Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (2) : 23    https://doi.org/10.1007/s11783-024-1783-8
RESEARCH ARTICLE
Portable fluorescence instrument for detecting membrane integrity in membrane bioreactor (MBR)
Yang Yu1,2, Changchun Xin1,3, Yuxiang Liu1,2, Fei Gao1,2, Lei Zhang4, Hui Jia1,2(), Jie Wang1,2,5()
1. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
2. School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
3. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
4. Shenyang Academy of Environmental Sciences, Shenyang 110167, China
5. Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou 061000, China
 Download: PDF(4863 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Double fluorescence peaks model is used to characterize membrane integrity.

● Tryptophan-like substances are used to detect membrane breakage.

● Double fluorescence peaks combination reduces the inner filter effect influence.

● The detection of the instrument is less affected by backwashing operation.

This study proposed the design, fabrication, and assembly of membrane integrity detection instruments in membrane bioreactors (MBR) based on fluorescence spectroscopy. Based on the PARAFAC model, we found that the peak at 280/335 nm strengthened after membrane breakage. The peak at 340/430 nm reflected the sludge concentration in the MBR and reduced the influence of internal filtration effects on detection. Therefore, we determined that the dual-LED light source excitation detection system can detect tryptophan-like substances at 280 nm (T-peak) and humic acid at 340 nm (C-peak). T-peak was identified as the core index indicating membrane integrity. Moreover, the C-peak is the reference indicator factor for a sensitive response to changes in the sludge concentration. The portable fluorescence instrument exhibited high sensitivity and good feedback accuracy compared to particle counting and turbidity detection, where the log reduction value was greater than 3.5. This overcomes the disadvantage of false alarms in particle counters and is not affected by the position of the pump system. This portable instrument provides a flexible and highly sensitive method for the assessment of industrial membrane integrity.

Keywords Membrane integrity      Fluorescence spectrum      Portable instrument      Membrane bioreactor     
Corresponding Author(s): Hui Jia,Jie Wang   
Issue Date: 12 October 2023
 Cite this article:   
Yang Yu,Changchun Xin,Yuxiang Liu, et al. Portable fluorescence instrument for detecting membrane integrity in membrane bioreactor (MBR)[J]. Front. Environ. Sci. Eng., 2024, 18(2): 23.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1783-8
https://academic.hep.com.cn/fese/EN/Y2024/V18/I2/23
Fig.1  Membranes in different states: (a) Broken membrane modules; (b) fractures; (c) holes; (d) scratches; (e) breakage.
Fig.2  Experimental process diagram: (a) Feed tank; (b) intake pump; (c) anoxic tank; (d) blender (e) aerobic tank; (f) membrane module; (g) aerator; (h) gas flowmeter; (i) aeration pump; (j) PLC; (k) pressure sensor; (l) peristaltic pump; (m) barticle counter; (n) effluent tank.
Fig.3  MBR supernatant and permeate test: (a) The MW distribution of the supernatant and different permeate with the inset showing the different membrane retention rate; (b) the fluorescence intensity of T-peak and C-peak in MBR supernatant and different permeate. BM: breakage membrane; IM: integrity membrane.
Fig.4  Parallel factor analysis of two fluorescent peaks in MBR: (a) Supernatant T-peak variation at different MLSS; (b) supernatant C-peak variation at different MLSS; (c) permeate T-peak variation at different MLSS; (d) permeate C-peak variation at different MLSS.
Fig.5  Block diagram of the portable LED fluorescence instrument design.
Fig.6  Instrument development flow chart: (a) External structure; (b) internal structure; (c) optical path structure; (d) filter structure; (e) light source structure.
Fig.7  Breakage rate test: (a) Comparison between particle counter and portable fluorescence instrument; (b) comparison between turbidity instrument and portable fluorescence instrument; (c) test of T and C peaks by portable fluorescence instrument; (d) test of T and C peaks by fluorescence spectrophotometer.
Fig.8  Comparison of portable instrument, particle counter, and turbidity meter: (a) Backwashing of integrity membrane module; (b) Backwashing of broken membrane module.
Fig.9  Instruments application: (a) Portable instrument and particle counter test results when the membrane is integrity; (b) portable instrument and turbidity test results when the membrane is integrity.
1 A Antony , J Blackbeard , G Leslie . (2012). Removal efficiency and integrity monitoring techniques for virus removal by membrane processes. Critical Reviews in Environmental Science and Technology, 42(9): 891–933
https://doi.org/10.1080/10643389.2011.556539
2 A Banerjee , M Lambertson , J Lozier , C Colvin . (2001). Monitoring membrane integrity using high sensitivity laser turbidimetry. Water Science and Technology: Water Supply, 1(5–6): 273–276
https://doi.org/10.2166/ws.2001.0123
3 J BridgemanA BakerD BrownJ (2015) Boxall. Portable LED fluorescence instrumentation for the rapid assessment of potable water quality. Science of the Total Environment, 524-525: 338-346
4 J Bridgeman , A Baker , C Carliell-Marquet , E Carstea . (2013). Determination of changes in wastewater quality through a treatment works using fluorescence spectroscopy. Environmental Technology, 34(23): 3069–3077
https://doi.org/10.1080/09593330.2013.803131
5 E M Carstea , J Bridgeman , A Baker , D M Reynolds . (2016). Fluorescence spectroscopy for wastewater monitoring: a review. Water Research, 95: 205–219
https://doi.org/10.1016/j.watres.2016.03.021
6 S H Choi , J Yang , C Suh , J Cho . (2011). Use of fluorescent silica particles for checking the integrity of microfiltration membranes. Journal of Membrane Science, 367(1–2): 306–313
https://doi.org/10.1016/j.memsci.2010.11.015
7 J Deluhery , N Rajagopalan . (2008). Use of paramagnetic particles in membrane integrity testing. Journal of Membrane Science, 318(1–2): 176–181
https://doi.org/10.1016/j.memsci.2008.02.042
8 K Farahbakhsh , D Smith . (2004). Estimating air diffusion contribution to pressure decay during membrane integrity tests. Journal of Membrane Science, 237(1–2): 203–212
https://doi.org/10.1016/j.memsci.2004.03.015
9 S Giglia , M Krishnan . (2008). High sensitivity binary gas integrity test for membrane filters. Journal of Membrane Science, 323(1): 60–66
https://doi.org/10.1016/j.memsci.2008.06.017
10 V Gitis , R C Haught , R M Clark , J Gun , O Lev . (2006). Application of nanoscale probes for the evaluation of the integrity of ultrafiltration membranes. Journal of Membrane Science, 276(1–2): 185–192
https://doi.org/10.1016/j.memsci.2005.09.055
11 H Guo , Y Wyart , J Perot , F Nauleau , P Moulin . (2010a). Application of magnetic nanoparticles for UF membrane integrity monitoring at low-pressure operation. Journal of Membrane Science, 350(1–2): 172–179
https://doi.org/10.1016/j.memsci.2009.12.025
12 H Guo , Y Wyart , J Perot , F Nauleau , P Moulin . (2010b). Low-pressure membrane integrity tests for drinking water treatment: a review. Water Research, 44(1): 41–57
https://doi.org/10.1016/j.watres.2009.09.032
13 M Heijnen , P Buchta , R Winkler , P Berg . (2013). Calculating particle log reduction values based on pressure decay tests on Multibore® hollow fibre membranes. Desalination and Water Treatment, 51(22–24): 4245–4252
https://doi.org/10.1080/19443994.2013.769483
14 L M Hornstra , T R Da Silva , B Blankert , L Heijnen , E Beerendonk , E R Cornelissen , G Medema . (2019). Monitoring the integrity of reverse osmosis membranes using novel indigenous freshwater viruses and bacteriophages. Environmental Science. Water Research & Technology, 5(9): 1535–1544
https://doi.org/10.1039/C9EW00318E
15 W T Johnson . (1998). Predicting log removal performance of membrane systems using in-situ integrity testing. Filtration & Separation, 35(1): 26–29
https://doi.org/10.1016/S0015-1882(97)83111-4
16 T Krahnstöver , R Hochstrat , T Wintgens . (2019). Comparison of methods to assess the integrity and separation efficiency of ultrafiltration membranes in wastewater reclamation processes. Journal of Water Process Engineering, 30: 100646
https://doi.org/10.1016/j.jwpe.2018.06.008
17 P Li , L Dong , H Jin , J Yang , Y Tu , C Wang , Y He . (2022). Fluorescence detection of phosphate in an aqueous environment by an aluminum-based metal-organic framework with amido functionalized ligands. Frontiers of Environmental Science & Engineering, 16(12): 159
https://doi.org/10.1007/s11783-022-1594-8
18 W T Li , J Jin , Q Li , C F Wu , H Lu , Q Zhou , A M Li . (2016). Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment. Water Research, 93: 1–9
https://doi.org/10.1016/j.watres.2016.01.005
19 S Liu , E Shang , J Liu , Y Wang , N Bolan , M Kirkham , Y Li . (2022). What have we known so far for fluorescence staining and quantification of microplastics: a tutorial review. Frontiers of Environmental Science & Engineering, 16(1): 8
https://doi.org/10.1007/s11783-021-1442-2
20 J Naismith . (2005). Membrane integrity—Direct turbidity measurement of filtrate from MF membrane modules at an operating potable water treatment plant. Desalination, 179(1–3): 25–30
https://doi.org/10.1016/j.desal.2004.11.052
21 S K Panigrahi , A K Mishra . (2019). Inner filter effect in fluorescence spectroscopy: as a problem and as a solution. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 41: 100318
https://doi.org/10.1016/j.jphotochemrev.2019.100318
22 M L Pype , B C Donose , L Martí , D Patureau , N Wery , W Gernjak . (2016). Virus removal and integrity in aged RO membranes. Water Research, 90: 167–175
https://doi.org/10.1016/j.watres.2015.12.023
23 F J Rodríguez-Vidal , M García-Valverde , B Ortega-Azabache , Á González-Martínez , A Bellido-Fernández . (2020). Characterization of urban and industrial wastewaters using excitation-emission matrix (EEM) fluorescence: searching for specific fingerprints. Journal of Environmental Management, 263: 110396
https://doi.org/10.1016/j.jenvman.2020.110396
24 G P Sheng , H Q Yu . (2006). Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research, 40(6): 1233–1239
https://doi.org/10.1016/j.watres.2006.01.023
25 Y Shutova , A Baker , J Bridgeman , R Henderson . (2016). On-line monitoring of organic matter concentrations and character in drinking water treatment systems using fluorescence spectroscopy. Environmental Science. Water Research & Technology, 2(4): 749–760
https://doi.org/10.1039/C6EW00048G
26 S Singh , R K Henderson , A Baker , R M Stuetz , S J Khan . (2015). Online fluorescence monitoring of RO fouling and integrity: analysis of two contrasting recycled water schemes. Environmental Science. Water Research & Technology, 1(5): 689–698
https://doi.org/10.1039/C5EW00090D
27 C A Stedmon , R Bro . (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11): 572–579
https://doi.org/10.4319/lom.2008.6.572
28 Vera M, Cruz S, Boleda M, Mesa J, Martín-Alonso J, Casas S, Gibert O, Cortina J (2017). Fluorescence spectroscopy and parallel factor analysis as a dissolved organic monitoring tool to assess treatment performance in drinking water trains. Science of the Total Environment, 584−585: 1212−1220
29 Y Wang , H Jia , J Wang , B Cheng , G Yang , F Gao . (2018). Impacts of energy distribution and electric field on membrane fouling control in microbial fuel cell-membrane bioreactor (MFC-MBR) coupling system. Bioresource Technology, 269: 339–345
https://doi.org/10.1016/j.biortech.2018.08.122
30 J S Ward , D J Lapworth , D S Read , S Pedley , S T Banda , M Monjerezi , G Gwengweya , A M Macdonald . (2021). Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water. Science of the Total Environment, 750: 141284
https://doi.org/10.1016/j.scitotenv.2020.141284
31 C Xin , Z Cheng , Z You , H Bai , J Wang . (2020). Using EEM fluorescence to characterize the membrane integrity of membrane bioreactor (MBR). Journal of Membrane Science, 610: 118356
https://doi.org/10.1016/j.memsci.2020.118356
32 C Xin , J Wang , H Jia , H Wen , J Li . (2019). Hollow fiber membrane integrity warning device based on laser extinction particles detection technology. Separation and Purification Technology, 224: 295–303
https://doi.org/10.1016/j.seppur.2019.05.045
33 J Yu , K Xiao , W Xue , Y X Shen , J Tan , S Liang , Y Wang , X Huang . (2020). Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: principles, methods and applications. Frontiers of Environmental Science & Engineering, 14(2): 31
https://doi.org/10.1007/s11783-019-1210-8
[1] FSE-23083-OF-YY_suppl_1 Download
[1] Qian Li, Zhaoyang Hou, Xingyuan Huang, Shuming Yang, Jinfan Zhang, Jingwei Fu, Yu-You Li, Rong Chen. Methanation and chemolitrophic nitrogen removal by an anaerobic membrane bioreactor coupled partial nitrification and Anammox[J]. Front. Environ. Sci. Eng., 2023, 17(6): 68-.
[2] Tingwei Gao, Kang Xiao, Jiao Zhang, Wenchao Xue, Chunhai Wei, Xiaoping Zhang, Shuai Liang, Xiaomao Wang, Xia Huang. Techno-economic characteristics of wastewater treatment plants retrofitted from the conventional activated sludge process to the membrane bioreactor process[J]. Front. Environ. Sci. Eng., 2022, 16(4): 49-.
[3] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[4] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[5] Chao Pang, Chunhua He, Zhenhu Hu, Shoujun Yuan, Wei Wang. Aggravation of membrane fouling and methane leakage by a three-phase separator in an external anaerobic ceramic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2019, 13(4): 50-.
[6] Xue Shen, Lei Lu, Baoyu Gao, Xing Xu, Qinyan Yue. Development of combined coagulation-hydrolysis acidification-dynamic membrane bioreactor system for treatment of oilfield polymer-flooding wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 9-.
[7] Taro Miyoshi, Thanh Phong Nguyen, Terumi Tsumuraya, Hiromu Tanaka, Toru Morita, Hiroki Itokawa, Toshikazu Hashimoto. Energy reduction of a submerged membrane bioreactor using a polytetrafluoroethylene (PTFE) hollow-fiber membrane[J]. Front. Environ. Sci. Eng., 2018, 12(3): 1-.
[8] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[9] Xiaoyan Song, Rui Liu, Lujun Chen, Tomoki Kawagishi. Comparative experiment on treating digested piggery wastewater with a biofilm MBR and conventional MBR: simultaneous removal of nitrogen and antibiotics[J]. Front. Environ. Sci. Eng., 2017, 11(2): 11-.
[10] Qingbin Guo, Sheng Chang. Tetra-detector size exclusion chromatography characterization of molecular and solution properties of soluble microbial polysaccharides from an anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(2): 16-.
[11] Kang XIAO, Ying XU, Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Front. Environ. Sci. Eng., 2014, 8(6): 805-819.
[12] Hongtao ZHU, Wenna LI. Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit[J]. Front Envir Sci Eng, 2013, 7(2): 294-300.
[13] Lihui ZHANG, Guomin CAO, Yulei FEI, Hong DING, Mei SHENG, Yongdi LIU. Preliminary study of groundwater denitrification using a composite membrane bioreactor[J]. Front Envir Sci Eng Chin, 2011, 5(4): 604-609.
[14] Xinhua WANG, Jingmei LI, Xiufen LI, Guocheng DU. Influence of aeration intensity on the performance of A/O-type sequencing batch MBR system treating azo dye wastewater[J]. Front Envir Sci Eng Chin, 2011, 5(4): 615-622.
[15] Xia HUANG, Kang XIAO, Yuexiao SHEN. Recent advances in membrane bioreactor technology for wastewater treatment in China[J]. Front.Environ.Sci.Eng., 2010, 4(3): 245-271.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed