|
|
New insights into the formation of ammonium nitrate from a physical and chemical level perspective |
Yuting Wei1,2, Xiao Tian1,2, Junbo Huang1,2, Zaihua Wang3( ), Bo Huang4, Jinxing Liu5,6, Jie Gao1,2, Danni Liang1,2, Haofei Yu7, Yinchang Feng1,2, Guoliang Shi1,2( ) |
1. State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China 2. CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research (CLAER), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China 3. Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China 4. Guangzhou Hexin Instrument Co. Ltd., Guangzhou 510530, China 5. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin Key Laboratory of Air pollutants Monitoring Technology, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China 6. Gigantic Technology (Tianjin) Co. Ltd., Tianjin 300384, China 7. Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL32816, USA |
|
|
Abstract ● Factor analysis of ammonium nitrate formation based on thermodynamic theory. ● Aerosol liquid water content has important role on the ammonium nitrate formation. ● Contribution of coal combustion and vehicle exhaust is significant in haze periods. High levels of fine particulate matter (PM2.5) is linked to poor air quality and premature deaths, so haze pollution deserves the attention of the world. As abundant inorganic components in PM2.5, ammonium nitrate (NH4NO3) formation includes two processes, the diffusion process (molecule of ammonia and nitric acid move from gas phase to liquid phase) and the ionization process (subsequent dissociation to form ions). In this study, we discuss the impact of meteorological factors, emission sources, and gaseous precursors on NH4NO3 formation based on thermodynamic theory, and identify the dominant factors during clean periods and haze periods. Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution. The dust source is dominant emission source in clean periods; while a combination of coal combustion and vehicle exhaust sources is more important in haze periods. And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate. The findings of this work inform the design of effective strategies to control particulate matter pollution.
|
Keywords
Ammonium nitrate formation
Thermodynamic theory
Aerosol liquid water content
Source apportionment
|
Corresponding Author(s):
Zaihua Wang,Guoliang Shi
|
Issue Date: 15 November 2023
|
|
1 |
S N Behera , R Betha , R Balasubramanian . (2013). Insights into chemical coupling among acidic gases, ammonia and secondary inorganic aerosols. Aerosol and Air Quality Research, 13(4): 1282–1296
https://doi.org/10.4209/aaqr.2012.11.0328
|
2 |
S N Behera , M Sharma . (2010). Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Science of the Total Environment, 408(17): 3569–3575
https://doi.org/10.1016/j.scitotenv.2010.04.017
|
3 |
N Bhattarai , S X Wang , Y P Pan , Q C Xu , Y L Zhang , Y H Chang , Y T Fang . (2021). δ15N-stable isotope analysis of NHx: an overview on analytical measurements, source sampling and its source apportionment. Frontiers of Environmental Science & Engineering, 15(6): 126
|
4 |
H Che , X Xia , J Zhu , Z Li , O Dubovik , B Holben , P Goloub , H Chen , V Estelles , E Cuevas-Agullo . et al.. (2014). Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmospheric Chemistry and Physics, 14(4): 2125–2138
https://doi.org/10.5194/acp-14-2125-2014
|
5 |
T Z Chen , B W Chu , Y L Ge , S P Zhang , Q X Ma , H He , S M Li . (2019). Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environmental Pollution, 252: 236–244
https://doi.org/10.1016/j.envpol.2019.05.119
|
6 |
X R Chen , H C Wang , K D Lu , C M Li , T Y Zhai , Z F Tan , X F Ma , X P Yang , Y H Liu , S Y Chen . et al.. (2020). Field determination of nitrate formation pathway in winter Beijing. Environmental Science & Technology, 54(15): 9243–9253
https://doi.org/10.1021/acs.est.0c00972
|
7 |
Y Cheng , Q Q Yu , J M Liu , Y W Sun , L L Liang , Z Y Du , G N Geng , W L Ma , H Qi , Q Zhang . et al.. (2022). Formation of secondary inorganic aerosol in a frigid urban atmosphere. Frontiers of Environmental Science & Engineering, 16(2): 18
https://doi.org/10.1007/s11783-021-1452-0
|
8 |
X Dao , Y C Lin , F Cao , S Y Di , Y H Hong , G H Xing , J J Li , P Q Fu , Y L Zhang . (2019). Introduction to the national aerosol chemical composition monitoring network of China: objectives, current status, and outlook. Bulletin of the American Meteorological Society, 100(12): Es337–Es351
|
9 |
M Y Fan , Y L Zhang , Y C Lin , Y H Chang , F Cao , W Q Zhang , Y B Hu , M Y Bao , X Y Liu , X Y Zhai . et al.. (2019). Isotope-based source apportionment of nitrogen-containing aerosols: a case study in an industrial city in China. Atmospheric Environment, 212: 96–105
https://doi.org/10.1016/j.atmosenv.2019.05.020
|
10 |
C Fountoukis , A Nenes . (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42–-NO3–-Cl–-H2O aerosols. Atmospheric Chemistry and Physics, 7(17): 4639–4659
https://doi.org/10.5194/acp-7-4639-2007
|
11 |
X Fu , T Wang , J Gao , P Wang , Y M Liu , S X Wang , B Zhao , L K Xue . (2020). Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in Northern China. Environmental Science & Technology, 54(7): 3881–3889
https://doi.org/10.1021/acs.est.9b07248
|
12 |
J Gao , S H Dong , H F Yu , X Peng , W Wang , G L Shi , B Han , Y T Wei , Y C Feng . (2020). Source apportionment for online dataset at a megacity in China using a new PTT-PMF model. Atmospheric Environment, 229: 117457
https://doi.org/10.1016/j.atmosenv.2020.117457
|
13 |
H Y Guo , R Otjes , P Schlag , A Kiendler-Scharr , A Nenes , R J Weber . (2018). Effectiveness of ammonia reduction on control of fine particle nitrate. Atmospheric Chemistry and Physics, 18(16): 12241–12256
https://doi.org/10.5194/acp-18-12241-2018
|
14 |
W Guo , Z Y Zhang , N J Zheng , L Luo , H Y Xiao , H W Xiao . (2020). Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons. Atmospheric Research, 234: 104687
https://doi.org/10.1016/j.atmosres.2019.104687
|
15 |
R J Huang , J Duan , Y J Li , Q Chen , Y Chen , M J Tang , L Yang , H Y Ni , C S Lin , W Xu . et al.. (2020). Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of the Total Environment, 717: 137190
https://doi.org/10.1016/j.scitotenv.2020.137190
|
16 |
Y C Lin , M T Cheng . (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9): 1903–1910
https://doi.org/10.1016/j.atmosenv.2006.10.065
|
17 |
Y C Lin , M T Cheng , W H Lin , Y Y Lan , B J Tsuang . (2010). Causes of the elevated nitrate aerosol levels during episodic days in Taichung urban area, Taiwan (China). Atmospheric Environment, 44(13): 1632–1640
https://doi.org/10.1016/j.atmosenv.2010.01.039
|
18 |
Y C Lin , Y L Zhang , M Y Fan , M Y Bao . (2020). Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China. Atmospheric Chemistry and Physics, 20(6): 3999–4011
https://doi.org/10.5194/acp-20-3999-2020
|
19 |
M X Liu , X Huang , Y Song , T T Xu , S X Wang , Z J Wu , M Hu , L Zhang , Q Zhang , Y P Pan . et al.. (2018). Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 18(24): 17933–17943
https://doi.org/10.5194/acp-18-17933-2018
|
20 |
Y Liu , M Zheng , M Y Yu , X H Cai , H Y Du , J Li , T Zhou , C Q Yan , X S Wang , Z B Shi . et al.. (2019). High-time-resolution source apportionment of PM2.5 in Beijing with multiple models. Atmospheric Chemistry and Physics, 19(9): 6595–6609
https://doi.org/10.5194/acp-19-6595-2019
|
21 |
N Meskhidze, W L Chameides, A Nenes, G Chen (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters, 30(21): 2085
https://doi.org/10.1029/2003GL018035
|
22 |
D Pan , K B Benedict , L M Golston , R Wang , J L Jr Collett , L Tao , K Sun , X H Guo , J Ham , A J Prenni . et al.. (2021). Ammonia dry deposition in an alpine ecosystem traced to agricultural emission hotpots. Environmental Science & Technology, 55(12): 7776–7785
https://doi.org/10.1021/acs.est.0c05749
|
23 |
P Pant , R M Harrison . (2012). Critical review of receptor modelling for particulate matter: a case study of India. Atmospheric Environment, 49: 1–12
https://doi.org/10.1016/j.atmosenv.2011.11.060
|
24 |
X Peng , X X Liu , X R Shi , G L Shi , M Li , J Y Liu , Y Q Huangfu , H Xu , R Y Ma , W Wang . et al.. (2019). Source apportionment using receptor model based on aerosol mass spectra and 1 h resolution chemical dataset in Tianjin, China. Atmospheric Environment, 198: 387–397
https://doi.org/10.1016/j.atmosenv.2018.11.018
|
25 |
S Y Ryu , B G Kwon , Y J Kim , H H Kim , K J Chun . (2007). Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research, 84(4): 362–373
https://doi.org/10.1016/j.atmosres.2006.09.007
|
26 |
J H Seinfeld, S N Pandis (2016). Atmospheric chemistry and physics: from air pollution to climate change. Hoboken, NJ: John Wiley & Sons, Inc.
|
27 |
H Q Shen , Y H Liu , M Zhao , J Li , Y N Zhang , J Yang , Y Jiang , T S Chen , M Chen , X B Huang . et al.. (2021). Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in eastern China. Science of the Total Environment, 764: 144031
https://doi.org/10.1016/j.scitotenv.2020.144031
|
28 |
Z X Shen , J Sun , J J Cao , L M Zhang , Q Zhang , Y L Lei , J J Gao , R J Huang , S X Liu , Y Huang . et al.. (2016). Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Science of the Total Environment, 569-570: 619–626
https://doi.org/10.1016/j.scitotenv.2016.06.156
|
29 |
X R Shi , A Nenes , Z M Xiao , S J Song , H F Yu , G L Shi , Q Y Zhao , K Chen , Y C Feng , A G Russell . (2019). High-resolution data sets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environmental Science & Technology, 53(6): 3048–3057
https://doi.org/10.1021/acs.est.8b06524
|
30 |
S J Song , M Gao , W Q Xu , J Y Shao , G L Shi , S X Wang , Y X Wang , Y L Sun , M B Mcelroy . (2018). Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 18(10): 7423–7438
https://doi.org/10.5194/acp-18-7423-2018
|
31 |
S Squizzato , M Masiol , A Brunelli , S Pistollato , E Tarabotti , G Rampazzo , B Pavoni . (2013). Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13(4): 1927–1939
https://doi.org/10.5194/acp-13-1927-2013
|
32 |
H Su , Y F Cheng , U Poschl . (2020). New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Accounts of Chemical Research, 53(10): 2034–2043
https://doi.org/10.1021/acs.accounts.0c00246
|
33 |
J Tao , J Gao , L Zhang , R Zhang , H Che , Z Zhang , Z Lin , J Jing , J Cao , S C Hsu . (2014). PM2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmospheric Chemistry and Physics, 14(16): 8679–8699
https://doi.org/10.5194/acp-14-8679-2014
|
34 |
Y Tao , J G Murphy . (2019). The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmospheric Chemistry and Physics, 19(14): 9309–9320
https://doi.org/10.5194/acp-19-9309-2019
|
35 |
Y Tao , X N Ye , Z Ma , Y Y Xie , R Y Wang , J M Chen , X Yang , S Q Jiang . (2016). Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. Atmospheric Environment, 145: 1–9
https://doi.org/10.1016/j.atmosenv.2016.09.012
|
36 |
M Tian , Y Liu , F M Yang , L M Zhang , C Peng , Y Chen , G M Shi , H B Wang , B Luo , C T Jiang . et al.. (2019). Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, Southwest China. Environmental Pollution, 250: 898–905
https://doi.org/10.1016/j.envpol.2019.04.098
|
37 |
Y Z Tian , G L Shi , B Han , J H Wu , X Y Zhou , L D Zhou , P Zhang , Y C Feng . (2015). Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere, 119: 750–756
https://doi.org/10.1016/j.chemosphere.2014.08.015
|
38 |
S B Wang , S S Yin , R Q Zhang , L M Yang , Q Y Zhao , L S Zhang , Q S Yan , N Jiang , X Y Tang . (2019a). Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Science of the Total Environment, 660: 47–56
https://doi.org/10.1016/j.scitotenv.2018.12.465
|
39 |
Y L Wang , W Song , W Yang , X C Sun , Y D Tong , X M Wang , C Q Liu , Z P Bai , X Y Liu . (2019b). Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing. Journal of Geophysical Research. Atmospheres, 124(7): 4174–4185
https://doi.org/10.1029/2019JD030284
|
40 |
Z J Wu , Y Wang , T Y Tan , Y S Zhu , M R Li , D J Shang , H C Wang , K D Lu , S Guo , L M Zeng . et al.. (2018). Aerosol liquid water driven by anthropogenic inorganic salts: implying its key role in haze formation over the north China plain. Environmental Science & Technology Letters, 5(3): 160–166
https://doi.org/10.1021/acs.estlett.8b00021
|
41 |
J Xu , J Chen , N Zhao , G C Wang , G Y Yu , H Li , J T Huo , Y F Lin , Q Y Fu , H Y Guo . et al.. (2020). Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. Atmospheric Chemistry and Physics, 20(12): 7259–7269
https://doi.org/10.5194/acp-20-7259-2020
|
42 |
L L Xu , F K Duan , K B He , Y L Ma , L D Zhu , Y X Zheng , T Huang , T Kimoto , T Ma , H Li . et al.. (2017). Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing. Environmental Pollution, 227: 296–305
https://doi.org/10.1016/j.envpol.2017.04.076
|
43 |
J Xue , Z B Yuan , A K H Lau , J Z Yu . (2014). Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research. Atmospheres, 119(8): 4888–4902
https://doi.org/10.1002/2013JD021108
|
44 |
J R Yang , S B Wang , R Q Zhang , S S Yin . (2022a). Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China. Environmental Pollution, 296: 118716
https://doi.org/10.1016/j.envpol.2021.118716
|
45 |
S X Yang , B Yuan , Y W Peng , S Huang , W Chen , W W Hu , C L Pei , J Zhou , D D Parrish , W J Wang . et al.. (2022b). The formation and mitigation of nitrate pollution: comparison between urban and suburban environments. Atmospheric Chemistry and Physics, 22(7): 4539–4556
https://doi.org/10.5194/acp-22-4539-2022
|
46 |
L Yao , L X Yang , Q Yuan , C Yan , C Dong , C P Meng , X Sui , F Yang , Y L Lu , W X Wang . (2016). Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 541: 590–598
https://doi.org/10.1016/j.scitotenv.2015.09.123
|
47 |
X N Ye , Z Ma , J C Zhang , H H Du , J M Chen , H Chen , X Yang , W Gao , F H Geng . (2011). Important role of ammonia on haze formation in Shanghai. Environmental Research Letters, 6(2): 024019
https://doi.org/10.1088/1748-9326/6/2/024019
|
48 |
S X Zhai , D J Jacob , X Wang , L Shen , K Li , Y Z Zhang , K Gui , T L Zhao , H Liao . (2019). Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16): 11031–11041
https://doi.org/10.5194/acp-19-11031-2019
|
49 |
Q Zhang , Z X Shen , J J Cao , K F Ho , R J Zhang , Z J Bie , H R Chang , S X Liu . (2014). Chemical profiles of urban fugitive dust over Xi’an in the south margin of the Loess Plateau, China. Atmospheric Pollution Research, 5(3): 421–430
https://doi.org/10.5094/APR.2014.049
|
50 |
Q Zhang , Y X Zheng , D Tong , M Shao , S X Wang , Y H Zhang , X D Xu , J N Wang , H He , W Q Liu . et al.. (2019). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469
https://doi.org/10.1073/pnas.1907956116
|
51 |
T Zhang , Z X Shen , H Su , S X Liu , J M Zhou , Z Z Zhao , Q Y Wang , A S H Prevot , J J Cao . (2021). Effects of aerosol water content on the formation of secondary inorganic aerosol during a winter heavy pm2.5 pollution episode in Xi’an, China. Atmospheric Environment, 252: 118304
https://doi.org/10.1016/j.atmosenv.2021.118304
|
52 |
Q Y Zhao , A Nenes , H F Yu , S J Song , Z M Xiao , K Chen , G L Shi , Y C Feng , A G Russell . (2020). Using high-temporal-resolution ambient data to investigate gas-particle partitioning of ammonium over different seasons. Environmental Science & Technology, 54(16): 9834–9843
https://doi.org/10.1021/acs.est.9b07302
|
53 |
B Zheng , D Tong , M Li , F Liu , C P Hong , G N Geng , H Y Li , X Li , L Q Peng , J Qi . et al.. (2018). Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095–14111
https://doi.org/10.5194/acp-18-14095-2018
|
54 |
W Zhou , M Gao , Y He , Q Q Wang , C H Xie , W Q Xu , J Zhao , W Du , Y M Qiu , L Lei . et al.. (2019). Response of aerosol chemistry to clean air action in Beijing, China: insights from two-year ACSM measurements and model simulations. Environmental Pollution, 255: 113345
https://doi.org/10.1016/j.envpol.2019.113345
|
55 |
Z Zong , X P Wang , C G Tian , Y J Chen , L Qu , L Ji , G R Zhi , J Li , G Zhang . (2016). Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. Atmospheric Chemistry and Physics, 16(17): 11249–11265
https://doi.org/10.5194/acp-16-11249-2016
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|