|
|
Pollution and biodegradation of hexabromocyclododecanes: A review |
Ling Huang, Syed Bilal Shah, Haiyang Hu, Ping Xu, Hongzhi Tang( ) |
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China |
|
|
Abstract • Bioremediation is the most cost-effective approach for degradation of HBCDs. • Bacteria or bacterial consortia are used in the cases of bio-augmentation. • Microbes combined with phytoremediation increase the remediation efficiency. Hexabromocyclododecanes (HBCDs) are the most common brominated flame-retardants after polybrominated diphenyl ethers. HBCDs can induce cancer by causing inappropriate antidiuretic hormone syndrome. Environmental contamination with HBCDs has been detected globally, with concentrations ranging from ng to mg. Methods to degrade HBCDs include physicochemical methods, bioremediation, and phytoremediation. The photodegradation of HBCDs using simulated sunlight or ultraviolet lamps, or chemical catalysts are inefficient and expensive, as is physicochemical degradation. Consequently, bioremediation is considered as the most cost-effective and clean approach. To date, five bacterial strains capable of degrading HBCDs have been isolated and identified: Pseudomonas sp. HB01, Bacillus sp. HBCD-sjtu, Achromobacter sp. HBCD-1, Achromobacter sp. HBCD-2, and Pseudomonas aeruginosa HS9. The molecular mechanisms of biodegradation of HBCDs are discussed in this review. New microbial resources should be explored to increase the resource library in order to identify more HBCD-degrading microbes and functional genes. Synthetic biology methods may be exploited to accelerate the biodegradation capability of existing bacteria, including modification of the degrading strains or functional enzymes, and artificial construction of the degradation microflora. The most potentially useful method is combining micro-degradation with physicochemical methods and phytoremediation. For example, exogenous microorganisms might be used to stimulate the adsorption capability of plants for HBCDs, or to utilize an interaction between exogenous microorganisms and rhizosphere microorganisms to form a new rhizosphere microbial community to enhance the biodegradation and absorption of HBCDs.
|
Keywords
Hexabromocyclododecane
Biodegradation
Bioremediation
Phytoremediation
Bacterium
|
Corresponding Author(s):
Hongzhi Tang
|
Issue Date: 14 November 2019
|
|
1 |
M A Abdallah, S Harrad (2011). Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: Relationship to external exposure. Environment International, 37(2): 443–448
|
2 |
S Arita, K Yamaguchi, S Motokucho, H Nakatani (2017). Selective decomposition of hexabromocyclododecane in polystyrene with a photo and thermal hybrid treatment system. Polymer Degradation & Stability, 143: 130–135
https://doi.org/10.1016/j.polymdegradstab.2017.07.003
|
3 |
L C Batty, M Anslow (2008). Effect of a polycyclic aromatic hydrocarbon on the phytoremediation of zinc by two plant species (Brassica juncea and Festuca arundinacea). International Journal of Phytoremediation, 10(3): 236–249
https://doi.org/10.1080/15226510801997549
pmid: 18710098
|
4 |
H R Brett, L Marc, P Daniel, R B Robert, H K John, E H Paul (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant and Soil, 203(1): 47–56
https://doi.org/10.1023/A:1004328816645
|
5 |
R R Brooks (1977). Copper and cobalt uptake by Haumaniastrum species. Plant and Soil, 48(2): 541–544
https://doi.org/10.1007/BF02187261
|
6 |
C C Carignan, M A Abdallah, N Wu, W Heiger-Bernays, M D McClean, S Harrad, T F Webster (2012). Predictors of tetrabromobisphenol-A (TBBP-A) and hexabromocyclododecanes (HBCD) in milk from Boston mothers. Environmental Science & Technology, 46(21): 12146–12153
https://doi.org/10.1021/es302638d
pmid: 22998345
|
7 |
J Chen, C Wang, Y Pan, S S Farzana, N F Tam (2018). Biochar accelerates microbial reductive debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in anaerobic mangrove sediments. Journal of Hazardous Materials, 341: 177–186
https://doi.org/10.1016/j.jhazmat.2017.07.063
pmid: 28777963
|
8 |
X Chi, Y Zhang, D Wang, F Wang, W Liang (2018). The greater roles of indigenous microorganisms in removing nitrobenzene from sediment compared with the exogenous Phragmites australis and strain JS45. Frontiers of Environmental Science & Engineering, 12(1): 11
https://doi.org/10.1007/s11783-018-1016-0
|
9 |
J W Davis, S Gonsior, G Marty, J Ariano (2005). The transformation of hexabromocyclododecane in aerobic and anaerobic soils and aquatic sediments. Water Research, 39(6): 1075–1084
|
10 |
J W Davis, S J Gonsior, D A Markham, U Friederich, R W Hunziker, J M Ariano (2006). Biodegradation and product identification of [14C]hexabromocyclododecane in wastewater sludge and freshwater aquatic sediment. Environmental Science & Technology, 40(17): 5395–5401 doi:10.1021/es060009m
pmid: 16999116
|
11 |
D Drage, J F Mueller, G Birch, G Eaglesham, L K Hearn, S Harrad (2015). Historical trends of PBDEs and HBCDs in sediment cores from Sydney estuary, Australia. Science of the Total Environment, 512–513: 177–184
https://doi.org/10.1016/j.scitotenv.2015.01.034
pmid: 25617997
|
12 |
M Ema, S Fujii, M Hirata-Koizumi, M Matsumoto (2008). Two-generation reproductive toxicity study of the flame retardant hexabromocyclododecane in rats. Reproductive Toxicology (Elmsford, N.Y.), 25(3): 335–351
https://doi.org/10.1016/j.reprotox.2007.12.004
pmid: 18262388
|
13 |
D E Fennell, I Nijenhuis, S F Wilson, S H Zinder, M M Häggblom (2004). Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environmental Science & Technology, 38(7): 2075–2081
https://doi.org/10.1021/es034989b
pmid: 15112809
|
14 |
Y Fery, I Buschauer, C Salzig, P Lang, D Schrenk (2009). Technical pentabromodiphenyl ether and hexabromocyclododecane as activators of the pregnane-X-receptor (PXR). Toxicology, 264(1–2): 45–51
https://doi.org/10.1016/j.tox.2009.07.009
pmid: 19631710
|
15 |
V M Fonseca, V J F Jr, A S Araujo, L H Carvalho, A G Souza (2005). Effect of halogenated flame-retardant additives in the pyrolysis and thermal degradation of polyester/sisal composites. Journal of Thermal Analysis and Calorimetry, 79(2): 429–433
https://doi.org/10.1007/s10973-005-0079-x
|
16 |
N Garg, K Bala, R Lal (2012). Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 62(3): 618–623
https://doi.org/10.1099/ijs.0.028886-0
pmid: 21551337
|
17 |
B R Glick (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5): 383–393
https://doi.org/10.1016/S0734-9750(03)00055-7
pmid: 14499121
|
18 |
N T H Ha, M Sakakibara, , S Sano (2010). Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte eleocharis acicularis. Clean- Soil Air Water, 37(9): 720–725
|
19 |
J He, K M Ritalahti, K L Yang, S S Koenigsberg, F E Löffler (2003). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424(6944): 62–65
https://doi.org/10.1038/nature01717
pmid: 12840758
|
20 |
N V Heeb, S A Wyss, B Geueke, T Fleischmann, H E Kohler, P Lienemann (2014). LinA2, a HCH-converting bacterial enzyme that dehydrohalogenates HBCDs. Chemosphere, 107: 194–202
https://doi.org/10.1016/j.chemosphere.2013.12.035
pmid: 24444415
|
21 |
K F Ho, S S H Ho, S C Lee, J Cheng, J Watson, P K K Louie, L Tian (2009). Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong. Atmospheric Environment, 43(40): 6343–6351
https://doi.org/10.1016/j.atmosenv.2009.09.025
|
22 |
L Huang, W Wang, S B Shah, H Hu, P Xu, H Tang (2019). The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. Journal of Hazardous Materials, 380: 120833
https://doi.org/10.1016/j.jhazmat.2019.120833
pmid: 31446271
|
23 |
G B Kim, H M Stapleton (2010). PBDEs, methoxylated PBDEs and HBCDs in Japanese common squid (Todarodes pacificus) from Korean offshore waters. Marine Pollution Bulletin, 60(6): 935–940 PMID:20394952
https://doi.org/10.1016/j.marpolbul.2010.03.025
|
24 |
Z Košnář, T Částková, L Wiesnerová, L Praus, I Jablonský, M Koudela, P Tlustoš (2019). Comparing the removal of polycyclic aromatic hydrocarbons in soil after different bioremediation approaches in relationto the extracellular enzyme activities. Journal of Environmental Sciences-China, 76(2): 249–258
https://doi.org/10.1016/j.jes.2018.05.007
pmid: 30528015
|
25 |
L K Lee, C Ding, K L Yang, J He (2011). Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of dehalococcoides and desulfovibrio species. Environmental Science & Technology, 45(19): 8475–8482
https://doi.org/10.1021/es201559g
pmid: 21859110
|
26 |
L Li, R Weber, J Liu, J Hu (2016). Long-term emissions of hexabromocyclododecane as a chemical of concern in products in China. Environment International, 91: 291–300
https://doi.org/10.1016/j.envint.2016.03.007
pmid: 26999514
|
27 |
Y Li, L Wang, X Zhu, Y Gao, J Chen (2017). Determination of hexabromocyclododecanes in ambient air by high performance liquid chromatography- electrospray ionization-mass spectrometry. Se Pu, 35(10): 1080–1085 (in Chinese)
https://doi.org/10.3724/SP.J.1123.2017.06026
pmid: 29048806
|
28 |
Q Liu, M Li, R Liu, Q Zhang, D Wu, D N Zhu, X H Shen, C P Feng, F W Zhang, X Liu (2019). Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities. Frontiers of Environmental Science & Engineering, 13(2): 28 doi.org/10.1007/s11783-019-1112-9
|
29 |
Q Liu, M Li, X Liu, Q Zhang, R Liu, Z Wang, X Shi, J Quan, X Shen, F Zhang (2018). Removal of sulfamethoxazole and trimethoprim from reclaimed water and the biodegradation mechanism. Frontiers of Environmental Science & Engineering, 12(6): 6 doi.org/10.1007/s11783-018-1048-5
|
30 |
W W Liu, R Yin, X G Lin, J Zhang, X M Chen, X Z Li, T Yang (2010). Interaction of biosurfactant-microorganism to enhance phytoremediation of aged polycyclic aromatic hydrocarbons (PAHS) contaminated soils with alfalfa (Medicago sativa L.). Environmental Science, 31(4): 1079–1084 (in Chinese)
pmid: 20527195
|
31 |
J F Lu, M J He, Z H Yang, S Q Wei (2018). Occurrence of tetrabromobisphenol a (TBBPA) and hexabromocyclododecane (HBCD) in soil and road dust in Chongqing, western China, with emphasis on diastereoisomer profiles, particle size distribution, and human exposure. Environmental Pollution, 242(A): 219–228
https://doi.org/10.1016/j.envpol.2018.06.087
pmid: 29980040
|
32 |
M L G C Luijten, J de Weert, H Smidt, H T S Boschker, W M de Vos, G Schraa, A J M Stams (2003). Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov. International Journal of Systematic and Evolutionary Microbiology, 53(3): 787–793
https://doi.org/10.1099/ijs.0.02417-0
pmid: 12807201
|
33 |
X Maymó-Gatell, Y Chien, J M Gossett, S H Zinder (1997). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318): 1568–1571
https://doi.org/10.1126/science.276.5318.1568
pmid: 9171062
|
34 |
N H Minh, T Isobe, D Ueno, K Matsumoto, M Mine, N Kajiwara, S Takahashi, S Tanabe (2007). Spatial distribution and vertical profile of polybrominated diphenyl ethers and hexabromocyclododecanes in sediment core from Tokyo Bay, Japan. Environmental Pollution, 148(2): 409–417
|
35 |
C Munschy, P Marchand, A Venisseau, B Veyrand, Z Zendong (2013). Levels and trends of the emerging contaminants HBCDs (hexabromocyclododecanes) and PFCs (perfluorinated compounds) in marine shellfish along French coasts. Chemosphere, 91(2): 233–240
https://doi.org/10.1016/j.chemosphere.2012.12.063
pmid: 23375822
|
36 |
I G S Muthu, B Nirkayani, A Kavithakani, V C Padmanaban (2019). Statistical modeling of radiolytic (60Coγ) degradation of ofloxacin, antibiotic: Synergetic effect, kinetic studies & assessment of its degraded metabolites. Frontiers of Environmental Science & Engineering, 13(3): 42
https://doi.org/doi.org/10.1007/s11783-019-1126-3
|
37 |
H G Ni, H Zeng (2013). HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Science of the Total Environment, 458– 460: 15–19
https://doi.org/10.1016/j.scitotenv.2013.04.003
pmid: 23639907
|
38 |
V P Palace, K Pleskach, T Halldorson, R Danell, K Wautier, B Evans, M Alaee, C Marvin, G T Tomy (2008). Biotransformation enzymes and thyroid axis disruption in juvenile rainbow trout (Oncorhynchus mykiss) exposed to hexabromocyclododecane diastereoisomers. Environmental Science & Technology, 42(6): 1967–1972
https://doi.org/10.1021/es702565h
pmid: 18409622
|
39 |
X Peng, X Huang, F Jing, Z Zhang, D Wei, X Jia (2015). Study of novel pure culture HBCD-1, effectively degrading Hexabromocyclododecane, isolated from an anaerobic reactor. Bioresource Technology, 185: 218–224
https://doi.org/10.1016/j.biortech.2015.02.093
pmid: 25770469
|
40 |
X Peng, D Wei, Q Huang, X Jia (2018). Debromination of hexabromocyclododecane by anaerobic consortium and characterization of functional bacteria. Frontiers in Microbiology, 9: 1515
https://doi.org/10.3389/fmicb.2018.01515
pmid: 30042751
|
41 |
POPRC (2011). Report of the persisitent organic pollutants review committee on the work of its seventh meeting: Risk management evaluation on hexabromocyclododecane. Geneva: POPRC
|
42 |
H Scholz-Muramatsu, A Neumann, M Messmer, E Moore, G Diekert (1995). Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Archives of Microbiology, 163(1): 4856
https://doi.org/10.1007/BF00262203
|
43 |
S B Shah, F Ali, L Huang, W Wang, P Xu, H Tang (2018). Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3Biotech, 8(7): 291
|
44 |
S B Shah, H Y Hu, W W Wang, Y F Liu, F Ali, P Xu, H Z Tang (2019a). Evaluation of plant growth promoting (PGP) activity of strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33: 129–134
|
45 |
S B Shah, A C Kaushik, F Ali, L Huang, X Lu, L Sartaj, P Xu, H Tang (2019b). Computational and in vitro analysis of an HBCD degrading gene DehHZ1 from strain HBCD-sjtu. Journal of Biological Regulators and Homeostatic Agents, 33(1): 157–162
pmid: 30764604
|
46 |
H Stiborova, J Vrkoslavova, J Pulkrabova, J Poustka, J Hajslova, K Demnerova (2015). Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions. Science of the Total Environment, 533: 439–445
https://doi.org/10.1016/j.scitotenv.2015.06.131
pmid: 26179781
|
47 |
J Su, Y Lu, Z Liu, S Gao, X Zeng, Z Yu, G Sheng, J M Fu (2015). Distribution of polybrominated diphenyl ethers and HBCD in sediments of the Hunhe River in Northeast China. Environmental Science and Pollution Research International, 22(21): 16781–16790
https://doi.org/10.1007/s11356-015-4779-x
pmid: 26092356
|
48 |
R Sun, X Luo, X Zheng, K Cao, P Peng, Q X Li, B Mai (2018). Hexabromocyclododecanes (HBCDs) in fish: Evidence of recent HBCD input into the coastal environment. Marine Pollution Bulletin, 126: 357–362
https://doi.org/10.1016/j.marpolbul.2017.11.040
pmid: 29421112
|
49 |
D T Szabo, J J Diliberto, H Hakk, J K Huwe, L S Birnbaum (2011). Toxicokinetics of the flame retardant hexabromocyclododecane alpha: effect of dose, timing, route, repeated exposure, and metabolism. Toxicological Sciences, 121(2): 234–244
https://doi.org/10.1093/toxsci/kfr059
pmid: 21441408
|
50 |
L T Van der Ven, A Verhoef, T van de Kuil, W Slob, P E Leonards, T J Visser, T Hamers, M Herlin, H Håkansson, H Olausson, A H Piersma, J G Vos (2006). A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in Wistar rats. Toxicological Sciences, 94(2): 281–292
https://doi.org/10.1093/toxsci/kfl113
pmid: 16984958
|
51 |
T Wu, H Huang, S Zhang (2016). Accumulation and phytotoxicity of technical hexabromocyclododecane in maize. Journal of Environmental Sciences-China, 42(4): 97–104
https://doi.org/10.1016/j.jes.2015.06.018
pmid: 27090699
|
52 |
T Wu, S Wang, H Huang, S Zhang (2012). Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize. Journal of Agricultural and Food Chemistry, 60(34): 8528–8534
https://doi.org/10.1021/jf302682p
pmid: 22881704
|
53 |
J Xia, H Wang, R L Stanford, G Pan, S L Yu (2018). Hydrologic and water quality performance of a laboratory scale bioretention unit. Frontiers of Environmental Science & Engineering, 12(1): 14
https://doi.org/doi.org/10.1007/s11783-018-1011-5
|
54 |
Q Xian, K Ramu, T Isobe, A Sudaryanto, X Liu, Z Gao, S Takahashi, H Yu, S Tanabe (2008). Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China. Chemosphere, 71(2): 268–276
https://doi.org/10.1016/j.chemosphere.2007.09.032
pmid: 17980898
|
55 |
T Yamada, Y Takahama, Y Yamada (2009). Isolation of Pseudomonas sp. strain HB01 which degrades the persistent brominated flame retardant g-hexabromocyclododecane. Nippon Nogeikagaku Kaishi, 73(7): 1674–1678
https://doi.org/10.1271/bbb.90104
pmid: 19584526
|
56 |
S Yi, J G Liu, J Jin, J Zhu (2016). Assessment of the occupational and environmental risks of hexabromocyclododecane (HBCD) in China. Chemosphere, 150: 431–437
https://doi.org/10.1016/j.chemosphere.2016.01.047
pmid: 26810304
|
57 |
H Zhang, Y Y Kuo, A C Gerecke, J Wang (2012a). Co-release of hexabromocyclododecane (HBCD) and Nano- and microparticles from thermal cutting of polystyrene foams. Environmental Science & Technology, 46(20): 10990–10996
https://doi.org/10.1021/es302559v
pmid: 23013539
|
58 |
K Zhang, J Huang, H Wang, K Liu, G Yu, S Deng, B Wang (2014). Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere, 116: 40–45
https://doi.org/10.1016/j.chemosphere.2014.02.006
pmid: 24613442
|
59 |
X Zhang, H Yang, Z Cui (2017). Alleviating effect and mechanism of flavonols in Arabidopsis resistance under Pb-HBCD stress. ACS Sustainable Chemistry & Engineering, 5(11): 11034–11041
https://doi.org/10.1021/acssuschemeng.7b02971
|
60 |
Y Zhang, Y Ruan, H Sun, L Zhao, Z Gan (2013). Hexabromocyclododecanes in surface sediments and a sediment core from Rivers and Harbor in the northern Chinese city of Tianjin. Chemosphere, 90(5): 1610–1616
https://doi.org/10.1016/j.chemosphere.2012.08.037
pmid: 23062943
|
61 |
Y Zhang, H Wang, Z Yu, X Geng, C Chen, D Li, X Zhu, H Zhen, W Huang, D E Fennell, L Y Young, P Peng (2018). Diastereoisomer-specific biotransformation of hexabromocyclododecanes by a mixed culture containing Dehalococcoides mccartyi strain 195. Frontiers in Microbiology, 9: 1713
https://doi.org/10.3389/fmicb.2018.01713
pmid: 30131775
|
62 |
Z Zhang, Z Rengel, H Chang, K Meney, L Pantelic, R Tomanovc (2012b). Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs). Geoderma, 175–176: 1–8
https://doi.org/10.1016/j.geoderma.2012.01.020
|
63 |
X Zheng, L Qiao, R Sun, X Luo, J Zheng, Q Xie, Y Sun, B Mai (2017). Alteration of diastereoisomeric and enantiomeric profiles of hexabromocyclododecanes (HBCDs) in adult chicken tissues, eggs, and hatchling chickens. Environmental Science & Technology, 51(10): 5492–5499
https://doi.org/10.1021/acs.est.6b06557
pmid: 28440626
|
64 |
D Zhou, Y Wu, X Feng, Y Chen, Z Wang, T Tao, D Wei (2014). Photodegradation of hexabromocyclododecane (HBCD) by Fe(III) complexes/H2O2 under simulated sunlight. Environmental Science and Pollution Research International, 21(9): 6228–6233
https://doi.org/10.1007/s11356-014-2553-0
pmid: 24488521
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|