Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (11) : 134    https://doi.org/10.1007/s11783-023-1734-9
RESEARCH ARTICLE
Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study
Meiling Chen1,2, Mengjie Yin3, Yuetan Su1, Ruizhe Li1, Kezhou Liu3, Zhongbiao Wu1,4, Xiaole Weng1,2,4()
1. Key Laboratory of Environment Remediation and Ecological Health (Ministry of Education), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2. ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
3. School of Automation (School of Artificial Intelligence), Hangzhou Dianzi University, Hangzhou 310018, China
4. Zhejiang Provincial Engineering Research Centre of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 311200, China
 Download: PDF(4618 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Photochemical conversion of chlorobenzene (CB) on α-Fe2O3 was evaluated.

● CB can be considerably degraded by α-Fe2O3 under light irradiation.

● Photochemical conversion of CB is markedly suppressed by adding SO2 or NO2.

● CB can be ultimately converted into PCDD/Fs under dark state or light irradiation.

● Photochemical conversion complements an overlooked source of natural PCDD/Fs.

Despite the large emission of chlorinated volatile organic compounds (CVOCs) into the atmosphere, the ultimate fate of these compounds remains largely unknown. Herein, we explore the photochemical conversion of an important class of CVOCs, namely chlorobenzene (CB), on mineral α-Fe2O3 particulates under atmospheric relevant conditions. A series of chamber reactions composed of the CB with/without SO2 or NO2 are performed, followed by in situ diffuse reflectance infrared Fourier transform spectroscopy measurements and density functional theory calculations. We show that CB can be considerably degraded by α-Fe2O3 under light irradiation, whereas the reaction is markedly suppressed by adding SO2 or NO2 owing to their competitive adsorption and surface acidification. In particular, we discover that CB can be ultimately converted into polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) under dark state or light irradiation, suggesting a possible origin of atmospheric PCDD/Fs from this overlooked photochemical source.

Keywords Photochemical conversion      Chlorobenzene      α-Fe2O3      PCDD/Fs      Mineral particulate     
Corresponding Author(s): Xiaole Weng   
About author:

* These authors contributed equally to this work.

Issue Date: 15 November 2023
 Cite this article:   
Meiling Chen,Mengjie Yin,Yuetan Su, et al. Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study[J]. Front. Environ. Sci. Eng., 2023, 17(11): 134.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1734-9
https://academic.hep.com.cn/fese/EN/Y2023/V17/I11/134
Fig.1  Decay rates of CB in the absence and presence of α-Fe2O3 particulates in the chamber experiments. (a) Schematic diagram of the chamber setup; (b) CB + O2 reaction; (c) CB + SO2 + O2 reaction; (d) CB + NO2 + O2 reaction. Reaction conditions: [CB] = 200 ppm, [SO2] = [NO2] = 50 ppm, air balance, 30 °C and xenon light irradiation (λ = 320–780 nm). Error bars represent standard deviation.
Fig.2  Results of the reaction byproduct analysis. (a) Distribution of gas-phase byproducts, (b) volatile, and (c) semi-volatile organic byproducts on the α-Fe2O3 surface after 7 h of reaction. (d) The result of CPs after 35 h of reaction based on SIM in a GC/MS system. Reaction conditions: [CB] = 200 ppm, [SO2] = [NO2] = 50 ppm, air balance, 30 °C and xenon light irradiation (λ = 320–780 nm).
Fig.3  In situ DRIFT spectra of α-Fe2O3 as a function of time with a flow of CB and SO2 or NO2 in the absence and presence of light. Reaction conditions: [CB] = 200 ppm, [SO2] = [NO2] = 50 ppm, [O2] = 20 vol %, 30 °C and xenon light irradiation (λ = 320–780 nm).
Fig.4  The atmospheric heterogeneous photochemical reaction mechanism of CB on the surface of α-Fe2O3.
1 R Atkinson , S M Aschmann , A M Winer , J N Jr Pitts . (1985). Atmospheric gas-phase loss processes for chlorobenzene, benzotrifluoride, and 4-chlorobenzotrifluoride, and generalization of predictive techniques for atmospheric lifetimes of aromatic-compounds. Archives of Environmental Contamination and Toxicology, 14(4): 417–425
https://doi.org/10.1007/BF01055527
2 C Cai , J Li , Y He , J Jia . (2023). Target the neglected VOCs emission from iron and steel industry in China for air quality improvement. Frontiers of Environmental Science & Engineering, 17(8): 95
https://doi.org/10.1007/s11783-023-1695-z
3 Y Q Cao , Q X Ma , B W Chu , H He . (2023). Homogeneous and heterogeneous photolysis of nitrate in the atmosphere: state of the science, current research needs, and future prospects. Frontiers of Environmental Science & Engineering, 17(4): 48
https://doi.org/10.1007/s11783-023-1648-6
4 J Y Chen , J J Yi , Y M Ji , B C Zhao , Y P Ji , G Y Li , T C An . (2020a). Enhanced H-abstraction contribution for oxidation of xylenes via mineral particles: Implications for particulate matter formation and human health. Environmental Research, 186: 109568
https://doi.org/10.1016/j.envres.2020.109568
5 T Chen , C Sun , T J Wang , S Lomnicki , M X Zhan , X D Li , S Y Lu , J H Yan . (2020b). Formation of DF, PCDD/Fs and EPFRs from 1,2,3-trichlorobenzene over metal oxide/silica surface. Waste Management (New York, N.Y.), 118: 27–35
https://doi.org/10.1016/j.wasman.2020.08.024
6 Z L Chen , X Q Lin , S Y Lu , X D Li , Q L Qiu , A J Wu , J M Ding , J H Yan . (2018). Formation pathways of PCDD/Fs during the co-combustion of municipal solid waste and coal. Chemosphere, 208: 862–870
https://doi.org/10.1016/j.chemosphere.2018.06.044
7 H X Cui , T T Cheng , J M Chen , Y F Xu , W F Fang . (2008). A simulated heterogeneous reaction of SO2 on the surface of hematite at different temperatures. Acta Physico-Chimica Sinica, 24(12): 2331–2336 (in Chinese)
https://doi.org/10.3866/PKU.WHXB20081231
8 D A Day , S Liu , L M Russell , P J Ziemann . (2010). Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmospheric Environment, 44(16): 1970–1979
https://doi.org/10.1016/j.atmosenv.2010.02.045
9 W Deng , Q G Dai , Y J Lao , B B Shi , X Y Wang . (2016). Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts. Applied Catalysis B: Environmental, 181: 848–861
https://doi.org/10.1016/j.apcatb.2015.07.053
10 C T Du , L D Kong , A Zhanzakova , S Y Tong , X Yang , L Wang , H B Fu , T T Cheng , J M Chen , S C Zhang . (2019). Impact of adsorbed nitrate on the heterogeneous conversion of SO2 on alpha-Fe2O3 in the absence and presence of simulated solar irradiation. Science of the Total Environment, 649: 1393–1402
https://doi.org/10.1016/j.scitotenv.2018.08.295
11 Z H Duan , C Scheutz , P Kjeldsen . (2021). Trace gas emissions from municipal solid waste landfills: a review. Waste Management (New York, N.Y.), 119: 39–62
https://doi.org/10.1016/j.wasman.2020.09.015
12 P Ebrahimbabaie , J Pichtel . (2021). Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives. Environmental Science and Pollution Research International, 28(7): 7710–7741
https://doi.org/10.1007/s11356-020-11598-y
13 E O Edney , T E Kleindienst , E W Corse . (1986). Room-temperature rate constants for the reaction of oh with selected chlorinated and oxygenated hydrocarbons. International Journal of Chemical Kinetics, 18(12): 1355–1371
https://doi.org/10.1002/kin.550181207
14 Q L Fang , B Z Zhu , Y L Sun , Z C Zhu , M G Xu , T T Ge . (2019a). Mechanistic insight into the selective catalytic reduction of NO by NH3 over α-Fe2O3 (001): a density functional theory study. Catalysis Science & Technology, 9(1): 116–124
https://doi.org/10.1039/C8CY02080A
15 X Fang , S Park , T Saito , R Tunnicliffe , A L Ganesan , M Rigby , S Li , Y Yokouchi , P J Fraser , C M Harth . et al.. (2019b). Rapid increase in ozone-depleting chloroform emissions from China. Nature Geoscience, 12(2): 89–93
https://doi.org/10.1038/s41561-018-0278-2
16 K L Froese , O Hutzinger . (1996). Polychlorinated benzene, phenol, dibenzo-p-dioxin, and dibenzofuran in heterogeneous combustion reactions of acetylene. Environmental Science & Technology, 30(3): 998–1008
https://doi.org/10.1021/es9504808
17 H B Fu , X Wang , H B Wu , Y Yin , J M Chen . (2007). Heterogeneous uptake and oxidation of SO2 on iron oxides. Journal of Physical Chemistry C, 111(16): 6077–6085
https://doi.org/10.1021/jp070087b
18 X Ge , A S Wexler , S L Clegg . (2011). Atmospheric amines–Part Ⅰ. A review. Atmospheric Environment, 45(3): 524–546
https://doi.org/10.1016/j.atmosenv.2010.10.012
19 I George , J Abbatt . (2010). Heterogeneous oxidation of atmospheric aerosol particles by gas-phase radicals. Nature Chemistry, 2(9): 713–722
https://doi.org/10.1038/nchem.806
20 Y F Gu , T Cai , X H Gao , H Q Xia , W Sun , J Zhao , Q G Dai , X Y Wang . (2019). Catalytic combustion of chlorinated aromatics over WOx/CeO2 catalysts at low temperature. Applied Catalysis B: Environmental, 248: 264–276
https://doi.org/10.1016/j.apcatb.2018.12.055
21 J K Guan , L S Zhou , W Q Li , D Hu , J Wen , B C Huang . (2021). Improving the performance of Gd addition on catalytic activity and SO2 resistance over MnOx/ZSM-5 catalysts for low-temperature NH3-SCR. Catalysts, 11(3): 324
https://doi.org/10.3390/catal11030324
22 X He , Z C Ma , X Xi , A Kudesi , J M Wang . (2022). Heterogeneous reaction of toluene/NO2/O3 on alpha-Fe2O3 nanoparticles: the impacts of O3, light illumination, and relative humidity on the formation of N-containing organic compounds (NOC). Environmental Science. Nano, 9(9): 3318–3330
https://doi.org/10.1039/D2EN00426G
23 E Hettiarachchi , V H Grassian . (2022). Heterogeneous reactions of α-pinene on mineral surfaces: formation of organonitrates and α-pinene oxidation products. Journal of Physical Chemistry A, 126(25): 4068–4079
https://doi.org/10.1021/acs.jpca.2c02663
24 B C Hixson , J W Jordan , E L Wagner , H M Bevsek . (2011). Reaction products and kinetics of the reaction of NO2 with gamma-Fe2O3. Journal of Physical Chemistry A, 115(46): 13364–13369
https://doi.org/10.1021/jp206342w
25 H L Huang , H B Huang , Y J Zhan , G Y Liu , X M Wang , H X Lu , L Xiao , Q Y Feng , D Y C Leung . (2016). Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation: performance and mechanism. Applied Catalysis B: Environmental, 186: 62–68
https://doi.org/10.1016/j.apcatb.2015.12.055
26 A Kanwal , S Sajjad , S A K Leghari , Z Yousaf . (2021). Cascade electron transfer in ternary CuO/α-Fe2O3/γ-Al2O3 nanocomposite as an effective visible photocatalyst. Journal of Physics and Chemistry of Solids, 151: 109899
https://doi.org/10.1016/j.jpcs.2020.109899
27 V V Kislov , T L Nguyen , A M Mebel , S H Lin , S C Smith . (2004). Photodissociation of benzene under collision-free conditions: an ab initio/Rice-Ramsperger-Kassel-Marcus study. Journal of Chemical Physics, 120(15): 7008–7017
https://doi.org/10.1063/1.1676275
28 H L Li , F Q Dong , L Bian , T T Huo , L Zhou , W G Luo , J Zhang , F Zheng , Z Z Lv , X C He . et al.. (2022). Heterogeneous oxidation mechanism of SO2 on α-Fe2O3 (001) catalyst by HONO: effect of oxygen defect. Colloid and Interface Science Communications, 46: 100572
https://doi.org/10.1016/j.colcom.2021.100572
29 J Lichtenberger , M D Amiridis . (2004). Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts. Journal of Catalysis, 223(2): 296–308
https://doi.org/10.1016/j.jcat.2004.01.032
30 C Liu , Q Ma , Y Liu , J Ma , H He . (2012). Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol. Physical Chemistry Chemical Physics, 14(5): 1668–1676
https://doi.org/10.1039/C1CP22217A
31 Liu F D, Asakura K, He H, Shan W P, Shi X Y, Zhang C B (2011a). Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 103(3−4): 369−377
32 S L LiuB G WangJ HeX D TangW LuoC (2011b) Wang. Source fingerprints of volatile organic compounds emitted from a municipal solid waste incineration power plant in Guangzhou, China. International Conference on Environment Science and Engineering (ICESE), Bali Island, Indonesia
33 Y P Long , Y T Su , Y H Xue , Z B A Wu , X L Weng . (2021). V2O5-WO3/TiO2 catalyst for efficient synergistic control of NOx and chlorinated organics: insights into the arsenic effect. Environmental Science & Technology, 55(13): 9317–9325
https://doi.org/10.1021/acs.est.1c02636
34 M F Lunt , S Park , S Li , S Henne , A J Manning , A L Ganesan , I J Simpson , D R Blake , Q Liang , S O’doherty . et al.. (2018). Continued emissions of the ozone-depleting substance carbon tetrachloride from eastern Asia. Geophysical Research Letters, 45(20): 11423–11430
https://doi.org/10.1029/2018GL079500
35 S Y Lv , Q Y Liu , Y X Zhao , S G He . (2021). Photooxidation of isoprene by titanium oxide cluster anions with dimensions up to a nanosize. Journal of the American Chemical Society, 143(10): 3951–3958
https://doi.org/10.1021/jacs.1c00326
36 Y F Ma , P Y Wang , X Q Lin , T Chen , X D Li . (2021). Formation and inhibition of polychlorinated-rho-dibenzodioxins and dibenzofurans from mechanical grate municipal solid waste incineration systems. Journal of Hazardous Materials, 403(5): 123812
https://doi.org/10.1016/j.jhazmat.2020.123812
37 S A Montzka , G S Dutton , P Yu , E Ray , R W Portmann , J S Daniel , L Kuijpers , B D Hall , D Mondeel , C Siso . et al.. (2018). An unexpected and persistent increase in global emissions of ozone-depleting CFC-11. Nature, 557(7705): 413–417
https://doi.org/10.1038/s41586-018-0106-2
38 M Nagao , Y Suda . (1989). Adsorption of benzene, toluene, and chlorobenzene on titanium-dioxide. Langmuir, 5(1): 42–47
https://doi.org/10.1021/la00085a009
39 H J Y Niu , K Z Li , B W Chu , W K Su , J H Li . (2017). Heterogeneous reactions between toluene and NO2 on mineral particles under simulated atmospheric conditions. Environmental Science & Technology, 51(17): 9596–9604
https://doi.org/10.1021/acs.est.7b00194
40 A P Peng , J Gao , Z Y Chen , Y Wang , H Li , L Q Ma , C Gu . (2018). Interactions of gaseous 2-chlorophenol with Fe3+-saturated montmorillonite and their toxicity to human lung cells. Environmental Science & Technology, 52(9): 5208–5217
https://doi.org/10.1021/acs.est.7b06664
41 J N Jr Pitts , D Grosjean , K Vancauwenberghe , J P Schmid , D R Fitz . (1978). Photo-oxidation of aliphatic-amines under simulated atmospheric conditions: formation of nitrosamines, nitramines, amides, and photo-chemical oxidant. Environmental Science & Technology, 12(8): 946–953
https://doi.org/10.1021/es60144a009
42 M Ponczek , C George . (2018). Kinetics and product formation during the photooxidation of butanol on atmospheric mineral dust. Environmental Science & Technology, 52(9): 5191–5198
https://doi.org/10.1021/acs.est.7b06306
43 P M Potter , X Guan , S M Lomnicki . (2018). Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol. Chemosphere, 203: 96–103
https://doi.org/10.1016/j.chemosphere.2018.03.118
44 J H Qi , X H Liu , X H Yao , R F Zhang , X J Chen , X H Lin , H W Gao , R H Liu . (2018). The concentration, source and deposition flux of ammonium and nitrate in atmospheric particles during dust events at a coastal site in northern China. Atmospheric Chemistry and Physics, 18(2): 571–586
https://doi.org/10.5194/acp-18-571-2018
45 Z Y Ren , Y Lu , Q S Li , Y Z Sun , C M Wu , Q Ding . (2018). Occurrence and characteristics of PCDD/Fs formed from chlorobenzenes production in China. Chemosphere, 205: 267–274
https://doi.org/10.1016/j.chemosphere.2018.04.112
46 O S Ryder , N R Campbell , M Shaloski , H Al-Mashat , G M Nathanson , T H Bertram . (2015). Role of organics in regulating ClNO2 production at the air–sea interface. Journal of Physical Chemistry A, 119(31): 8519–8526
https://doi.org/10.1021/jp5129673
47 J Y Ryu . (2008). Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper(II) chloride-catalyzed thermal process. Chemosphere, 71(6): 1100–1109
https://doi.org/10.1016/j.chemosphere.2007.10.036
48 USEPA (1994). Method 1613: Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. Cincinnati, OH: USEPA
49 USEPA (1999). Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. 2nd ed. Cincinnati, OH: USEPA
50 B G WangZ C FengY ZhouH X Liu (2009). VOC components in the air caused by the local polyurethane synthetic leather industries in the Pearl River Delta region. China Environment Science, 29(9): 914−918 (in Chinese)
51 D Wang , H J Zhang , Y Fan , M H Ren , R Cao , J P Chen . (2019a). Electrophilic chlorination of naphthalene in combustion flue gas. Environmental Science & Technology, 53(10): 5741–5749
https://doi.org/10.1021/acs.est.9b00350
52 J Wang , X Wang , X L Liu , J L Zeng , Y Y Guo , T Y Zhu . (2015). Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts. Journal of Molecular Catalysis A Chemical, 402: 1–9
https://doi.org/10.1016/j.molcata.2015.03.003
53 P WangS ZhuM VrekoussisG P BrasseurS WangH Zhang (2022). Is atmospheric oxidation capacity better in indicating tropospheric O3 formation? Frontiers of Environmental Science & Engineering, 16(5): 65
54 X W Wang , W Y Jiang , R Q Yin , P F Sun , Y H Lu , Z B Wu , X L Weng . (2020). The role of surface sulfation in mediating the acidity and oxidation ability of nickel modified ceria catalyst for the catalytic elimination of chlorinated organics. Journal of Colloid and Interface Science, 574: 251–259
https://doi.org/10.1016/j.jcis.2020.04.047
55 Z W Wang , S Li , S H Xie , Y X Liu , H X Dai , G S Guo , J G Deng . (2019b). Supported ultralow loading Pt catalysts with high H2O-, CO2-, and SO2-resistance for acetone removal. Applied Catalysis A, General, 579(5): 106–115
https://doi.org/10.1016/j.apcata.2019.04.018
56 R R Wu , S N Wang , L M Wang . (2014). Atmospheric oxidation mechanism of chlorobenzene. Chemosphere, 111: 537–544
https://doi.org/10.1016/j.chemosphere.2014.04.067
57 C Y Xie , Y L Sun , B Z Zhu . (2021). The promoting mechanism of doping Mn, Co, and Ce on gas adsorption property and anti-SO2 oxidation over γ-Fe2O3 (001) surface: a density functional theory study. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 628(5): 127218
https://doi.org/10.1016/j.colsurfa.2021.127218
58 L L Yang , G R Liu , M H Zheng , Y Y Zhao , R Jin , X L Wu , Y Xu . (2017). Molecular mechanism of dioxin formation from chlorophenol based on electron paramagnetic resonance spectroscopy. Environmental Science & Technology, 51(9): 4999–5007
https://doi.org/10.1021/acs.est.7b00828
59 W W Yang , Q X Ma , Y C Liu , J Z Ma , B W Chu , H He . (2019). The effect of water on the heterogeneous reactions of SO2 and NH3 on the surfaces of α-Fe2O3 and γ-Al2O3. Environmental Science. Nano, 6(9): 2749–2758
https://doi.org/10.1039/C9EN00574A
60 Y X Yu , W Tan , D Q An , X W Wang , A N Liu , W X Zou , C J Tang , C Y Ge , Q Tong , J F Sun . et al.. (2021). Insight into the SO2 resistance mechanism on γ-Fe2O3 catalyst in NH3-SCR reaction: a collaborated experimental and DFT study. Applied Catalysis B: Environmental, 281: 119544
https://doi.org/10.1016/j.apcatb.2020.119544
61 Y Zhang , G Li , P Wu , K Zhuang , K Shen , S Wang , T Huang . (2020). Effect of SO2 on the low-temperature denitrification performance of Ho-modified Mn/Ti catalyst. Chemical Engineering Journal, 400(15): 122597
https://doi.org/10.1016/j.cej.2019.122597
[1] FSE-23034-OF-CML_suppl_1 Download
[1] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[2] Minxiang Wang, Lili Yang, Xiaoyun Liu, Zheng Wang, Guorui Liu, Minghui Zheng. Hexachlorobutadiene emissions from typical chemical plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 60-.
[3] Xiaotu Liu, Heidelore Fiedler, Wenwen Gong, Bin Wang, Gang Yu. Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview[J]. Front. Environ. Sci. Eng., 2018, 12(6): 1-.
[4] Qishi LUO. Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate[J]. Front Envir Sci Eng, 2014, 8(2): 188-194.
[5] SONG Lei, WANG Hui, SHI Hanchang, HU Hongying. Isolation of a strain that degrades 1,2,4-trichlorobenzene and characterization of its degradative plasmid[J]. Front.Environ.Sci.Eng., 2008, 2(1): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed