Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1066-1075    https://doi.org/10.1007/s11783-015-0769-y
RESEARCH ARTICLE
Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar
Fenglin LIU,Jiane ZUO(),Tong CHI,Pei WANG,Bo YANG
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(1455 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Iron-modified corn straw biochar was used as an adsorbent to remove phosphorus from agricultural runoff. When agricultural runoffs with a total phosphorus (TP) concentration of 1.86 mg·L−1 to 2.47 mg·L−1 were filtered at a hydraulic retention time of 2 h through a filtration column packed with the modified biochar, a TP removal efficiency of over 99% and an effluent TP concentration of less than 0.02 mg·L−1 were achieved. The isotherms of the phosphorus adsorption by the modified biochar fitted the Freundlich equation better than the Langmuir equation. The mechanism of the phosphorus adsorbed by the modified biochar was analyzed by using various technologies, i.e. scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the surface of the modified biochar was covered by small iron granules, which were identified as Fe3O4. The results also showed that new iron oxides were formed on the surface of the modified biochar after the adsorption of phosphorus. Moreover, new bonds of Fe-O-P and P-C were found, which suggested that the new iron oxides tend to be Fe5(PO4)4(OH)3. Aside from removing phosphorus, adding the modified biochar into soil also improved soil productivity. When the modified biochar-to-soil rate was 5%, the stem, root, and bean of broad bean plants demonstrated increased growth rates of 91%, 64%, and 165%, respectively.

Keywords iron-modified biochar      phosphorus removal      agricultural waste      agricultural runoff     
Corresponding Author(s): Jiane ZUO   
Online First Date: 21 January 2015    Issue Date: 23 November 2015
 Cite this article:   
Fenglin LIU,Jiane ZUO,Tong CHI, et al. Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1066-1075.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0769-y
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1066
sample number total adsorption time /h total runoff volume /L original samples /(mg·L−1) samples after phosphorus adsorption /(mg·L−1) removal efficiencies /%
TP TDP P TP TDP P TP TDP P
1# 100 31.4 2.24 0.58 0.35 0.02 0.02 ND * 99.1 96.6 100
2# 150 47.1 1.86 0.43 0.32 0.01 0.01 ND 99.5 97.7 100
3# 100 31.4 1.98 0.45 0.28 0.01 0.01 ND 99.5 97.8 100
4# 120 37.68 2.47 0.65 0.37 0.02 0.02 ND 99.2 96.9 100
Tab.1  Actual agricultural runoff before and after adsorption by the modified biochar
Fig.1  Removal efficiencies and equilibrium concentrations of phosphorus adsorbed by the modified biochars prepared under different (a) pyrolysis temperatures, (b) pyrolysis durations, (c) immersion times, and (d) ferrous concentrations
Fig.2  The effect of different reaction temperatures (a) and different reaction pH (b) on phosphorus adsorbed by the modified biochar
Fig.3  Adsorption isotherms of the (a) Freundlich and (b) Langmuir equations for phosphorus adsorbed by the modified biochar
pollutant Langmuir parameters Freundlich parameters
q' /(mg·g−1) b /(L·mg−1) R2 K n−1 R2
phosphorus 0.56 23.77 0.977 1.30 1.86 0.999
Tab.2  Adsorption constants for the Freundlich and Langmuir isotherm models
Fig.4  Effect of the modified biochar on plant productivity (the height of broad bean (a), the weight of broad bean (b))
Fig.5  SEM images of (a) raw straw and (b) modified biochar; (c) SE and (d) BSE images of the modified biochar; and (e, f) EDS analysis of IB400
Fig.6  (a) XPS spectra of the entire scanned region of the modified biochar before and after adsorbing phosphorus, (b) XPS spectra of Fe2p in the modified biochar before and after adsorbing phosphorus, (c) FTIR spectra of corn straw in the modified biochar before and after adsorbing phosphorus, and (d) XRD patterns of corn straw in the modified biochar before and after adsorbing phosphorus
1 Wu  Y, Hu  Z, Yang  L, Graham  B, Kerr  P G. The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresource Technology, 2011, 102(3): 2419–2426
2 Wang  X D, Zhang  S S, Liu  S L, Chen  J W. A two-dimensional numerical model for eutrophication in Baiyangdian Lake. Frontiers of Environmental Science & Engineering, 2012, 6 (6): 815–824
3 Li  L, Li  Y, Biswas  D K, Nian  Y, Jiang  G. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Bioresource Technology, 2008, 99(6): 1656–1663
4 Gan  L, Zuo  J, Xie  B, Li  P, Huang  X. Zeolite (Na) modified by nano-Fe particles adsorbing phosphate in rainwater runoff. Journal of Environmental Sciences-China, 2012, 24(11): 1929–1933
5 Xie  J, Zhang  X Y, Xu  Z W, Yuan  G F, Tang  X Z, Sun  X M, Ballantine  D J. Total phosphorus concentrations in surface water of typical agro- and forest ecosystems in China, 2004–2010. Frontiers of Environmental Science & Engineering, 2014, 8 (4): 561–569
6 Correll  D L. The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 1998, 27(2): 261–266
7 Schauser  I, Chorus  I, Heinzmann  B. Strategy and current status of combating eutrophication in two Berlin lakes for safeguarding drinking water resources. Water science and technology, 2006, 54(11): 93–100
8 de-Bashan  L E, Bashan  Y. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Research, 2004, 38(19): 4222–4246
https://doi.org/10.1016/j.watres.2004.07.014 pmid: 15491670
9 Jaffer  Y, Clark  T A, Pearce  P, Parsons  S A. Potential phosphorus recovery by struvite formation. Water Research, 2002, 36(7): 1834–1842
https://doi.org/10.1016/S0043-1354(01)00391-8 pmid: 12044083
10 Shanableh  A M, Elsergany  M M. Removal of phosphate from water using six Al-, Fe-, and Al-Fe-modified bentonite adsorbents. Journal of Environmental Science and Health, Part a—Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(2): 223–231
11 Posadas  E, García-Encina  P A, Soltau  A, Domínguez  A, Díaz  I, Muñoz  R. Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors. Bioresource Technology, 2013, 139: 50–58
https://doi.org/10.1016/j.biortech.2013.04.008 pmid: 23644070
12 Li  N, Ren  N Q, Wang  X H, Kang  H. Effect of temperature on intracellular phosphorus absorption and extra-cellular phosphorus removal in EBPR process. Bioresource Technology, 2010, 101(15): 6265–6268
https://doi.org/10.1016/j.biortech.2010.03.008 pmid: 20363119
13 Manyà  J J. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology, 2012, 46(15): 7939–7954
https://doi.org/10.1021/es301029g pmid: 22775244
14 Zhang  A, Bian  R, Hussain  Q, Li  L, Pan  G, Zheng  J, Zhang  X, Zheng  J. Change in net global warming potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China. Agriculture, Ecosystems & Environment, 2013, 173: 37–45
https://doi.org/10.1016/j.agee.2013.04.001
15 Lehmann  J. Bio-energy in the black. Frontiers in Ecology and the Environment, 2007, 5(7): 381–387
https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2
16 Lehmann  J. A handful of carbon. Nature, 2007, 447(7141): 143–144
https://doi.org/10.1038/447143a pmid: 17495905
17 Inyang  M, Gao  B, Pullammanappallil  P, Ding  W, Zimmerman  A R. Biochar from anaerobically digested sugarcane bagasse. Bioresource Technology, 2010, 101(22): 8868–8872
https://doi.org/10.1016/j.biortech.2010.06.088 pmid: 20634061
18 Laird  D A. The charcoal vision: A win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy Journal, 2008, 100(1): 178–181
https://doi.org/10.2134/agrojnl2007.0161
19 Glaser  B, Lehmann  J, Zech  W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal- a review. Biology and Fertility of Soils, 2002, 35(4): 219–230
https://doi.org/10.1007/s00374-002-0466-4
20 Zhang  M, Gao  B, Varnoosfaderani  S, Hebard  A, Yao  Y, Inyang  M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology, 2013, 130: 457–462
https://doi.org/10.1016/j.biortech.2012.11.132 pmid: 23313693
21 Hawn  D D, Dekoven  B M. Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surface and Interface Analysis, 1987, 10(2–3): 63– 74
https://doi.org/10.1002/sia.740100203
22 Muhler  M, Schlogl  R, Ertl  G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene. Journal of Catalysis, 1992, 138(2): 413–444
https://doi.org/10.1016/0021-9517(92)90295-S
23 Yamashita  T, Hayes  P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008, 254(8): 2441–2449
https://doi.org/10.1016/j.apsusc.2007.09.063
24 Sun  Y P, Li  X Q, Cao  J, Zhang  W X, Wang  H P. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 2006, 120(1–3): 47–56
https://doi.org/10.1016/j.cis.2006.03.001 pmid: 16697345
25 Xie  B M, Zuo  J N, Gan  L L, Liu  F L, Wang  K J. Cation exchange resin supported nanoscale zero-valent ironfor removal of phosphorus in rainwater runoff. Frontiers of Environmental Science & Engineering, 2014, 8 (3): 463–470
26 Ismail  H M, Cadenhead  D A, Zaki  M I. Surface reactivity of iron oxide pigmentary powders toward atmospheric components: XPS and gravimetry of oxygen and water vapor adsorption. Journal of Colloid and Interface Science, 1996, 183(2): 320–328
https://doi.org/10.1006/jcis.1996.0553 pmid: 8954671
[1] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[2] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[3] Xiaoya Liu, Yu Hong, Peirui Liu, Jingjing Zhan, Ran Yan. Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors[J]. Front. Environ. Sci. Eng., 2019, 13(5): 78-.
[4] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[5] Dongliang Du, Chuanyi Zhang, Kuixia Zhao, Guangrong Sun, Siqi Zou, Limei Yuan, Shilong He. Effect of different carbon sources on performance of an A2N-MBR process and its microbial community structure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 4-.
[6] Yandong Yang,Liang Zhang,Hedong Shao,Shujun Zhang,Pengchao Gu,Yongzhen Peng. Enhanced nutrients removal from municipal wastewater through biological phosphorus removal followed by partial nitritation/anammox[J]. Front. Environ. Sci. Eng., 2017, 11(2): 8-.
[7] Shuai MA,Siyu ZENG,Xin DONG,Jining CHEN,Gustaf OLSSON. Modification of the activated sludge model for chemical dosage[J]. Front. Environ. Sci. Eng., 2015, 9(4): 694-701.
[8] Lei YU,Chen TU,Yongming LUO. Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example[J]. Front. Environ. Sci. Eng., 2015, 9(2): 206-215.
[9] Gang GUO, Yayi WANG, Chong WANG, Hong WANG, Mianli PAN, Shaowei CHEN. Short-term effects of excessive anaerobic reaction time on anaerobic metabolism of denitrifying polyphosphate- accumulating organisms linked to phosphorus removal and N2O production[J]. Front Envir Sci Eng, 2013, 7(4): 616-624.
[10] Ming HUA, Lili XIAO, Bingcai PAN, Quanxing ZHANG. Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaled-up study[J]. Front Envir Sci Eng, 2013, 7(3): 435-441.
[11] Bin MA, Shuying WANG, Guibing ZHU, Shijian GE, Junmin WANG, Nanqi Ren, Yongzhen PENG. Denitrification and phosphorus uptake by DPAOs using nitrite as an electron acceptor by step-feed strategies[J]. Front Envir Sci Eng, 2013, 7(2): 267-272.
[12] Shijian GE, Yongzhen PENG, Congcong LU, Shuying WANG. Practical consideration for design and optimization of the step feed process[J]. Front Envir Sci Eng, 2013, 7(1): 135-142.
[13] Jianhua WANG, Yongzhen PENG, Yongzhi CHEN. Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(3): 474-480.
[14] Nanqi REN, Han KANG, Xiuheng WANG, Nan LI. Short-term effect of temperature variation on the competition between PAOs and GAOs during acclimation period of an EBPR system[J]. Front Envir Sci Eng Chin, 2011, 5(2): 277-282.
[15] Hongjing LI, Yinguang CHEN. Research on polyhydroxyalkanoates and glycogen transformations: Key aspects to biologic nitrogen and phosphorus removal in low dissolved oxygen systems[J]. Front Envir Sci Eng Chin, 2011, 5(2): 283-290.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed