Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (6) : 138    https://doi.org/10.1007/s11783-021-1432-4
RESEARCH ARTICLE
Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system
Xiangyu Yang1,2, Qiang He1,2, Fucheng Guo1,2, Xiaobo Liu1,2, Yi Chen1,2()
1. Key Laboratory of the Three Gorges Region’s Eco-Environment (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400044, China
2. National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University, Chongqing 400044, China
 Download: PDF(2637 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Aquatic plants are more likely to absorb TiO2 NPs that are beneficial to them.

• Ag NPs inhibited the growth of aquatic plants under both 5- and 60-day exposure.

• CeO2 NPs had positive/negative impact on plant in 5/60-day exposure, respectively.

• TiO2 NPs presence could enhance the photosynthesis and increase the plant biomass.

• The ENPs changed plant activity, which resulted in changes of wetland performance.

Engineered nanoparticles (ENPs) threaten the environment through wastewater discharging. Generally, constructed wetlands (CWs) are efficient methods for ENPs removal. However, the biotoxicity of ENPs on plants in CWs is unclear. Here, we investigated the distribution and bio-impacts of different ENPs (Ag NPs, TiO2 NPs, and CeO2 NPs) in plants under 5- and 60-day exposure to 1 and 50 mg/L concentrations. Results showed that ENPs appeared in the vascular bundle and mesophyll cell space, which induced the variation in antioxidase activities (e.g., superoxide dismutase [SOD], peroxidase [POD], and catalase [CAT] activities) as well as overproduction of malondialdehyde (MDA). Additionally, Ag NPs inhibited photosynthesis rate and root activity during two exposure phases. CeO2 NPs had positive and negative impacts on plants in 5- and 60-day exposure, respectively. Inversely, TiO2 NPs enhanced photosynthesis and root activity under 60-day exposure. Finally, the contents of the C, N, and P elements in plants fluctuated in response to ENPs stress. All results have a positive correlation with the wetland performance under ENPs exposure except for TiO2 NPs treatment. Overall, our study systematically reveals aquatic plants' responses to ENPs and provides a reference for building ecological treatment systems to purify wastewater containing ENPs.

Keywords Constructed wetlands      Aquatic plants      Nanoparticles      Physiological activity      Biomass     
Corresponding Author(s): Yi Chen   
Issue Date: 20 April 2021
 Cite this article:   
Xiangyu Yang,Qiang He,Fucheng Guo, et al. Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system[J]. Front. Environ. Sci. Eng., 2021, 15(6): 138.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1432-4
https://academic.hep.com.cn/fese/EN/Y2021/V15/I6/138
Position Ag NPs (%) TiO2 NPs (%) CeO2 NPs (%)
Plants 12.2±0.1 1.3±0.1 10.3±0.3
Substrate 87.3±0.3 86.6±0.6 83.6±0.2
Effluent 0.5±0.2 12.1±0.5 6.1±0.5
Tab.1  Proportions of engineered nanoparticles (ENPs) in each part of constructed wetland (CW) microcosms under 60-day exposure, including plants, substrate and effluent (data presented as the mean±standard deviation, n = 3)
Fig.1  Metal or metal oxide NPs proportions to total ENPs in plant tissues under exposure to 1 (light) and 50 (dark) mg/L for 60 days, including roots, stems, and leaves (data presented as the mean±standard deviation, n = 3).
Fig.2  SEM image and EDX mapping results of the cross section of plant stems. The density of colored spots indicates the ENP contents.
Fig.3  TEM images of the cross section of root tips (A: control; B: feeding Ag NPs; C: feeding TiO2 NPs; D: feeding CeO2 NPs). The flocculent particles with red arrows indicate the presence of ENPs in the mesophyll cell space of the root via EDS analysis (a: control; b: feeding Ag NPs; c: feeding TiO2 NPs; d: feeding CeO2 NPs).
Material N content (%) C content (%) H content (%) P content (%) S content (%)
Control 2.59±0.16 41.53±0.31 5.91±0.02 0.45±0.01 0.56±0.09
Ag NPs 1.81±0.04** 35.51±0.61* 4.96±0.09 0.36±0.05 0.48±0.13
CeO2 NPs 2.24±0.07* 38.66±0.89* 5.87±0.05 0.40±0.02 0.56±0.12
TiO2 NPs 3.21±0.10** 46.49±0.23** 5.92±0.03 0.48±0.01 0.57±0.03
Tab.2  The contents of main elements (such as C, H, N, P and S) in wetland plants after 60-day exposure experiments (data presented as the mean±standard deviation, n = 3)
Fig.4  Root activity and morphology of wetland plants under 60-day exposure to ENPs. (A: feeding Ag NPs; B: feeding TiO2 NPs; C: feeding CeO2 NPs). Asterisk (*) indicates values significantly different from the control over the same exposure period (p<0.05).
Fig.5  The 5- and 60-day effects of 1 and 50 mg/L ENPs treatments on the photosynthetic parameters in wetland plants, including net photosynthesis rate (Photo, A), stomatal conductance (Cond, B), intercellular CO2 concentration (Ci, C) and transpiration rate (Trmmol, D). All data presented as the mean±standard deviation (n = 3). “5” and “60” indicate “5-day” and “60-day,” respectively.
Fig.6  The malondialdehyde (MDA, A) content, catalase (CAT, B) activity, peroxidase (POD, C) activity and superoxide dismutase (SOD, D) activity in the leaves of wetland plants under 5- and 60-day exposure to 0, 1, and 50 mg/L ENPs (data presented as the mean±standard deviation, n = 3). Asterisks (*) indicate statistically significant differences (p<0.05) from the control.
Fig.7  Linear relationships between plant activities (root activity (A, C and E) and net photosynthesis rate (B, D and F)) and nutrient (TN, left row and TP, right row) removal efficiency in wetland reactors after 60-day exposure to ENPs.
1 M Ali, Z Cheng, H Ahmad, S Hayat (2018). Reactive oxygen species (ROS) as defenses against a broad range of plant fungal infections and case study on ROS employed by crops against Verticillium dahliae wilts. Journal of Plant Interactions, 13(1): 353–363
https://doi.org/10.1080/17429145.2018.1484188
2 H Auvinen, V V Sepulveda, D P L Rousseau, G Du Laing (2016). Substrate- and plant-mediated removal of citrate-coated silver nanoparticles in constructed wetlands. Environmental Science and Pollution Research International, 23(21): 21920–21926
https://doi.org/10.1007/s11356-016-7459-6
3 J E Backhausen, C Kitzmann, P Horton, R Scheibe (2000). Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynthesis Research, 64(1): 1–13
https://doi.org/10.1023/A:1026523809147
4 A C Barrios, C M Rico, J Trujillo-Reyes, I A Medina-Velo, J R Peralta-Videa, J L Gardea-Torresdey (2016). Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Science of the Total Environment, 563: 956–964
https://doi.org/10.1016/j.scitotenv.2015.11.143
5 A Bour, F Mouchet, S Cadarsi, J Silvestre, E Chauvet, J M Bonzom, C Pagnout, H Clivot, L Gauthier, E Pinelli (2016). Impact of CeO2 nanoparticles on the functions of freshwater ecosystems: A microcosm study. Environmental Science. Nano, 3(4): 830–838
https://doi.org/10.1039/C6EN00116E
6 C Coll, D Notter, F Gottschalk, T Sun, C Som, B Nowack (2016). Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology, 10(4): 436–444
7 J R Conway, A L Beaulieu, N L Beaulieu, S J Mazer, A A Keller (2015). Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano, 9(12): 11737–11749
https://doi.org/10.1021/acsnano.5b03091
8 B Corral-Diaz, J R Peralta-Videa, E Alvarez-Parrilla, J Rodrigo-García, M I Morales, P Osuna-Avila, G Niu, J A Hernandez-Viezcas, J L Gardea-Torresdey (2014). Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiology and Biochemistry, 84: 277–285
https://doi.org/10.1016/j.plaphy.2014.09.018
9 K J Dietz, S Herth (2011). Plant nanotoxicology. Trends in Plant Science, 16(11): 582–589
https://doi.org/10.1016/j.tplants.2011.08.003
10 I Dronova, P Gong, N E Clinton, L Wang, W Fu, S Qi, Y Liu (2012). Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods. Remote Sensing of Environment, 127: 357–369
https://doi.org/10.1016/j.rse.2012.09.018
11 W Du, J L Gardea-Torresdey, R Ji, Y Yin, J Zhu, J R Peralta-Videa, H Guo (2015). Physiological and biochemical changes imposed by CeO2 nanoparticles on wheat: A life cycle field study. Environmental Science & Technology, 49(19): 11884–11893
https://doi.org/10.1021/acs.est.5b03055
12 A S Foltête, J F Masfaraud, E Bigorgne, J Nahmani, P Chaurand, C Botta, J Labille, J Rose, J F Ferard, S Cotelle (2011). Environmental impact of sunscreen nanomaterials: Ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environmental Pollution, 159(10): 2515–2522
https://doi.org/10.1016/j.envpol.2011.06.020
13 J Gao, G Xu, H Qian, P Liu, P Zhao, Y Hu (2013). Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environmental Pollution, 176: 63–70
https://doi.org/10.1016/j.envpol.2013.01.027
14 C García-Gómez, S García, A Obrador, P Almendros, D González, M D Fernández. (2020). Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies. Science of the Total Environment, 706: 135713
https://doi.org/10.1016/j.scitotenv.2019.135713
15 F Gottschalk, T Sonderer, R W Scholz, B Nowack (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmental Science & Technology, 43(24): 9216–9222
https://doi.org/10.1021/es9015553
16 Y He, C Yu, L Zhou, Y Chen, A Liu, J Jin, J Hong, Y Qi, D Jiang (2014). Rubisco decrease is involved in chloroplast protrusion and Rubisco-containing body formation in soybean (Glycine max.) under salt stress. Plant Physiology and Biochemistry, 74: 118–124
https://doi.org/10.1016/j.plaphy.2013.11.008
17 C O Hendren, A R Badireddy, E Casman, M R Wiesner (2013). Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Science of the Total Environment, 449: 418–425
https://doi.org/10.1016/j.scitotenv.2013.01.078
18 F H Hong, J Zhou, C Liu, F Yang, C Wu, L Zheng, P Yang (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105(1–3): 269–279
https://doi.org/10.1385/BTER:105:1-3:269
19 X Hu, X Liu, X Yang, F Guo, X Su, Y Chen (2018). Acute and chronic responses of macrophyte and microorganisms in constructed wetlands to cerium dioxide nanoparticles: Implications for wastewater treatment. Chemical Engineering Journal, 348: 35–45
https://doi.org/10.1016/j.cej.2018.04.189
20 J Huang, C Cao, C Yan, J Liu, Q Hu, W Guan (2017). Impacts of silver nanoparticles on the nutrient removal and functional bacterial community in vertical subsurface flow constructed wetlands. Bioresource Technology, 243: 1216–1226
https://doi.org/10.1016/j.biortech.2017.07.178
21 J Huang, J Cheng, J Yi (2016). Impact of silver nanoparticles on marine diatom Skeletonema costatum. Journal of Applied Toxicology, 36(10): 1343–1354
https://doi.org/10.1002/jat.3325
22 D L Jacob, J D Borchardt, L Navaratnam, M L Otte, A N Bezbaruah (2013). Uptake and translocation of ti from nanoparticles in crops and wetland plants. International Journal of Phytoremediation, 15(2): 142–153
https://doi.org/10.1080/15226514.2012.683209
23 Z Katerova, D Todorova (2011). Effect of enhanced UV-C irradiation on the growth, malondialdehyde, hydrogen peroxide, free proline, polyamines, iaa and iaa-oxidase activity in pea plants (pisum sativum l.). Comptes Rendus De L Academie Bulgare Des Sciences, 64(11): 1555–1562
24 M J Ke, Q Qu, W Peijnenburg, X X Li, M Zhang, Z Y Zhang, T Lu, X L Pan, H F Qian (2018). Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways. Science of the Total Environment, 644: 1070–1079
https://doi.org/10.1016/j.scitotenv.2018.07.061
25 L Kong, Y B Wang, L N Zhao, Z H Chen (2009). Enzyme and root activities in surface-flow constructed wetlands. Chemosphere, 76(5): 601–608
https://doi.org/10.1016/j.chemosphere.2009.04.056
26 W M Lee, Y J An (2013). Effects of zinc oxide and titanium dioxide nanoparticles on green algae under visible, UVA, and UVB irradiations: No evidence of enhanced algal toxicity under UV pre-irradiation. Chemosphere, 91(4): 536–544
https://doi.org/10.1016/j.chemosphere.2012.12.033
27 S Lyu, X Wei, J Chen, C Wang, X Wang, D Pan (2017). Titanium as a beneficial element for crop production. Frontiers of Plant Science, 8: 597
https://doi.org/10.3389/fpls.2017.00597
28 H B Ma, A Brennan, S A Diamond (2012). Photocatalytic reactive oxygen species production and phototoxicity of titanium dioxide nanoparticles are dependent on the solar ultraviolet radiation spectrum. Environmental Toxicology and Chemistry, 31(9): 2099–2107
https://doi.org/10.1002/etc.1916
29 S Majumdar, J R Peralta-Videa, J Trujillo-Reyes, Y Sun, A C Barrios, G Niu, J P F Margez, J L Gardea-Torresdey. (2016). Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Science of the Total Environment, 569: 201–211
https://doi.org/10.1016/j.scitotenv.2016.06.087
30 D N Matorin, D A Todorenko, N K Seifullina, B K Zayadan, A B Rubin (2013). Effect of silver nanoparticles on the parameters of chlorophyll fluorescence and P-700 reaction in the green alga Chlamydomonas reinhardtii. Microbiology, 82(6): 809–814
https://doi.org/10.1134/S002626171401010X
31 A Movafeghi, A Khataee, M Abedi, R Tarrahi, M Dadpour, F Vafaei (2018). Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, pigment contents and antioxidant enzyme activities. Journal of Environmental Sciences (China), 64: 130–138
https://doi.org/10.1016/j.jes.2016.12.020
32 J Qi, C P Song, B Wang, J Zhou, J Kangasjarvi, J K Zhu, Z Gong (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. Journal of Integrative Plant Biology, 60(9): 805–826
https://doi.org/10.1111/jipb.12654
33 A M Queiroz, A V Mezacasa, D E Graciano, W F Falco, J C M’peko, F E G Guimaraes, T Lawson, I Colbeck, S L Oliveira, A R L Caires (2016). Quenching of chlorophyll fluorescence induced by silver nanoparticles. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 168: 73–77
34 C M Rico, M I Morales, R Mccreary, H Castillo-Michel, A C Barrios, J Hong, A Tafoya, W Y Lee, A Varela-Ramirez, J R Peralta-Videa, J L Gardea-Torresdey (2013). Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environmental Science & Technology, 47(24): 14110–14118
https://doi.org/10.1021/es4033887
35 B Roy, H Chandrasekaran, S Palamadai Krishnan, N Chandrasekaran, A Mukherjee. (2018). UVI pre-irradiation to P25 titanium dioxide nanoparticles enhanced its toxicity towards freshwater algae Scenedesmus obliquus. Environmental Science and Pollution Research International, 25(17): 16729–16742
https://doi.org/10.1007/s11356-018-1860-2
36 M K Sarmast, H Salehi (2016). Silver nanoparticles: An influential element in plant nanobiotechnology. Molecular Biotechnology, 58(7): 441–449
https://doi.org/10.1007/s12033-016-9943-0
37 F Schwabe, R Schulin, L K Limbach, W Stark, D Bürge, B Nowack. (2013). Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere, 91(4): 512–520
https://doi.org/10.1016/j.chemosphere.2012.12.025
38 U Stottmeister, A Wiessner, P Kuschk, U Kappelmeyer, M Kastner, O Bederski, R A Muller, H Moormann (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22(1–2): 93–117
https://doi.org/10.1016/j.biotechadv.2003.08.010
39 M Su, F Hong, C Liu, X Wu, X Liu, L Chen, F Gao, F Yang, Z Li (2007). Effects of nano-anatase TiO2 on absorption, distribution of light, and photoreduction activities of chloroplast membrane of spinach. Biological Trace Element Research, 118(2): 120–130
https://doi.org/10.1007/s12011-007-0006-z
40 M Thwala, N Musee, L Sikhwivhilu, V Wepener (2013). The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environmental Science. Processes & Impacts, 15(10): 1830–1843
https://doi.org/10.1039/c3em00235g
41 S Torabian, M Zahedi, A H Khoshgoftar (2016). Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. Journal of Plant Nutrition, 39(2): 172–180
https://doi.org/10.1080/01904167.2015.1009107
42 J Trujillo-Reyes, S Majumdar, C E Botez, J R Peralta-Videa, J L Gardea-Torresdey (2014). Exposure studies of core–shell Fe/Fe3O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? Journal of Hazardous Materials, 267: 255–263
https://doi.org/10.1016/j.jhazmat.2013.11.067
43 J Vymazal (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3): 48–65
https://doi.org/10.1016/j.scitotenv.2006.09.014
44 C Wang, H Zhang, L Ruan, L Chen, H Li, X L Chang, X Zhang, S T Yang (2016a). Bioaccumulation of 13C-fullerenol nanomaterials in wheat. Environmental Science. Nano, 3(4): 799–805
https://doi.org/10.1039/C5EN00276A
45 X Wang, Y Liu, H Zhang, X Shen, F Cai, M Zhang, Q Gao, W Chen, B Wang, S Tao (2016b). The impact of carbon nanotubes on bioaccumulation and translocation of phenanthrene, 3-CH3-phenanthrene and 9-NO2-phenanthrene in maize (Zea mays) seedlings. Environmental Science. Nano, 3(4): 818–829
https://doi.org/10.1039/C6EN00012F
46 X P Wang, X Y Yang, S Y Chen, Q Q Li, W Wang, C J Hou, X Gao, L Wang, S C Wang (2016c). Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Frontiers of Plant Science, 6: 1243
https://doi.org/10.3389/fpls.2015.01243
47 Y Yamauchi, A Furutera, K Seki, Y Toyoda, K Tanaka, Y Sugimoto (2008). Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiology and Biochemistry, 46(8–9): 786–793
https://doi.org/10.1016/j.plaphy.2008.04.018
48 F Yang, F S Hong, W J You, C Liu, F Q Gao, C Wu, P Yang (2006). Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2): 179–190
https://doi.org/10.1385/BTER:110:2:179
49 X Yang, Y Chen, X Liu, F Guo, X Su, Q He (2018). Influence of titanium dioxide nanoparticles on functionalities of constructed wetlands for wastewater treatment. Chemical Engineering Journal, 352: 655–663
https://doi.org/10.1016/j.cej.2018.07.068
50 X Yang, Q He, F Guo, X Sun, J Zhang, M Chen, J Vymazal, Y Chen (2020a). Nanoplastics disturb nitrogen removal in constructed wetlands: Responses of microbes and macrophytes. Environmental Science & Technology, 54(21): 14007–14016
https://doi.org/10.1021/acs.est.0c03324
51 X Yang, Q He, F Guo, X Sun, J Zhang, Y Chen (2021). Impacts of carbon-based nanomaterials on nutrient removal in constructed wetlands: Microbial community structure, enzyme activities, and metabolism process. Journal of Hazardous Materials, 401: 123270
https://doi.org/10.1016/j.jhazmat.2020.123270
52 X Y Yang, Y Chen, F C Guo, X B Liu, X X Su, Q He (2020b). Metagenomic analysis of the biotoxicity of titanium dioxide nanoparticles to microbial nitrogen transformation in constructed wetlands. Journal of Hazardous Materials, 384: 121376
https://doi.org/10.1016/j.jhazmat.2019.121376
53 Y Ye, I A Medina-Velo, K Cota-Ruiz, F Moreno-Olivas, J L Gardea-Torresdey (2019). Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicology and Environmental Safety, 184: 109671
https://doi.org/10.1016/j.ecoenv.2019.109671
54 H Zhang, M Huang, W Zhang, J L Gardea-Torresdey, J C White, R Ji, L Zhao (2020). Silver nanoparticles alter soil microbial community compositions and metabolite profiles in unplanted and cucumber-planted soils. Environmental Science & Technology, 54(6): ‏ 3334–3342
https://doi.org/10.1021/acs.est.9b07562
55 H Zhang, X He, Z Zhang, P Zhang, Y Li, Y Ma, Y Kuang, Y Zhao, Z Chai (2011a). Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environmental Science & Technology, 45(8): 3725–3730
https://doi.org/10.1021/es103309n
56 M Zhang, J Smith, N Harberd, C. Jiang (2016a). The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. Plant Molecular Biology, 91(6): 651–659
https://doi.org/10.1007/s11103-016-0488-1
57 P Zhang, Y Ma, Z Zhang, X He, J Zhang, Z Guo, R Tai, Y Zhao, Z Chai (2012). Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano, 6(11): 9943–9950
https://doi.org/10.1021/nn303543n
58 Y Q Zhang, R Dringen, C Petters, W Rastedt, J Koser, J Filser, S Stolte (2016b). Toxicity of dimercaptosuccinate-coated and un-functionalized magnetic iron oxide nanoparticles towards aquatic organisms. Environmental Science. Nano, 3(4): 754–767
https://doi.org/10.1039/C5EN00222B
59 Z Zhang, X He, H Zhang, Y Ma, P Zhang, Y Ding, Y Zhao (2011b). Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 3(8): 816–822
https://doi.org/10.1039/c1mt00049g
[1] FSE-21025-OF-YXY_suppl_1 Download
[1] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[2] Yuan Cheng, Qinqin Yu, Jiumeng Liu, Youwen Sun, Linlin Liang, Zhenyu Du, Guannan Geng, Wanli Ma, Hong Qi, Qiang Zhang, Kebin He. Formation of secondary inorganic aerosol in a frigid urban atmosphere[J]. Front. Environ. Sci. Eng., 2022, 16(2): 18-.
[3] Wanpeng Chen, Jiahui Song, Shaojie Jiang, Qiang He, Jun Ma, Xiaoliu Huangfu. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Front. Environ. Sci. Eng., 2022, 16(2): 16-.
[4] Yukun Zhang, Shuying Wang, Shengbo Gu, Liang Zhang, Yijun Dong, Lei Jiang, Wei Fan, Yongzhen Peng. The combined effects of biomass and temperature on maximum specific ammonia oxidation rate in domestic wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 123-.
[5] Guowen Hu, Zeqi Zhang, Xuan Zhang, Tianrong Li. Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants[J]. Front. Environ. Sci. Eng., 2021, 15(5): 108-.
[6] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[7] Wenlu Li, John D. Fortner. (Super)paramagnetic nanoparticles as platform materials for environmental applications: From synthesis to demonstration[J]. Front. Environ. Sci. Eng., 2020, 14(5): 77-.
[8] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[9] Luman Zhou, Chengyang Wu, Yuwei Xie, Siqing Xia. Biogenic palladium prepared by activated sludge microbes for the hexavalent chromium catalytic reduction: Impact of relative biomass[J]. Front. Environ. Sci. Eng., 2020, 14(2): 27-.
[10] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[11] Jian Wang, Qun Wang, Xueli Gao, Xinxia Tian, Yangyang Wei, Zhen Cao, Chungang Guo, Huifeng Zhang, Zhun Ma, Yushan Zhang. Surface modification of mesoporous silica nanoparticle with 4-triethoxysilylaniline to enhance seawater desalination properties of thin-film nanocomposite reverse osmosis membranes[J]. Front. Environ. Sci. Eng., 2020, 14(1): 6-.
[12] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
[13] Zhiqiang Chen, Lizhi Zhao, Ye Ji, Qinxue Wen, Long Huang. Reconsideration on the effect of nitrogen on mixed culture polyhydroxyalkanoate production toward high organic loading enrichment history[J]. Front. Environ. Sci. Eng., 2019, 13(4): 54-.
[14] Mei Lei, Ziping Dong, Ying Jiang, Philip Longhurst, Xiaoming Wan, Guangdong Zhou. Reaction mechanism of arsenic capture by a calcium-based sorbent during the combustion of arsenic-contaminated biomass: A pilot-scale experience[J]. Front. Environ. Sci. Eng., 2019, 13(2): 24-.
[15] Kishore Gopalakrishnan, Javad Roostaei, Yongli Zhang. Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium[J]. Front. Environ. Sci. Eng., 2018, 12(4): 14-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed