Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (5) : 53    https://doi.org/10.1007/s11783-024-1813-6
Single and combined effects of secondary polyethylene microplastic on the growth of Pak choi and the soil microbiome composition
Jiamin Hu1, Zhenwen Xie1, Jiane Zuo1,2()
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
 Download: PDF(8701 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Secondary PE-MPs were simulated via the aging processes and mechanical milling.

● The growth of Pak choi was greatly inhibited after secondary PE-MPs exposure.

● Combined effects of secondary PE-MPs and pollutants were antagonism.

● Soil properties and microbial composition showed significant alteration.

It has been confirmed that microplastics (MPs) are present in the environment. This study simulated secondary PE-MPs via aging and mechanical processes to evaluate their effects on Pak choi (Brassica rapa L.) over 21 d. Two common pollutants, dichlorodiphenyltrichloroethane (DDT) and naphthalene, were used in the combined toxicity tests. The results indicated that the growth of Pak choi was significantly inhibited after exposure to secondary PE-MPs, and the combined effects were antagonistic, owing to the adsorption capacity of secondary PE-MPs to DDT and naphthalene. Oxidative stress in Pak choi can be markedly affected, leading to oxidative damage to plant cells. The moisture content, soil bulk density, soil density, cation exchange capacity (CEC), and FDA hydrolase in the planted soils increased in the treated groups, and the TOC content changed significantly. We also found that the microbial composition of the soil in the DDT and naphthalene groups showed more significant alterations than that in the other groups. Alpha diversity analysis showed that species diversity increased in the combined groups but indicated a clear downward trend in the single MPs groups. This study suggests that secondary PE-MPs harm the growth of Pak choi and can change soil properties, revealing the harm to the ecosystem of MPs in the soil.

Keywords Secondary PE-MPs      Combined effects      Oxidative stress      Soil properties      Bacterial community     
Corresponding Author(s): Jiane Zuo   
Issue Date: 10 January 2024
 Cite this article:   
Jiamin Hu,Zhenwen Xie,Jiane Zuo. Single and combined effects of secondary polyethylene microplastic on the growth of Pak choi and the soil microbiome composition[J]. Front. Environ. Sci. Eng., 2024, 18(5): 53.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1813-6
https://academic.hep.com.cn/fese/EN/Y2024/V18/I5/53
Fig.1  The growth of Pak choi in control and treated groups during 21 d. (a) Fresh weight, (b) dry weight, (c) root length, (d) stem length, (e) the concentration of chlorophyll a, (f) the concentration of chlorophyll b. *p < 0.05; **p < 0.01.
GroupE(C1) (MPs_Middle) (%)E(C2) (DDT or Naphthalene) (%)Cobs (%)E(Cmix) (%)RICombined toxicity
MIX_DDT27.9966.4711.0875.860.15antagonism
MIX_Naphthalene27.9967.93 5.8376.910.08antagonism
Tab.1  IA model of the combined groups calculated by the inhibition rate of fresh weight
Fig.2  The oxidative stress of Pak choi in control and treated groups during 21 d. (a) CAT, (b) SOD, (c) ROS, and (d) MDA. *p < 0.05; **p < 0.01. The red dotted line refers to the position of the control.
Fig.3  Relative abundance of the bacteria in the soil. (a) The phylum level, and (b) the genus level.
Fig.4  Alpha diversity indices (Chao1 and Shannon) in the control and treated groups.
Fig.5  Microbial beta diversity and cluster analysis in the soil. (a) Principal Component Analysis (PCA), (b) Venn diagram at the genus level.
Fig.6  Heatmap of Spearman correlation between bacteria at the phylum (top 10) and environmental factors (soil density, porosity, moisture content, CEC, FDA hydrolase, and TOC) in the soil. *0.01 < p < 0.05; **0.001 < p < 0.01; *** p ≤ 0.001.
1 J Abraham , E Ghosh , P Mukherjee , A Gajendiran . (2017). Microbial degradation of low density polyethylene. Environmental Progress & Sustainable Energy, 36(1): 147–154
https://doi.org/10.1002/ep.12467
2 G Adam , H Duncan . (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using-uorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33(7–8): 943–951
https://doi.org/10.1016/S0038-0717(00)00244-3
3 A Cerdà , A Novara , E Moradi . (2021). Long-term non-sustainable soil erosion rates and soil compaction in drip-irrigated citrus plantation in Eastern Iberian Peninsula. Science of the Total Environment, 787: 147549
https://doi.org/10.1016/j.scitotenv.2021.147549
4 Y T Chen , S B Gao , E J Jones , B Singh . (2021). Prediction of soil clay content and cation exchange capacity using visible near-infrared spectroscopy, portable X-ray fluorescence, and X-ray diffraction techniques. Environmental Science & Technology, 55(8): 4629–4637
https://doi.org/10.1021/acs.est.0c04130
5 Z Y Chen , L H Li , L C Hao , Y Hong , W C Wang . (2022). Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics. Frontiers of Environmental Science & Engineering, 16(1): 2
https://doi.org/10.1007/s11783-021-1436-0
6 I Colzi , L Renna , E Bianchi , M B Castellani , A Coppi , S Pignattelli , S Loppi , C Gonnelli . (2022). Impact of microplastics on growth, photosynthesis and essential elements in Cucurbita pepo L. Journal of Hazardous Materials, 423: 127238
https://doi.org/10.1016/j.jhazmat.2021.127238
7 S Delibacak , B Okur , A R Ongun . (2009). Effects of treated sewage sludge levels on temporal variations of some soil properties of a typic xerofluvent soil in Menemen Plain, Western Anatolia, Turkey. Environmental Monitoring and Assessment, 148(1–4): 85–95
https://doi.org/10.1007/s10661-007-0141-1
8 A Desaules , S Ammann , F Blum , R C Brändli , T D Bucheli , A Keller . (2008). PAH and PCB in soils of Switzerland-status and critical review. Journal of Environmental Monitoring, 10(11): 1265–1277
https://doi.org/10.1039/b807206j
9 X Y Feng , Q L Wang , Y H Sun , S W Zhang , F Y Wang . (2022). Microplastics change soil properties, heavy metal availability and bacterial community in a Pb-Zn-contaminated soil. Journal of Hazardous Materials, 424: 127364
https://doi.org/10.1016/j.jhazmat.2021.127364
10 J P G L Frias , P Sobral , A M Ferreira . (2010). Organic pollutants in microplastics from two beaches of the Portuguese coast. Marine Pollution Bulletin, 60(11): 1988–1992
https://doi.org/10.1016/j.marpolbul.2010.07.030
11 M L Gao , Y Liu , Z G Song . (2019). Effects of polyethylene microplastic on the phytotoxicity of di-n-butyl phthalate in lettuce (Lactuca sativa L. var. ramosa Hort). Chemosphere, 237: 124482
https://doi.org/10.1016/j.chemosphere.2019.124482
12 Y Ge , T Wang , N Wang , Z Wang , C Liang , N Ramchiary , S R Choi , Y P Lim , Z Y Piao . (2012). Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (Brassica rapa ssp. pekinensis). Scientia Horticulturae, 147: 42–48
https://doi.org/10.1016/j.scienta.2012.09.004
13 W W Gong , W Zhang , M Y Jiang , S S Li , G Liang , Q W Bu , L Xu , H Zhu , A X Lu . (2021). Species-dependent response of food crops to polystyrene nanoplastics and microplastics. Science of the Total Environment, 796: 148750
https://doi.org/10.1016/j.scitotenv.2021.148750
14 V S Green , D E Stott , M Diack . (2006). Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biology & Biochemistry, 38(4): 693–701
https://doi.org/10.1016/j.soilbio.2005.06.020
15 B B Hao , H P Wu , S Y Zhang , B He . (2022). Individual and combined toxicity of microplastics and diuron differs between freshwater and marine diatoms. Science of the Total Environment, 853: 158334
https://doi.org/10.1016/j.scitotenv.2022.158334
16 J M Hu , J E Zuo , J B Li , Y Y Zhang , X Ai , J W Zhang , D H Gong , D M Sun . (2022a). Effects of secondary polyethylene microplastic exposure on crucian (Carassius carassius) growth, liver damage, and gut microbiome composition. Science of the Total Environment, 802: 149736
https://doi.org/10.1016/j.scitotenv.2021.149736
17 S N Hu , L H Chen , W J Yang , Y P Tang , Q Ma , Q R Zeng . (2022b). Film mulching redistributes soil aggregates and promotes Cadmium availability and phytoremediation potential of Helianthus annuus Linn. ACS Agricultural Science & Technology, 2(2): 381–390
https://doi.org/10.1021/acsagscitech.1c00286
18 Y Huang , Q Liu , W Q Jia , C R Yan , J Wang . (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260: 114096
https://doi.org/10.1016/j.envpol.2020.114096
19 Y Huang , Y R Zhao , J Wang , M J Zhang , W Q Jia , X Qin . (2019). LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environmental Pollution, 254: 112983
https://doi.org/10.1016/j.envpol.2019.112983
20 Lwanga E Huerta , H Gertsen , H Gooren , P Peters , T Salánki , der Ploeg M van , E Besseling , A A Koelmans , V Geissen . (2017). Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environmental Pollution, 220: 523–531
https://doi.org/10.1016/j.envpol.2016.09.096
21 S Humel , S N Schmidt , M Sumetzberger-Hasinger , P Mayer , A P Loibner . (2017). Enhanced accessibility of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic PAHs in industrially contaminated soil after passive dosing of a competitive sorbate. Environmental Science & Technology, 51(14): 8017–8026
https://doi.org/10.1021/acs.est.7b01198
22 M R Islam , S A Ruponti , M A Rakib , H Q Nguyen , M Mourshed . (2023). Current scenario and challenges of plastic pollution in Bangladesh: a focus on farmlands and terrestrial ecosystems. Frontiers of Environmental Science & Engineering, 17(6): 66
https://doi.org/10.1007/s11783-023-1666-4
23 H Jacob , M Besson , P W Swarzenski , D Lecchini , M Metian . (2020). Effects of virgin micro- and nanoplastics on fish: trends, meta-analysis, and perspectives. Environmental Science & Technology, 54(8): 4733–4745
https://doi.org/10.1021/acs.est.9b05995
24 X J Jiang , W J Liu , E H Wang , T Z Zhou , P Xin . (2017). Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil & Tillage Research, 166: 100–107
https://doi.org/10.1016/j.still.2016.10.011
25 G Kalčíková , A Z Gotvajn , A Kladnik , A Jemec . (2017). Impact of polyethylene microbeads on the floating freshwater plant duckweed Lemna minor. Environmental Pollution, 230: 1108–1115
https://doi.org/10.1016/j.envpol.2017.07.050
26 S H Kang , G Z Wang , H J Zhao , W P Cai . (2018). Ball milling-induced plate-like sub-microstructured iron for enhancing degradation of DDT in a real soil environment. ACS Omega, 3(6): 6955–6961
https://doi.org/10.1021/acsomega.8b00479
27 C LassenS F HansenK MagnussonF NorénN I B HartmannP R JensenT G NielsenA Brinch (2015). Microplastics-occurrence, Effects and Sources of Releases to the Environment in Denmark. Copenhagen: The Danish Environmental Protection Agency
28 C L Lei , N J Engeseth . (2022). Comparison of growth and quality between hydroponically grown and soil-grown lettuce under the stress of microplastics. ACS ES&T Water, 2(7): 1182–1194
https://doi.org/10.1021/acsestwater.1c00485
29 S Li , S R Zhang , Y L Pu , T Li , X X Xu , Y X Jia , O P Deng , G S Gong . (2016). Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil & Tillage Research, 155: 289–297
https://doi.org/10.1016/j.still.2015.07.019
30 W F Li , R Wufuer , J Duo , S Z Wang , Y M Luo , D Y Zhang , X L Pan . (2020a). Microplastics in agricultural soils: extraction and characterization after different periods of polythene film mulching in an arid region. Science of the Total Environment, 749: 141420
https://doi.org/10.1016/j.scitotenv.2020.141420
31 Z X Li , Q F Li , R J Li , Y F Zhao , J H Geng , G Y Wang . (2020b). Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Environmental Science and Pollution Research International, 27(24): 30306–30314
https://doi.org/10.1007/s11356-020-09349-0
32 Z X Li , Q F Li , R J Li , J G Zhou , G Y Wang . (2021). The distribution and impact of polystyrene nanoplastics on cucumber plants. Environmental Science and Pollution Research International, 28(13): 16042–16053
https://doi.org/10.1007/s11356-020-11702-2
33 Z X Li , R J Li , Q F Li , J G Zhou , G Y Wang . (2020c). Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 255: 127041
https://doi.org/10.1016/j.chemosphere.2020.127041
34 Y H Lian , W T Liu , R Y Shi , A Zeb , Q Wang , J T Li , Z Q Zheng , J C Tang . (2022). Effects of polyethylene and polylactic acid microplastics on plant growth and bacterial community in the soil. Journal of Hazardous Materials, 435: 129057
https://doi.org/10.1016/j.jhazmat.2022.129057
35 H F Liu , X M Yang , G B Liu , C T Liang , S Xue , H Chen , C J Ritsema , V Geissen . (2017). Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere, 185: 907–917
https://doi.org/10.1016/j.chemosphere.2017.07.064
36 Z Liu , J C Han , Z H Sun , T Q Chen , Y Hou , N Lei , Q G Dong , J He , Y Z Lu . (2019). Long-term effects of different planting patterns on greenhouse soil micromorphological features in the North China Plain. Scientific Reports, 9(2200): 1–11
https://doi.org/10.1038/s41598-019-38499-6
37 Y Liu , M C Rillig , Q Liu , J J Huang , M A Khan , X H Li , Q Liu , Q Q Wang , X S Su , L Y Lin . et al.. (2023). Factors affecting the distribution of microplastics in soils of China. Frontiers of Environmental Science & Engineering, 17(9): 110
https://doi.org/10.1007/s11783-023-1710-4
38 Y M Lozano , M C Rillig . (2020). Effects of microplastic fibers and drought on plant communities. Environmental Science & Technology, 54(10): 6166–6173
https://doi.org/10.1021/acs.est.0c01051
39 X Y Ma , X H Zhou , M J Zhao , W Z Deng , Y X Cao , J F Wu , J C Zhou . (2022). Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions. Frontiers of Environmental Science & Engineering, 16(1): 3
https://doi.org/10.1007/s11783-021-1437-z
40 A A D S Machado , C W Lau , J Till , W Kloas , A Lehmann , R Becker , M C Rillig . (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17): 9656–9665
https://doi.org/10.1021/acs.est.8b02212
41 Y Z Mi , X L Zhao , F F Liu , C Y Sun , Z T Sun , L Y Liu . (2021). Changes in soil quality, bacterial community and anti-pepper Phytophthora disease ability after combined application of straw and multifunctional composite bacterial strains. European Journal of Soil Biology, 105: 103329
https://doi.org/10.1016/j.ejsobi.2021.103329
42 E Moradi , J Rodrigo-Comino , E Terol , G Mora-Navarro , Silva A M da , I N Daliakopoulos , H Khosravi , M P Fernández , A Cerdà . (2020). Quantifying soil compaction in persimmon orchards using ISUM (Improved Stock Unearthing Method) and core sampling methods. Agriculture, 10(7): 266
https://doi.org/10.3390/agriculture10070266
43 A Paris , J Ledauphin , P Poinot , J L Gaillard . (2018). Polycyclic aromatic hydrocarbons in fruits and vegetables: origin, analysis, and occurrence. Environmental Pollution, 234: 96–106
https://doi.org/10.1016/j.envpol.2017.11.028
44 R H Peng , R R Xu , X Y Fu , A S Xiong , W Zhao , Y S Tian , B Zhu , X F Jin , C Chen , H J Han . et al.. (2011). Microarray analysis of the phytoremediation and phytosensing of occupational toxicant naphthalene. Journal of Hazardous Materials, 189(1–2): 19–26
https://doi.org/10.1016/j.jhazmat.2010.12.114
45 J C Prata , B R B O Lavorante , M D B S M Montenegro , L Guilhermino . (2018). Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquatic Toxicology, 197: 143–152
https://doi.org/10.1016/j.aquatox.2018.02.015
46 Y L Qi , X M Yang , A M Pelaez , E H Lwanga , N Beriot , H Gertsen , P Garbeva , V Geissen . (2018). Macro- and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Science of the Total Environment, 645: 1048–1056
https://doi.org/10.1016/j.scitotenv.2018.07.229
47 Z Steinmetz , C Wollmann , M Schaefer , C Buchmann , J David , J Tröger , K Muñoz , O Frör , G E Schaumann . (2016). Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Science of the Total Environment, 550: 690–705
https://doi.org/10.1016/j.scitotenv.2016.01.153
48 K L Tao , H X Tian , J Fan , D X Li , C Y Liu , M Megharaj , Y H Li , M Hu , H Z Jia , W X He . (2021). Kinetics and catalytic efficiency of soil fluorescein diacetate hydrolase under the pesticide parathion stress. Science of the Total Environment, 771: 144835
https://doi.org/10.1016/j.scitotenv.2020.144835
49 S Tao , W X Liu , Y Li , Y Yang , Q Zuo , B G Li , J Cao . (2008). Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain, China. Environmental Science & Technology, 42(22): 8395–8400
https://doi.org/10.1021/es8019676
50 H C Vo , M H Pham . (2021). Ecotoxicological effects of microplastics on aquatic organisms: a review. Environmental Science and Pollution Research International, 28(33): 44716–44725
https://doi.org/10.1007/s11356-021-14982-4
51 F Wang , C S Wong , D Chen , X W Lu , F Wang , E Y Zeng . (2018). Interaction of toxic chemicals with microplastics: a critical review. Water Research, 139: 208–219
https://doi.org/10.1016/j.watres.2018.04.003
52 J Wang , X H Liu , Y Li , T Powell , X Wang , G Y Wang , P P Zhang . (2019a). Microplastics as contaminants in the soil environment: a mini-review. Science of the Total Environment, 691: 848–857
https://doi.org/10.1016/j.scitotenv.2019.07.209
53 L X Wang , D Z Deng , Q H Feng , Z J R Xu , H L Pan , H C Li . (2022). Changes in litter input exert divergent effects on the soil microbial community and function in stands of different densities. Science of the Total Environment, 845: 157297
https://doi.org/10.1016/j.scitotenv.2022.157297
54 Q J Wang , X X Wangjin , Y Zhang , N X Wang , Y L Wang , G H Meng , Y H Chen . (2020). The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii. Science of the Total Environment, 749: 141603
https://doi.org/10.1016/j.scitotenv.2020.141603
55 X F Wang , T C Tsai , F L Deng , X Y Wei , J M Chai , J Knapp , J Apple , C V Maxwell , J A Lee , Y Li . et al.. (2019b). Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome, 7(1): 109
https://doi.org/10.1186/s40168-019-0721-7
56 X F Wen (2020). Study on the Effect of Microplastics on Different Soils and the Migration and Transformation of Heavy Metals in Soils. Dissertation for the Doctoral Degree. Changsha: Hunan University (in Chinese)
57 J Yang , L Cang , Q Sun , G Dong , S T Ata-Ul-Karim , D M Zhou . (2019). Effects of soil environmental factors and UV aging on Cu2+ adsorption on microplastics. Environmental Science and Pollution Research International, 26(22): 23027–23036
https://doi.org/10.1007/s11356-019-05643-8
58 W F Yang , P Gao , H X Li , J Y Huang , Y Zhang , H J Ding , W H Zhang . (2021). Mechanism of the inhibition and detoxification effects of the interaction between nanoplastics and microalgae Chlorella pyrenoidosa. Science of the Total Environment, 783: 146919
https://doi.org/10.1016/j.scitotenv.2021.146919
59 W F Yang , X X Gao , Y X Wu , L Wan , L C Tan , S M Yuan , H J Ding , W H Zhang . (2020). The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 195: 110484
https://doi.org/10.1016/j.ecoenv.2020.110484
60 A R Zeb , W T Liu , L Z Meng , J P Lian , Q Wang , Y H Lian , C H Chen , J N Wu . (2022). Effects of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: a study involving physio-biochemical properties and metabolomic profiles. Journal of Hazardous Materials, 424: 127405
https://doi.org/10.1016/j.jhazmat.2021.127405
61 C Zhang , L Liu , Y Ma , F S Li . (2018). Using isomeric and metabolic ratios of DDT to identify the sources and fate of DDT in Chinese agricultural topsoil. Environmental Science & Technology, 52(4): 1990–1996
https://doi.org/10.1021/acs.est.7b05877
62 D Zhang , H B Liu , W L Hu , X H Qin , X W Ma , C R Yan , H Y Wang . (2016). The status and distribution characteristics of residual mulching film in Xinjiang, China. Journal of Integrative Agriculture, 15(11): 2639–2646
https://doi.org/10.1016/S2095-3119(15)61240-0
63 D Zhang , C H Zhou , C X Lin , D S Tong , W H Yu . (2010). Synthesis of clay minerals. Applied Clay Science, 50(1): 1–11
https://doi.org/10.1016/j.clay.2010.06.019
64 G S Zhang , Y F Liu . (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642: 12–20
https://doi.org/10.1016/j.scitotenv.2018.06.004
65 Q W Zhou , Z Y Sun , X L Liu , X C Wei , Z Peng , C W Yue , Y X Luo . (2019). Temporal soil moisture variations in different vegetation cover types in karst areas of southwest China: a plot scale case study. Water, 11(7): 1423
https://doi.org/10.3390/w11071423
66 X Y Zong , J J Zhang , J W Zhu , L Y Zhang , L J Jiang , Y Yin , H Y Guo . (2021). Effects of polystyrene microplastic on uptake and toxicity of copper and cadmium in hydroponic wheat seedlings (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 217: 112217
https://doi.org/10.1016/j.ecoenv.2021.112217
[1] FSE-23103-of-HJM_suppl_1 Download
[1] Hongcan Cui, Ronghua Xu, Zhong Yu, Yuanyuan Yao, Shaoqing Zhang, Fangang Meng. Tank-dependence of the functionality and network differentiation of activated sludge community in a full-scale anaerobic/anoxic/aerobic municipal sewage treatment plant[J]. Front. Environ. Sci. Eng., 2023, 17(3): 36-.
[2] Yuqing Xu, Zedong Lu, Wenjun Sun, Xiaohui Zhang. Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics[J]. Front. Environ. Sci. Eng., 2021, 15(6): 131-.
[3] Manman Ma, Bo Zhang, Ye Chen, Wenrong Feng, Tiezhu Mi, Jianhua Qi, Wenshuai Li, Zhigang Yu, Yu Zhen. Characterization of bacterial communities during persistent fog and haze events in the Qingdao coastal region[J]. Front. Environ. Sci. Eng., 2021, 15(3): 42-.
[4] Binbin Sheng, Depeng Wang, Xianrong Liu, Guangxing Yang, Wu Zeng, Yiqing Yang, Fangang Meng. Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification[J]. Front. Environ. Sci. Eng., 2020, 14(6): 93-.
[5] Fang Zhang, Hao Zhang, Ying Yuan, Dun Liu, Chenyu Zhu, Di Zheng, Guanghe Li, Yuquan Wei, Dan Sun. Different response of bacterial community to the changes of nutrients and pollutants in sediments from an urban river network[J]. Front. Environ. Sci. Eng., 2020, 14(2): 28-.
[6] Jun Li, Wentao Li, Gan Luo, Yan Li, Aimin Li. Effect of nitrobenzene on the performance and bacterial community in an expanded granular sludge bed reactor treating high-sulfate organic wastewater[J]. Front. Environ. Sci. Eng., 2019, 13(1): 6-.
[7] Daoud Ali, Huma Ali, Saud Alifiri, Saad Alkahtani, Abdullah A Alkahtane, Shaik Althaf Huasain. Detection of oxidative stress and DNA damage in freshwater snail Lymnea leuteola exposed to profenofos[J]. Front. Environ. Sci. Eng., 2018, 12(5): 1-.
[8] Yueqiao Liu, Aizhong Ding, Yujiao Sun, Xuefeng Xia, Dayi Zhang. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes[J]. Front. Environ. Sci. Eng., 2018, 12(5): 3-.
[9] Feng Wang, Weiying Li, Yue Li, Junpeng Zhang, Jiping Chen, Wei Zhang, Xuan Wu. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Front. Environ. Sci. Eng., 2018, 12(3): 6-.
[10] Lin LIU,Qiyu YOU,Valerie GIBSON,Xu HUANG,Shaohua CHEN,Zhilong YE,Chaoxiang LIU. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1139-1148.
[11] Hong YAO, Shichao ZHANG, Xiaobo XUE, Jie YANG, Kelin HU, Xiaohua YU. Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China[J]. Front Envir Sci Eng, 2013, 7(2): 273-280.
[12] Hongyuan WANG, Xiaolu JIANG, Ya HE, Huashi GUAN. Spatial and seasonal variations in bacterial communities of the Yellow Sea by T-RFLP analysis[J]. Front Envir Sci Eng Chin, 2009, 3(2): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed