1): 102-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed