Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (11) : 137    https://doi.org/10.1007/s11783-023-1737-6
RESEARCH ARTICLE
New insights into the formation of ammonium nitrate from a physical and chemical level perspective
Yuting Wei1,2, Xiao Tian1,2, Junbo Huang1,2, Zaihua Wang3(), Bo Huang4, Jinxing Liu5,6, Jie Gao1,2, Danni Liang1,2, Haofei Yu7, Yinchang Feng1,2, Guoliang Shi1,2()
1. State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
2. CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
3. Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
4. Guangzhou Hexin Instrument Co. Ltd., Guangzhou 510530, China
5. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin Key Laboratory of Air pollutants Monitoring Technology, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
6. Gigantic Technology (Tianjin) Co. Ltd., Tianjin 300384, China
7. Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL32816, USA
 Download: PDF(4568 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Factor analysis of ammonium nitrate formation based on thermodynamic theory.

● Aerosol liquid water content has important role on the ammonium nitrate formation.

● Contribution of coal combustion and vehicle exhaust is significant in haze periods.

High levels of fine particulate matter (PM2.5) is linked to poor air quality and premature deaths, so haze pollution deserves the attention of the world. As abundant inorganic components in PM2.5, ammonium nitrate (NH4NO3) formation includes two processes, the diffusion process (molecule of ammonia and nitric acid move from gas phase to liquid phase) and the ionization process (subsequent dissociation to form ions). In this study, we discuss the impact of meteorological factors, emission sources, and gaseous precursors on NH4NO3 formation based on thermodynamic theory, and identify the dominant factors during clean periods and haze periods. Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution. The dust source is dominant emission source in clean periods; while a combination of coal combustion and vehicle exhaust sources is more important in haze periods. And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate. The findings of this work inform the design of effective strategies to control particulate matter pollution.

Keywords Ammonium nitrate formation      Thermodynamic theory      Aerosol liquid water content      Source apportionment     
Corresponding Author(s): Zaihua Wang,Guoliang Shi   
Issue Date: 15 November 2023
 Cite this article:   
Yuting Wei,Xiao Tian,Junbo Huang, et al. New insights into the formation of ammonium nitrate from a physical and chemical level perspective[J]. Front. Environ. Sci. Eng., 2023, 17(11): 137.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1737-6
https://academic.hep.com.cn/fese/EN/Y2023/V17/I11/137
Fig.1  Concentrations of SO42–, NO3, NH4+ (a) and their proportion in PM2.5 (b) under different pollution levels. (c) Correlations between equivalent concentrations of SO42– and NH4+. (d) Correlations between equivalent concentrations of NO3 + 2SO42– and NH4+.
Fig.2  S-curve constructed by fitting ε(NO3) and ε(NH4+) as a function of pH using the Boltzmann equation (R2 = 0.65 and R2 = 0.97, respectively). (a) Orange points are actual atmospheric samples with higher sulfate contributions (> 7 μg/m3) and orange curve is fitted by the Boltzmann equation. (b) Purple points are actual atmospheric samples with ε*(NO3) > 0.8 in summer and purple curve is also fitted by the Boltzmann equation.
Fig.3  (a, c) The relationship between ITL(NO3) and [H+] in ε(NO3). The red dotted line indicates that [H+] and ITL(NO3) are equal, so their effects on the distribution of nitrate are similar at the same time. In the upper left of the dotted line, the influence of ITL(NO3) is more significant because the order of magnitude of ITL(NO3) is larger than [H+]. On the contrary, in the lower right of the dotted line, the influence of [H+] is more significant. (b, d) The relationship between ITL(NH4+) and 1/[H+] in ε(NH4+). Similar to (a, c), the red dotted line indicates that 1/[H+] and ITL(NH4+) are equal, so their effects on the distribution of ammonia are similar. Color represents concentrations of PM2.5 during (a, b) clean periods and (c, d) haze periods. Data points within circles are samples with relatively high PM2.5 concentrations (higher than 50 μg/m3 in clean periods and 170 μg/m3 in haze periods).
Fig.4  The relationship between ITL(NO3) and [H+] in ε(NO3). Color represents temperature (a for clean periods, c for haze periods) and liquid water content (b for clean periods, d for haze periods). The meaning of red dotted line is similar to Fig.3.
Fig.5  The relationship between ITL(NO3) and [H+] in ε(NO3). Color represent contributions of dust (a, e), coal combustion (b, f), vehicle (c, g), and biomass burning & SOC (d, h) during clean periods (a through d), and haze periods (e through h). The meaning of red dotted line is similar to Fig. 3.
Fig.6  ε(NO3) and ε(NH4+) in haze days. The scattered points are samples in the actual environment. The red solid line is the fitted equation of the S-curve and the reverse S-curve. The orange shaded portion indicates that ammonium nitrate is insensitive to the emission of precursors (HNO3 and NH3), while the blue shaded portion indicates the contrary.
1 S N Behera , R Betha , R Balasubramanian . (2013). Insights into chemical coupling among acidic gases, ammonia and secondary inorganic aerosols. Aerosol and Air Quality Research, 13(4): 1282–1296
https://doi.org/10.4209/aaqr.2012.11.0328
2 S N Behera , M Sharma . (2010). Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Science of the Total Environment, 408(17): 3569–3575
https://doi.org/10.1016/j.scitotenv.2010.04.017
3 N Bhattarai , S X Wang , Y P Pan , Q C Xu , Y L Zhang , Y H Chang , Y T Fang . (2021). δ15N-stable isotope analysis of NHx: an overview on analytical measurements, source sampling and its source apportionment. Frontiers of Environmental Science & Engineering, 15(6): 126
4 H Che , X Xia , J Zhu , Z Li , O Dubovik , B Holben , P Goloub , H Chen , V Estelles , E Cuevas-Agullo . et al.. (2014). Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmospheric Chemistry and Physics, 14(4): 2125–2138
https://doi.org/10.5194/acp-14-2125-2014
5 T Z Chen , B W Chu , Y L Ge , S P Zhang , Q X Ma , H He , S M Li . (2019). Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environmental Pollution, 252: 236–244
https://doi.org/10.1016/j.envpol.2019.05.119
6 X R Chen , H C Wang , K D Lu , C M Li , T Y Zhai , Z F Tan , X F Ma , X P Yang , Y H Liu , S Y Chen . et al.. (2020). Field determination of nitrate formation pathway in winter Beijing. Environmental Science & Technology, 54(15): 9243–9253
https://doi.org/10.1021/acs.est.0c00972
7 Y Cheng , Q Q Yu , J M Liu , Y W Sun , L L Liang , Z Y Du , G N Geng , W L Ma , H Qi , Q Zhang . et al.. (2022). Formation of secondary inorganic aerosol in a frigid urban atmosphere. Frontiers of Environmental Science & Engineering, 16(2): 18
https://doi.org/10.1007/s11783-021-1452-0
8 X Dao , Y C Lin , F Cao , S Y Di , Y H Hong , G H Xing , J J Li , P Q Fu , Y L Zhang . (2019). Introduction to the national aerosol chemical composition monitoring network of China: objectives, current status, and outlook. Bulletin of the American Meteorological Society, 100(12): Es337–Es351
9 M Y Fan , Y L Zhang , Y C Lin , Y H Chang , F Cao , W Q Zhang , Y B Hu , M Y Bao , X Y Liu , X Y Zhai . et al.. (2019). Isotope-based source apportionment of nitrogen-containing aerosols: a case study in an industrial city in China. Atmospheric Environment, 212: 96–105
https://doi.org/10.1016/j.atmosenv.2019.05.020
10 C Fountoukis , A Nenes . (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42–-NO3–-Cl–-H2O aerosols. Atmospheric Chemistry and Physics, 7(17): 4639–4659
https://doi.org/10.5194/acp-7-4639-2007
11 X Fu , T Wang , J Gao , P Wang , Y M Liu , S X Wang , B Zhao , L K Xue . (2020). Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in Northern China. Environmental Science & Technology, 54(7): 3881–3889
https://doi.org/10.1021/acs.est.9b07248
12 J Gao , S H Dong , H F Yu , X Peng , W Wang , G L Shi , B Han , Y T Wei , Y C Feng . (2020). Source apportionment for online dataset at a megacity in China using a new PTT-PMF model. Atmospheric Environment, 229: 117457
https://doi.org/10.1016/j.atmosenv.2020.117457
13 H Y Guo , R Otjes , P Schlag , A Kiendler-Scharr , A Nenes , R J Weber . (2018). Effectiveness of ammonia reduction on control of fine particle nitrate. Atmospheric Chemistry and Physics, 18(16): 12241–12256
https://doi.org/10.5194/acp-18-12241-2018
14 W Guo , Z Y Zhang , N J Zheng , L Luo , H Y Xiao , H W Xiao . (2020). Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons. Atmospheric Research, 234: 104687
https://doi.org/10.1016/j.atmosres.2019.104687
15 R J Huang , J Duan , Y J Li , Q Chen , Y Chen , M J Tang , L Yang , H Y Ni , C S Lin , W Xu . et al.. (2020). Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of the Total Environment, 717: 137190
https://doi.org/10.1016/j.scitotenv.2020.137190
16 Y C Lin , M T Cheng . (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9): 1903–1910
https://doi.org/10.1016/j.atmosenv.2006.10.065
17 Y C Lin , M T Cheng , W H Lin , Y Y Lan , B J Tsuang . (2010). Causes of the elevated nitrate aerosol levels during episodic days in Taichung urban area, Taiwan (China). Atmospheric Environment, 44(13): 1632–1640
https://doi.org/10.1016/j.atmosenv.2010.01.039
18 Y C Lin , Y L Zhang , M Y Fan , M Y Bao . (2020). Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China. Atmospheric Chemistry and Physics, 20(6): 3999–4011
https://doi.org/10.5194/acp-20-3999-2020
19 M X Liu , X Huang , Y Song , T T Xu , S X Wang , Z J Wu , M Hu , L Zhang , Q Zhang , Y P Pan . et al.. (2018). Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 18(24): 17933–17943
https://doi.org/10.5194/acp-18-17933-2018
20 Y Liu , M Zheng , M Y Yu , X H Cai , H Y Du , J Li , T Zhou , C Q Yan , X S Wang , Z B Shi . et al.. (2019). High-time-resolution source apportionment of PM2.5 in Beijing with multiple models. Atmospheric Chemistry and Physics, 19(9): 6595–6609
https://doi.org/10.5194/acp-19-6595-2019
21 N Meskhidze, W L Chameides, A Nenes, G Chen (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters, 30(21): 2085
https://doi.org/10.1029/2003GL018035
22 D Pan , K B Benedict , L M Golston , R Wang , J L Jr Collett , L Tao , K Sun , X H Guo , J Ham , A J Prenni . et al.. (2021). Ammonia dry deposition in an alpine ecosystem traced to agricultural emission hotpots. Environmental Science & Technology, 55(12): 7776–7785
https://doi.org/10.1021/acs.est.0c05749
23 P Pant , R M Harrison . (2012). Critical review of receptor modelling for particulate matter: a case study of India. Atmospheric Environment, 49: 1–12
https://doi.org/10.1016/j.atmosenv.2011.11.060
24 X Peng , X X Liu , X R Shi , G L Shi , M Li , J Y Liu , Y Q Huangfu , H Xu , R Y Ma , W Wang . et al.. (2019). Source apportionment using receptor model based on aerosol mass spectra and 1 h resolution chemical dataset in Tianjin, China. Atmospheric Environment, 198: 387–397
https://doi.org/10.1016/j.atmosenv.2018.11.018
25 S Y Ryu , B G Kwon , Y J Kim , H H Kim , K J Chun . (2007). Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research, 84(4): 362–373
https://doi.org/10.1016/j.atmosres.2006.09.007
26 J H Seinfeld, S N Pandis (2016). Atmospheric chemistry and physics: from air pollution to climate change. Hoboken, NJ: John Wiley & Sons, Inc.
27 H Q Shen , Y H Liu , M Zhao , J Li , Y N Zhang , J Yang , Y Jiang , T S Chen , M Chen , X B Huang . et al.. (2021). Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in eastern China. Science of the Total Environment, 764: 144031
https://doi.org/10.1016/j.scitotenv.2020.144031
28 Z X Shen , J Sun , J J Cao , L M Zhang , Q Zhang , Y L Lei , J J Gao , R J Huang , S X Liu , Y Huang . et al.. (2016). Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Science of the Total Environment, 569-570: 619–626
https://doi.org/10.1016/j.scitotenv.2016.06.156
29 X R Shi , A Nenes , Z M Xiao , S J Song , H F Yu , G L Shi , Q Y Zhao , K Chen , Y C Feng , A G Russell . (2019). High-resolution data sets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environmental Science & Technology, 53(6): 3048–3057
https://doi.org/10.1021/acs.est.8b06524
30 S J Song , M Gao , W Q Xu , J Y Shao , G L Shi , S X Wang , Y X Wang , Y L Sun , M B Mcelroy . (2018). Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 18(10): 7423–7438
https://doi.org/10.5194/acp-18-7423-2018
31 S Squizzato , M Masiol , A Brunelli , S Pistollato , E Tarabotti , G Rampazzo , B Pavoni . (2013). Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13(4): 1927–1939
https://doi.org/10.5194/acp-13-1927-2013
32 H Su , Y F Cheng , U Poschl . (2020). New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Accounts of Chemical Research, 53(10): 2034–2043
https://doi.org/10.1021/acs.accounts.0c00246
33 J Tao , J Gao , L Zhang , R Zhang , H Che , Z Zhang , Z Lin , J Jing , J Cao , S C Hsu . (2014). PM2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmospheric Chemistry and Physics, 14(16): 8679–8699
https://doi.org/10.5194/acp-14-8679-2014
34 Y Tao , J G Murphy . (2019). The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmospheric Chemistry and Physics, 19(14): 9309–9320
https://doi.org/10.5194/acp-19-9309-2019
35 Y Tao , X N Ye , Z Ma , Y Y Xie , R Y Wang , J M Chen , X Yang , S Q Jiang . (2016). Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. Atmospheric Environment, 145: 1–9
https://doi.org/10.1016/j.atmosenv.2016.09.012
36 M Tian , Y Liu , F M Yang , L M Zhang , C Peng , Y Chen , G M Shi , H B Wang , B Luo , C T Jiang . et al.. (2019). Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, Southwest China. Environmental Pollution, 250: 898–905
https://doi.org/10.1016/j.envpol.2019.04.098
37 Y Z Tian , G L Shi , B Han , J H Wu , X Y Zhou , L D Zhou , P Zhang , Y C Feng . (2015). Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere, 119: 750–756
https://doi.org/10.1016/j.chemosphere.2014.08.015
38 S B Wang , S S Yin , R Q Zhang , L M Yang , Q Y Zhao , L S Zhang , Q S Yan , N Jiang , X Y Tang . (2019a). Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Science of the Total Environment, 660: 47–56
https://doi.org/10.1016/j.scitotenv.2018.12.465
39 Y L Wang , W Song , W Yang , X C Sun , Y D Tong , X M Wang , C Q Liu , Z P Bai , X Y Liu . (2019b). Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing. Journal of Geophysical Research. Atmospheres, 124(7): 4174–4185
https://doi.org/10.1029/2019JD030284
40 Z J Wu , Y Wang , T Y Tan , Y S Zhu , M R Li , D J Shang , H C Wang , K D Lu , S Guo , L M Zeng . et al.. (2018). Aerosol liquid water driven by anthropogenic inorganic salts: implying its key role in haze formation over the north China plain. Environmental Science & Technology Letters, 5(3): 160–166
https://doi.org/10.1021/acs.estlett.8b00021
41 J Xu , J Chen , N Zhao , G C Wang , G Y Yu , H Li , J T Huo , Y F Lin , Q Y Fu , H Y Guo . et al.. (2020). Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. Atmospheric Chemistry and Physics, 20(12): 7259–7269
https://doi.org/10.5194/acp-20-7259-2020
42 L L Xu , F K Duan , K B He , Y L Ma , L D Zhu , Y X Zheng , T Huang , T Kimoto , T Ma , H Li . et al.. (2017). Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing. Environmental Pollution, 227: 296–305
https://doi.org/10.1016/j.envpol.2017.04.076
43 J Xue , Z B Yuan , A K H Lau , J Z Yu . (2014). Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research. Atmospheres, 119(8): 4888–4902
https://doi.org/10.1002/2013JD021108
44 J R Yang , S B Wang , R Q Zhang , S S Yin . (2022a). Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China. Environmental Pollution, 296: 118716
https://doi.org/10.1016/j.envpol.2021.118716
45 S X Yang , B Yuan , Y W Peng , S Huang , W Chen , W W Hu , C L Pei , J Zhou , D D Parrish , W J Wang . et al.. (2022b). The formation and mitigation of nitrate pollution: comparison between urban and suburban environments. Atmospheric Chemistry and Physics, 22(7): 4539–4556
https://doi.org/10.5194/acp-22-4539-2022
46 L Yao , L X Yang , Q Yuan , C Yan , C Dong , C P Meng , X Sui , F Yang , Y L Lu , W X Wang . (2016). Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 541: 590–598
https://doi.org/10.1016/j.scitotenv.2015.09.123
47 X N Ye , Z Ma , J C Zhang , H H Du , J M Chen , H Chen , X Yang , W Gao , F H Geng . (2011). Important role of ammonia on haze formation in Shanghai. Environmental Research Letters, 6(2): 024019
https://doi.org/10.1088/1748-9326/6/2/024019
48 S X Zhai , D J Jacob , X Wang , L Shen , K Li , Y Z Zhang , K Gui , T L Zhao , H Liao . (2019). Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16): 11031–11041
https://doi.org/10.5194/acp-19-11031-2019
49 Q Zhang , Z X Shen , J J Cao , K F Ho , R J Zhang , Z J Bie , H R Chang , S X Liu . (2014). Chemical profiles of urban fugitive dust over Xi’an in the south margin of the Loess Plateau, China. Atmospheric Pollution Research, 5(3): 421–430
https://doi.org/10.5094/APR.2014.049
50 Q Zhang , Y X Zheng , D Tong , M Shao , S X Wang , Y H Zhang , X D Xu , J N Wang , H He , W Q Liu . et al.. (2019). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469
https://doi.org/10.1073/pnas.1907956116
51 T Zhang , Z X Shen , H Su , S X Liu , J M Zhou , Z Z Zhao , Q Y Wang , A S H Prevot , J J Cao . (2021). Effects of aerosol water content on the formation of secondary inorganic aerosol during a winter heavy pm2.5 pollution episode in Xi’an, China. Atmospheric Environment, 252: 118304
https://doi.org/10.1016/j.atmosenv.2021.118304
52 Q Y Zhao , A Nenes , H F Yu , S J Song , Z M Xiao , K Chen , G L Shi , Y C Feng , A G Russell . (2020). Using high-temporal-resolution ambient data to investigate gas-particle partitioning of ammonium over different seasons. Environmental Science & Technology, 54(16): 9834–9843
https://doi.org/10.1021/acs.est.9b07302
53 B Zheng , D Tong , M Li , F Liu , C P Hong , G N Geng , H Y Li , X Li , L Q Peng , J Qi . et al.. (2018). Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095–14111
https://doi.org/10.5194/acp-18-14095-2018
54 W Zhou , M Gao , Y He , Q Q Wang , C H Xie , W Q Xu , J Zhao , W Du , Y M Qiu , L Lei . et al.. (2019). Response of aerosol chemistry to clean air action in Beijing, China: insights from two-year ACSM measurements and model simulations. Environmental Pollution, 255: 113345
https://doi.org/10.1016/j.envpol.2019.113345
55 Z Zong , X P Wang , C G Tian , Y J Chen , L Qu , L Ji , G R Zhi , J Li , G Zhang . (2016). Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. Atmospheric Chemistry and Physics, 16(17): 11249–11265
https://doi.org/10.5194/acp-16-11249-2016
[1] FSE-23032-OF-WYT_suppl_1 Download
[1] Yue Wang, Mengshuang Shi, Zhaofeng Lv, Huan Liu, Kebin He. Local and regional contributions to PM2.5 in the Beijing 2022 Winter Olympics infrastructure areas during haze episodes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 140-.
[2] Noshan Bhattarai, Shuxiao Wang, Yuepeng Pan, Qingcheng Xu, Yanlin Zhang, Yunhua Chang, Yunting Fang. δ15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 126-.
[3] Ningning Zhang, Mazhan Zhuang, Jie Tian, Pengshan Tian, Jieru Zhang, Qiyuan Wang, Yaqing Zhou, Rujin Huang, Chongshu Zhu, Xuemin Zhang, Junji Cao. Development of source profiles and their application in source apportionment of PM2.5 in Xiamen, China[J]. Front. Environ. Sci. Eng., 2016, 10(5): 17-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed