Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (11) : 136    https://doi.org/10.1007/s11783-024-1896-0
Application of nanozymes in problematic biofilm control: progress, challenges and prospects
Junzheng Zhang1,2, Tong Dou1,2, Yun Shen3, Wenrui Wang1,2, Luokai Wang1, Xuanhao Wu1, Meng Zhang1,2, Dongsheng Wang1,2(), Pingfeng Yu1,2()
1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2. Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
3. Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
 Download: PDF(18049 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● The milestones underlying studies and mechanisms are summarized.

● Problematic biofilms can be removed by nanozymes through multiple strategies.

● Surface reactivity regulation can improve the antibiofilm efficiency of nanozymes.

● Machine learning-assisted nanozyme design can help improve treatment efficiency.

Current microbial control strategies face challenges in keeping up with the escalation of microbial problems due to the presence of biofilms. Therefore, there is an urgent need to develop effective and robust strategies to control problematic biofilms in water treatment and reuse systems. Nanozymes, which have intrinsic biocatalytic activity and broad antibacterial spectra, hold promise for controlling resilient biofilms. This review summarizes the milestones of nanozyme studies and their applications as antibiofilm agents. The mechanisms behind the antibacterial, quorum quenching, and depolymerizing properties of nanozymes with different enzyme activities are discussed. Notably, the surface and composition of nanozymes are crucial for their efficacy in biofilm control; thus, rationally designed nanozymes can increase their effectiveness. Additionally, the challenges of nanozymes as antibiofilm agents in realistic scenarios are investigated along with proposed strategies to overcome these challenges. Prospects of nanozyme-based biofilm control, such as machine learning-assisted nanozyme design, are also discussed. Overall, this review highlights the potential of nanozymes as antibiofilm agents and provides insights into the future design of nanozymes for biofilm control.

Keywords Nanozymes      Biofilm      Antibacterial mechanisms      Rational design      Machine learning     
Corresponding Author(s): Dongsheng Wang,Pingfeng Yu   
Issue Date: 13 September 2024
 Cite this article:   
Junzheng Zhang,Tong Dou,Yun Shen, et al. Application of nanozymes in problematic biofilm control: progress, challenges and prospects[J]. Front. Environ. Sci. Eng., 2024, 18(11): 136.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1896-0
https://academic.hep.com.cn/fese/EN/Y2024/V18/I11/136
Fig.1  Development timeline of nanozymes. Nanozymes are a type of nanomaterial with enzyme-like activities that possesses inherent biocatalytic effects and broad antibacterial spectra.
Nanozymes Enzyme mimicked Bacterial types Anti-biofilm mechanism Reference
MoSe2 nanoflowers Glutathione oxidase and Peroxidase S. aureus Generation of •OH Gao et al. (2023b)
CoPt@G@GOx Peroxidase Streptococcus mutans Generation of •OH Dong et al. (2022)
Ag-MXene Peroxidase E. coli, S. aureus Generation of •OH Chen et al. (2024)
CAT-NP Peroxidase Streptococcus mutans Generation of •OH Gao et al. (2016)
Au/g-C3N4 Peroxidase E. coli, S. aureus Generation of •OH Wang et al. (2017)
Co–MoS2 Haloperoxidase E. coli, S. aureus Generation of HOBr Luo et al. (2022)
AgPd0.38 Oxidase E. coli, P. aureginosa Generation of 1O2 Gao et al. (2021)
PS-CDs-MnO2 Oxidase S. aureus Generation of 1O2 Liu et al. (2023b)
DMAE DNase S. aureus Hydrolyzing eDNA Chen et al. (2016)
GO-NTA-Ce DNase S. aureus Hydrolyzing eDNA Hu et al. (2022)
MOF–2.5Au–Ce Peroxidase and DNase S. aureus Generation of •OH and hydrolyzing eDNA Liu et al. (2019c)
CS@Fe/CDs Peroxidase S. aureus, P. aureginosa Generation of •OH and change the cell membrane permeability Pan et al. (2022)
Zn-Nx-C Lactonase P. aeruginosa Hydrolyzing QS signaling compound Gao et al. (2023a)
CeO2–x nanorods Haloperoxidase E. coli Oxidative quorum sensing signal compounds Hu et al. (2018)
CeO2 Haloperoxidase P. aeruginosa Oxidative quorum sensing signal compounds Jegel et al. (2022)
Cu–Fe3O4 Horseradish peroxidas, Superoxide dismutase and Catalase MRSA Interfere with metabolic and quorum sensing processes Jin et al. (2024)
MoS2/rGO Oxidase, peroxidase and catalase E. coli, S. aureus Elevated bacterial capture capacity and ROS destruction Wang et al. (2020a)
Defect-richCu-nanowire Peroxidase E. coli, S. aureus Enhanced bacteria binding capacity and Generation of •OH Cao et al. (2019)
MOF@Au NPs DNase S. aureus Hydrolyzing eDNA and enhanced penetration of nanozyme Guo et al. (2023)
Pd@Ir Oxidase, peroxidase and catalase MRSA, E. coli Enhanced generated of •OH and 1O2 Ye et al. (2022)
Tab.1  Summary of nanozymes for anti-biofilms mechanism and applications
Fig.2  Biofilm composition and mechanism of nanozymes for biofilm control. A biofilm is a microenvironment harboring diverse microorganisms and composed of a wide variety of EPSs. On the basis of the biofilm characteristics and formation processes, various strategies can be used for nanozyme-based biofilm control, including bacterial inactivation, EPS degradation and the quenching of quorum sensing molecules.
Fig.3  Schematic of the mechanism by which nanozymes control biofilm formation through bacterial inactivation. (a) Biofilm disruption under acidic conditions by CAT-NP/H2O2. Reprinted from Gao et al. (2016), copyright 2016 Elsevier Ltd. (b) Br oxidation by bromoperoxidase-mimicking Co-MoS2. Reprinted from Luo et al. (2022), copyright 2022 American Chemical Society. (c) PSPG-mediated antibacterial and antibiofilm activity. Reprinted from Du et al. (2023), copyright 2023 Elsevier Ltd.
Fig.4  Schematic diagram of the use of nanozymes for biofilm control through EPS degradation. (a) multinuclear metal complex-based DNase-mimetic artificial enzyme for matrix cleavage of bacterial biofilms. Reprinted from Chen et al. (2016), Copyright 2016 Wiley-VCH. (b) GO-NTA-Ce construction and its application to the eradication of biofilms. Reprinted from Hu et al. (2022), Copyright 2022 Royal Society of Chemistry. (c) MOF-Au-Ce for anti-biofilm applications. Reprinted from Liu et al. (2019c), Copyright 2019 Elsevier Ltd. (d) CS@Fe/CDs-based nanozyme for bacterial biofilm elimination. Reprinted from Pan et al. (2022), Copyright 2022 Elsevier Ltd.
Fig.5  Schematic diagram of the use of nanozymes for biofilm control through quorum quenching. (a) Design concept of the antifouling NER-AC/Mag-S-MPS platform. Reprinted from Lee et al. (2014), copyright 2014 American Chemical Society. (b) Schematic diagram of an enzyme-immobilized nanofiltration membrane based on quorum quenching. Reprinted from Kim et al., (2011), copyright 2011 American Chemical Society. (c) Schematic diagram of the enhanced anti-biofouling nanohybrid membrane based on quorum quenching. Reprinted from Zhu et al., (2018), copyright 2018 Elsevier Ltd. (d) Schematic diagram of nanozyme-enabled quenching of bacterial communication for the prevention of biofilm formation. Reprinted from Gao et al., (2023a), copyright 2023 Wiley-VCH. (e) Schematic diagram of the fabrication of ceria NR (CeO2–x) nanofibrous mats by electrospinning to combat biofouling. Reprinted from Hu et al., (2018), copyright 2018 American Chemical Society.
Fig.6  Structure-activity relationships of nanozymes. (a) Modulation effects of nanostructures and their properties on the catalytic activity of nanozymes. Reprinted from Wang et al. (2020b), copyright 2020 Elsevier Ltd. (b) Defect-engineered Fe-N-C single-atom nanozyme. Reprinted from Zhang et al. (2022), copyright 2022 Wiley-VCH. (c) Chemical identification of the catalytically active and substrate binding sites on graphene quantum dots. Reprinted from Sun et al. (2015), copyright 2015 Wiley-VCH.
Fig.7  Strategies for improving the selectivity and specificity of nanozymes. (a) Efficient eradication of bacterial biofilms with highly specific graphene-based nanocomposite sheets. Reprinted from Wang et al. (2021b), copyright 2021 American Chemical Society. (b) Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Reprinted from Cao et al. (2019), copyright 2019 Wiley-VCH. (c) Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. Reprinted from Gupta et al. (2018), copyright 2018 American Chemical Society. (d) Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Reprinted from Jin et al. (2023), copyright 2023 Wiley-VCH.
Fig.8  Strategies for enhancing the permeability of nanozymes in biofilms and the cascading mechanism of multifunctional nanozymes. (a) Penetration and photodynamic ablation of drug-resistant biofilms by cationic iron oxide nanoparticles. Reprinted from Jin et al. (2022), copyright 2022 Elsevier Ltd. (b) Photomodulable bacteriophage-spike nanozymes enable dually enhanced biofilm penetration and bacterial capture. Reprinted from Wu et al. (2023), copyright 2023 Wiley-VCH. (c) Eradicating biofilms through the multi-enzyme-like functionalities of the Pd@Ir nanozymes. Reprinted from Ye et al. (2022), copyright 2022American Chemical Society.
1 D T Ahneman, J G Estrada, S Lin, S D Dreher, A G Doyle. (2018). Predicting reaction performance in C–N cross-coupling using machine learning. Science, 360(6385): 186–190
https://doi.org/10.1126/science.aar5169
2 A Ali, M Ovais, H Zhou, Y Rui, C Chen. (2021). Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials, 275: 120951
https://doi.org/10.1016/j.biomaterials.2021.120951
3 S Ali, S Sikdar, S Basak, M Mondal, K Mallick, M Salman Haydar, S Ghosh, M Nath Roy. (2023). Assemble multi-enzyme mimic tandem Mn3O4@ g-C3N4 for augment ROS elimination and label free detection. Chemical Engineering Journal, 463: 142355
https://doi.org/10.1016/j.cej.2023.142355
4 J Arenas, J Tommassen. (2017). Meningococcal biofilm formation: let’s stick together. Trends in Microbiology, 25(2): 113–124
https://doi.org/10.1016/j.tim.2016.09.005
5 F Attar, M G Shahpar, B Rasti, M Sharifi, A A Saboury, S M Rezayat, M Falahati. (2019). Nanozymes with intrinsic peroxidase-like activities. Journal of Molecular Liquids, 278: 130–144
https://doi.org/10.1016/j.molliq.2018.12.011
6 N Augustine, P Kumar, S Thomas. (2010). Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Archives of Microbiology, 192(12): 1019–1022
https://doi.org/10.1007/s00203-010-0633-1
7 I Banerjee, R C Pangule, R S Kane. (2011). Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6): 690–718
https://doi.org/10.1002/adma.201001215
8 A Butler, M Sandy. (2009). Mechanistic considerations of halogenating enzymes. Nature, 460(7257): 848–854
https://doi.org/10.1038/nature08303
9 F Cao, L Zhang, H Wang, Y You, Y Wang, N Gao, J Ren, X Qu. (2019). Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angewandte Chemie International Edition, 58(45): 16236–16242
https://doi.org/10.1002/anie.201908289
10 Y Chen, C Rong, W Gao, S Luo, Y Guo, Y Gu, G Yang, W Xu, C Zhu, L L Qu. (2024). Ag-MXene as peroxidase-mimicking nanozyme for enhanced bacteriocide and cholesterol sensing. Journal of Colloid and Interface Science, 653: 540–550
https://doi.org/10.1016/j.jcis.2023.09.097
11 Y Chen, Q Sheng, J Wei, Q Wen, D Ma, J Li, Y Xie, J Shen, X Sun. (2022). Novel strategy for membrane biofouling control in MBR with nano-MnO2 modified PVDF membrane by in-situ ozonation. Science of the Total Environment, 808: 151996
https://doi.org/10.1016/j.scitotenv.2021.151996
12 Z Chen, H Ji, C Liu, W Bing, Z Wang, X Qu. (2016). A multinuclear metal complex based DNase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angewandte Chemie International Edition, 55(36): 10732–10736
https://doi.org/10.1002/anie.201605296
13 Z Chen, Y Yu, Y Gao, Z Zhu. (2023). Rational design strategies for nanozymes. ACS Nano, 17(14): 13062–13080
https://doi.org/10.1021/acsnano.3c04378
14 O Ciofu, C Moser, P Ø Jensen, N Høiby. (2022). Tolerance and resistance of microbial biofilms. Nature Reviews. Microbiology, 20(10): 621–635
https://doi.org/10.1038/s41579-022-00682-4
15 O Ciofu, E Rojo-Molinero, M D Macià, A Oliver. (2017). Antibiotic treatment of biofilm infections. Acta Pathologica et Microbiologica Scandinavica. Supplement, 125(4): 304–319
https://doi.org/10.1111/apm.12673
16 A Cornelissen, P J Ceyssens, V N Krylov, J P Noben, G Volckaert, R Lavigne. (2012). Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology, 434(2): 251–256
https://doi.org/10.1016/j.virol.2012.09.030
17 J W Costerton, P S Stewart, E P Greenberg. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418): 1318–1322
https://doi.org/10.1126/science.284.5418.1318
18 Y Dang, G Wang, G Su, Z Lu, Y Wang, T Liu, X Pu, X Wang, C Wu, C Song. et al.. (2022). Rational construction of a Ni/CoMoO4 heterostructure with strong Ni–O–Co bonds for improving multifunctional nanozyme activity. ACS Nano, 16(3): 4536–4550
https://doi.org/10.1021/acsnano.1c11012
19 T Danhorn, C Fuqua. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61(1): 401–422
https://doi.org/10.1146/annurev.micro.61.080706.093316
20 T Das, B P Krom, H C Van Der Mei, H J Busscher, P K Sharma. (2011). DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter, 7(6): 2927–2935
https://doi.org/10.1039/c0sm01142h
21 D Davies. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews. Drug Discovery, 2(2): 114–122
https://doi.org/10.1038/nrd1008
22 D G Davies, M R Parsek, J P Pearson, B H Iglewski, J W Costerton, E P Greenberg. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(5361): 295–298
https://doi.org/10.1126/science.280.5361.295
23 Q Deng, P Sun, L Zhang, Z Liu, H Wang, J Ren, X Qu. (2019). Porphyrin MOF dots–based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Advanced Functional Materials, 29(30): 1903018
https://doi.org/10.1002/adfm.201903018
24 N Derlon, A Grutter, F Brandenberger, A Sutter, U Kuhlicke, T R Neu, E Morgenroth. (2016). The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance. Water Research, 102: 63–72
https://doi.org/10.1016/j.watres.2016.06.019
25 P Desmond, J P Best, E Morgenroth, N Derlon. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research, 132: 211–221
https://doi.org/10.1016/j.watres.2017.12.058
26 Q Dong, Z Li, J Xu, Q Yuan, L Chen, Z Chen. (2022). Versatile graphitic nanozymes for magneto actuated cascade reaction-enhanced treatment of S. mutans biofilms. Nano Research, 15(11): 9800–9808
https://doi.org/10.1007/s12274-022-4258-x
27 T Du, Z Xiao, G Zhang, L Wei, J Cao, Z Zhang, X Li, Z Song, W Wang, J Liu. et al.. (2023). An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing. Acta Biomaterialia, 161: 112–133
https://doi.org/10.1016/j.actbio.2023.03.008
28 L Eberl, M K Winson, C Sternberg, G S Stewart, G Christiansen, S R Chhabra, B Bycroft, P Williams, S Molin, M Givskov. (1996). Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 20(1): 127–136
https://doi.org/10.1111/j.1365-2958.1996.tb02495.x
29 M J Eickhoff, B L Bassler (2018). SnapShot: bacterial quorum sensing. Cell, 174(5): 1328–1328 e.1
30 K Fan, L Gao, H Wei, B Jiang, D Wang, R Zhang, J He, X Meng, Z Wang, H Fan, et al. (2023). Nanozymes. Progress in Chemistry, 35(1): 1–8787
31 G Fang, R Kang, S Cai, C Ge. (2023). Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: progress, challenges and prospects. Nano Today, 48: 101755
https://doi.org/10.1016/j.nantod.2023.101755
32 Q Feng, L Luo, X Chen, K Zhang, F Fang, Z Xue, C Li, J Cao, J Luo. (2021). Facilitating biofilm formation of Pseudomonas aeruginosa via exogenous N-Acy-L-homoserine lactones stimulation: Regulation on the bacterial motility, adhesive ability and metabolic activity. Bioresource Technology, 341: 125727
https://doi.org/10.1016/j.biortech.2021.125727
33 H C Flemming, E D Van Hullebusch, T R Neu, P H Nielsen, T Seviour, P Stoodley, J Wingender, S Wuertz. (2023). The biofilm matrix: multitasking in a shared space. Nature Reviews Microbiology, 21(2): 70–86
https://doi.org/10.1038/s41579-022-00791-0
34 K Forier, A S Messiaen, K Raemdonck, H Nelis, S De Smedt, J Demeester, T Coenye, K Braeckmans. (2014). Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled Release, 195: 21–28
https://doi.org/10.1016/j.jconrel.2014.07.061
35 S Fulaz, S Vitale, L Quinn, E Casey. (2019). Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends in Microbiology, 27(11): 915–926
https://doi.org/10.1016/j.tim.2019.07.004
36 F Gao, T Shao, Y Yu, Y Xiong, L Yang. (2021). Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nature Communications, 12(1): 745
https://doi.org/10.1038/s41467-021-20965-3
37 L Gao, Y Liu, D Kim, Y Li, G Hwang, P C Naha, D P Cormode, H Koo. (2016). Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 101: 272–284
https://doi.org/10.1016/j.biomaterials.2016.05.051
38 L Gao, J Zhuang, L Nie, J Zhang, Y Zhang, N Gu, T Wang, J Feng, D Yang, S Perrett, X Yan. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9): 577–583
https://doi.org/10.1038/nnano.2007.260
39 M Gao, B Xu, Y Huang, J Cao, L Yang, X Liu, A Djumaev, D Wu, M Shoxiddinova, X Cai. et al.. (2023a). Nano-enabled quenching of bacterial communications for the prevention of biofilm formation. Angewandte Chemie International Edition, 62: e202305485
https://doi.org/10.1002/anie.202305485
40 X Gao, Y Liu, Y Li, B Jin, P Jiang, X Chen, C Wei, J Sheng, Y N Liu, J Li. et al.. (2023b). Piezoelectric nanozyme for dual-driven catalytic eradication of bacterial biofilms. ACS Applied Materials & Interfaces, 15(11): 14690–14703
https://doi.org/10.1021/acsami.2c21901
41 S Ghosh, P Roy, N Karmodak, E D Jemmis, G Mugesh. (2018). Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angewandte Chemie International Edition, 57(17): 4510–4515
https://doi.org/10.1002/anie.201800681
42 J J Green, J H Elisseeff. (2016). Mimicking biological functionality with polymers for biomedical applications. Nature, 540(7633): 386–394
https://doi.org/10.1038/nature21005
43 W Guo, Y Wang, K Zhang, X Dai, Z Qiao, Z Liu, B Yu, N Zhao, F J Xu. (2023). Near-infrared light-propelled MOF@Au nanomotors for enhanced penetration and sonodynamic therapy of bacterial biofilms. Chemistry of Materials, 35(17): 6853–6864
https://doi.org/10.1021/acs.chemmater.3c01140
44 A Gupta, R Das, J M Makabenta, A Gupta, X Zhang, T Jeon, R Huang, Y Liu, S Gopalakrishnan, R C Milán. et al.. (2021). Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. Materials Horizons, 8(12): 3424–3431
https://doi.org/10.1039/D1MH01408K
45 A Gupta, R Das, G Yesilbag Tonga, T Mizuhara, V M Rotello. (2018). Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano, 12(1): 89–94
https://doi.org/10.1021/acsnano.7b07496
46 K Habiba, D P Bracho-Rincon, J A Gonzalez-Feliciano, J C Villalobos-Santos, V I Makarov, D Ortiz, J A Avalos, C I Gonzalez, B R Weiner, G Morell. (2015). Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Applied Materials Today, 1(2): 80–87
https://doi.org/10.1016/j.apmt.2015.10.001
47 K Herget, P Hubach, S Pusch, P Deglmann, H Götz, T E Gorelik, I Y A Gural’skiy, F Pfitzner, T Link, S Schenk. et al.. (2017). Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Advanced Materials, 29(4): 1603823
https://doi.org/10.1002/adma.201603823
48 F Hou, T Zhang, Y Peng, X Cao, H Pang, Y Shao, X Lu, J Yuan, X Chen, J Zhang. (2022). Partial anammox achieved in full scale biofilm process for typical domestic wastewater treatment. Frontiers of Environmental Science & Engineering, 16(3): 33
https://doi.org/10.1007/s11783-021-1467-6
49 J Hou, Y Xianyu. (2023). Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity. Small, 19(42): 2302640
https://doi.org/10.1002/smll.202302640
50 D Hu, Y Deng, F Jia, Q Jin, J Ji. (2020). Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano, 14(1): 347–359
https://doi.org/10.1021/acsnano.9b05493
51 H Hu, X Kang, Z Shan, X Yang, W Bing, L Wu, H Ge, H Ji. (2022). A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections. Nanoscale, 14(7): 2676–2685
https://doi.org/10.1039/D1NR07629A
52 M Hu, K Korschelt, M Viel, N Wiesmann, M Kappl, J Brieger, K Landfester, H Therien-Aubin, W Tremel. (2018). Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Applied Materials & Interfaces, 10(51): 44722–44730
https://doi.org/10.1021/acsami.8b16307
53 L Huang, J Chen, L Gan, J Wang, S Dong. (2019a). Single-atom nanozymes. Science Advances, 5(5): eaav5490
https://doi.org/10.1126/sciadv.aav5490
54 R Huang, C H Li, R Cao-Milán, L D He, J M Makabenta, X Zhang, E Yu, V M Rotello. (2020). Polymer-based bioorthogonal nanocatalysts for the treatment of bacterial biofilms. Journal of the American Chemical Society, 142(24): 10723–10729
https://doi.org/10.1021/jacs.0c01758
55 T Huang, Z Yu, B Yuan, L Jiang, Y Liu, X Sun, P Liu, W Jiang, J Tang. (2022). Synergy of light-controlled Pd nanozymes with NO therapy for biofilm elimination and diabetic wound treatment acceleration. Materials Today. Chemistry, 24: 100831
https://doi.org/10.1016/j.mtchem.2022.100831
56 Y Huang, J Ren, X Qu. (2019b). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 119(6): 4357–4412
https://doi.org/10.1021/acs.chemrev.8b00672
57 O Jegel, F Pfitzner, A Gazanis, J Oberländer, E Pütz, M Lange, Der Au M Von, B Meermann, V Mailänder, A Klasen. et al.. (2022). Transparent polycarbonate coated with CeO2 nanozymes repel Pseudomonas aeruginosa PA14 biofilms. Nanoscale, 14(1): 86–98
https://doi.org/10.1039/D1NR03320D
58 H Ji, H Hu, Q Tang, X Kang, X Liu, L Zhao, R Jing, M Wu, G Li, X Zhou. et al.. (2022). Precisely controlled and deeply penetrated micro-nano hybrid multifunctional motors with enhanced antibacterial activity against refractory biofilm infections. Journal of Hazardous Materials, 436: 129210
https://doi.org/10.1016/j.jhazmat.2022.129210
59 B Jiang, D Duan, L Gao, M Zhou, K Fan, Y Tang, J Xi, Y Bi, Z Tong, G F Gao. et al.. (2018). Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nature Protocols, 13(7): 1506–1520
https://doi.org/10.1038/s41596-018-0001-1
60 L Jiao, H Yan, Y Wu, W Gu, C Zhu, D Du, Y Lin. (2020). When nanozymes meet single-atom catalysis. Angewandte Chemie International Edition, 59(7): 2565–2576
https://doi.org/10.1002/anie.201905645
61 L Jin, F Cao, Y Gao, C Zhang, Z Qian, J Zhang, Z Mao. (2023). Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Advanced Materials, 35(30): 2301349
https://doi.org/10.1002/adma.202301349
62 X Jin, J Shan, J Zhao, T Wang, W Zhang, S Yang, H Qian, L Cheng, X L Chen, X Wang. (2024). Bimetallic oxide Cu–Fe3O4 nanoclusters with multiple enzymatic activities for wound infection treatment and wound healing. Acta Biomaterialia, 173: 403–419
https://doi.org/10.1016/j.actbio.2023.10.028
63 Y Jin, B Zhao, W Guo, Y Li, J Min, W Miao. (2022). Penetration and photodynamic ablation of drug-resistant biofilm by cationic iron oxide nanoparticles. Journal of Controlled Release, 348: 911–923
https://doi.org/10.1016/j.jconrel.2022.06.038
64 L R Johnson. (2008). Microcolony and biofilm formation as a survival strategy for bacteria. Journal of Theoretical Biology, 251(1): 24–34
https://doi.org/10.1016/j.jtbi.2007.10.039
65 T Kilic, E B Bali. (2023). Biofilm control strategies in the light of biofilm-forming microorganisms. World Journal of Microbiology & Biotechnology, 39(5): 131
https://doi.org/10.1007/s11274-023-03584-6
66 J H Kim, D C Choi, K M Yeon, S R Kim, C H Lee. (2011). Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environmental Science & Technology, 45(4): 1601–1607
https://doi.org/10.1021/es103483j
67 U Kim, J H Kim, S W Oh. (2022). Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Critical Reviews in Food Science and Nutrition, 62(21): 5783–5793
https://doi.org/10.1080/10408398.2021.1892585
68 R Kolter, E P Greenberg. (2006). The superficial life of microbes. Nature, 441(7091): 300–302
https://doi.org/10.1038/441300a
69 B Lee, K M Yeon, J Shim, S R Kim, C H Lee, J Lee, J Kim. (2014). Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica. Biomacromolecules, 15(4): 1153–1159
https://doi.org/10.1021/bm401595q
70 S Li, Z Zhou, Z Tie, B Wang, M Ye, L Du, R Cui, W Liu, C Wan, Q Liu. et al.. (2022a). Data-informed discovery of hydrolytic nanozymes. Nature Communications, 13(1): 827
https://doi.org/10.1038/s41467-022-28344-2
71 W Li, Y Tian, J Chen, X Wang, Y Zhou, N Shi. (2022b). Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes. Frontiers of Environmental Science & Engineering, 16(6): 72
https://doi.org/10.1007/s11783-021-1506-3
72 X Li, L Wang, D Du, L Ni, J Pan, X Niu. (2019a). Emerging applications of nanozymes in environmental analysis: Opportunities and trends. Trends in Analytical Chemistry, 120: 115653
https://doi.org/10.1016/j.trac.2019.115653
73 X Li, X Wang, D J Lee, W M Yan. (2019b). Highly heterogeneous interior structure of biofilm wastewater for enhanced pollutant removals. Bioresource Technology, 291: 121919
https://doi.org/10.1016/j.biortech.2019.121919
74 Y Li, R Zhang, X Yan, K Fan. (2023). Machine learning facilitating the rational design of nanozymes. Journal of Materials Chemistry. B, 11(28): 6466–6477
https://doi.org/10.1039/D3TB00842H
75 P Ling, P Yang, X Gao, X Sun, F Gao. (2022). ROS generation strategy based on biomimetic nanosheets by self-assembly of nanozymes. Journal of Materials Chemistry. B, 10(46): 9607–9612
https://doi.org/10.1039/D2TB01639G
76 B Liu, J Liu. (2017). Surface modification of nanozymes. Nano Research, 10(4): 1125–1148
https://doi.org/10.1007/s12274-017-1426-5
77 D Liu, Y Xi, S Yu, K Yang, F Zhang, Y Yang, T Wang, S He, Y Zhu, Z Fan. et al.. (2023a). A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes. Biomaterials, 293: 121957
https://doi.org/10.1016/j.biomaterials.2022.121957
78 G Liu, Y Zhang, X Liu, F Hammes, W T Liu, G Medema, P Wessels, W Van Der Meer. (2020). 360-degree distribution of biofilm quantity and community in an operational unchlorinated drinking water distribution pipe. Environmental Science & Technology, 54(9): 5619–5628
https://doi.org/10.1021/acs.est.9b06603
79 H Liu, D Zhao, C Zhang, M Li, S Zhang, X Xiao. (2023b). One-step preparation of MnO2 nanozyme by PS-CDs for antibacterial, inhibition of S. aureus biofilm growth and colorimetric assay of tiopronin. Journal of Industrial and Engineering Chemistry, 125: 127–135
https://doi.org/10.1016/j.jiec.2023.05.021
80 P Liu, Y Wu, B Mehrjou, K Tang, G Wang, P K Chu. (2022). Versatile phenol-incorporated nanoframes for in situ antibacterial activity based on oxidative and physical damages. Advanced Functional Materials, 32(17): 2110635
https://doi.org/10.1002/adfm.202110635
81 Q Liu, A Kuzuya, Z G Wang. (2023c). Supramolecular enzyme-mimicking catalysts self-assembled from peptides. iScience, 26(1): 105831
https://doi.org/10.1016/j.isci.2022.105831
82 W Liu, S Jacquiod, A Brejnrod, J Russel, M Burmølle, S J Sørensen. (2019a). Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. ISME Journal, 13(12): 3054–3066
https://doi.org/10.1038/s41396-019-0494-9
83 Y Liu, H J Busscher, B Zhao, Y Li, Z Zhang, H C Van Der Mei, Y Ren, L Shi. (2016). Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in Staphylococcal biofilms. ACS Nano, 10(4): 4779–4789
https://doi.org/10.1021/acsnano.6b01370
84 Y Liu, L Shi, L Su, H C Van Der Mei, P C Jutte, Y Ren, H J Busscher. (2019b). Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 48(2): 428–446
https://doi.org/10.1039/C7CS00807D
85 Z Liu, F Wang, J Ren, X Qu. (2019c). A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 208: 21–31
https://doi.org/10.1016/j.biomaterials.2019.04.007
86 M Livieri, F Mancin, G Saielli, J Chin, U Tonellato. (2007). Mimicking enzymes: cooperation between organic functional groups and metal ions in the cleavage of phosphate diesters. Chemistry, 13(8): 2246–2256
https://doi.org/10.1002/chem.200600672
87 M B Lohse, M Gulati, A D Johnson, C J Nobile. (2018). Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 16(1): 19–31
https://doi.org/10.1038/nrmicro.2017.107
88 C Lu, M Zandieh, J Zheng, J Liu. (2023). Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase. Nanoscale, 15(18): 8189–8196
https://doi.org/10.1039/D3NR01098H
89 J Lu, X Hu, L Ren. (2022). Biofilm control strategies in food industry: inhibition and utilization. Trends in Food Science & Technology, 123: 103–113
https://doi.org/10.1016/j.tifs.2022.03.007
90 Q Luo, J Li, W Wang, Y Li, Y Li, X Huo, J Li, N Wang. (2022). Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater. ACS Applied Materials & Interfaces, 14(12): 14218–14225
https://doi.org/10.1021/acsami.2c00172
91 M Ma, R Wang, L Xu, J Du, M Xu, S Liu. (2021). Emerging investigator series: enhanced peroxidase-like activity and improved antibacterial performance of palladium nanosheets by an alginate-corona. Environmental Science: Nano, 8(12): 3511–3523
https://doi.org/10.1039/D1EN00485A
92 K U Mahto, M Vandana, D P Priyadarshanee, S Samantaray. (2022). Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: beyond the protective role in survivability. Journal of Cleaner Production, 379: 134759
https://doi.org/10.1016/j.jclepro.2022.134759
93 J Mathieu, P Yu, P Zuo, M L B Da Silva, P J J Alvarez. (2019). Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Accounts of Chemical Research, 52(4): 849–857
https://doi.org/10.1021/acs.accounts.8b00576
94 R R Matias, A M G Sepúlveda, B N Batista, Lucena J M V M De, P M Albuquerque. (2021). Degradation of Staphylococcus aureus biofilm using hydrolytic enzymes produced by amazonian endophytic fungi. Applied Biochemistry and Biotechnology, 193(7): 2145–2161
https://doi.org/10.1007/s12010-021-03542-8
95 S Mazurenko, Z Prokop, J Damborsky. (2020). Machine learning in enzyme engineering. ACS Catalysis, 10(2): 1210–1223
https://doi.org/10.1021/acscatal.9b04321
96 L Mei, S Zhu, Y Liu, W Yin, Z Gu, Y Zhao. (2021). An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 418: 129431
https://doi.org/10.1016/j.cej.2021.129431
97 R J Melander, A K Basak, C Melander. (2020). Natural products as inspiration for the development of bacterial antibiofilm agents. Natural Product Reports, 37(11): 1454–1477
https://doi.org/10.1039/D0NP00022A
98 K E Murray, E I Manitou-Alvarez, E C Inniss, F G Healy, A A Bodour. (2015). Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells. Frontiers of Environmental Science & Engineering, 9(1): 39–49
https://doi.org/10.1007/s11783-014-0699-0
99 C J Nobile, A D Johnson. (2015). Candida albicans biofilms and human disease. Annual Review of Microbiology, 69(1): 71–92
https://doi.org/10.1146/annurev-micro-091014-104330
100 M D Nothling, Z Xiao, A Bhaskaran, M T Blyth, C W Bennett, M L Coote, L A Connal. (2019). Synthetic catalysts inspired by hydrolytic enzymes. ACS Catalysis, 9(1): 168–187
https://doi.org/10.1021/acscatal.8b03326
101 T Pan, H Chen, X Gao, Z Wu, Y Ye, Y Shen. (2022). Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. Journal of Hazardous Materials, 435: 128996
https://doi.org/10.1016/j.jhazmat.2022.128996
102 Y Pechaud, N Derlon, I Queinnec, Y Bessiere, E Paul. (2024). Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties. Water Research, 250: 120985
https://doi.org/10.1016/j.watres.2023.120985
103 T O Peulen, K J Wilkinson. (2011). Diffusion of nanoparticles in a biofilm. Environmental Science & Technology, 45(8): 3367–3373
https://doi.org/10.1021/es103450g
104 J E Price, M R Chapman. (2018). Phaged and confused by biofilm matrix. Nature Microbiology, 3(1): 2–3
https://doi.org/10.1038/s41564-017-0078-2
105 C R Proctor, M Reimann, B Vriens, F Hammes. (2018). Biofilms in shower hoses. Water Research, 131: 274–286
https://doi.org/10.1016/j.watres.2017.12.027
106 E Pütz, A Gazanis, N G Keltsch, O Jegel, F Pfitzner, R Heermann, T A Ternes, W Tremel. (2022). Communication breakdown: into the molecular mechanism of biofilm inhibition by CeO2 nanocrystal enzyme mimics and how it can be exploited. ACS Nano, 16(10): 16091–16108
https://doi.org/10.1021/acsnano.2c04377
107 R Qi, Y Cui, J Liu, X Wang, H Yuan. (2023). Recent advances of composite nanomaterials for antibiofilm application. Nanomaterials, 13(19): 2725
https://doi.org/10.3390/nano13192725
108 Y Qi, J Li, R Liang, S Ji, J Li, M Liu. (2017). Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system. Frontiers of Environmental Science & Engineering, 11(2): 14
https://doi.org/10.1007/s11783-017-0917-7
109 P S Rajesh, V R Rai. (2015). Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66. International Journal of Biological Macromolecules, 81: 1046–1052
https://doi.org/10.1016/j.ijbiomac.2015.09.048
110 K P Rumbaugh, K Sauer. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10): 571–586
https://doi.org/10.1038/s41579-020-0385-0
111 K Sauer, P Stoodley, D M Goeres, L Hall-Stoodley, M Burmolle, P S Stewart, T Bjarnsholt. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 20(10): 608–620
https://doi.org/10.1038/s41579-022-00767-0
112 S Scott, H Zhao, A Dey, T B Gunnoe. (2020). Nano-apples and orange-zymes. ACS Catalysis, 10(23): 14315–14317
https://doi.org/10.1021/acscatal.0c05047
113 Y Shen, C Nie, T Pan, W Zhang, H Yang, Y Ye, X Wang. (2023). A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy. Acta Biomaterialia, 168: 580–592
https://doi.org/10.1016/j.actbio.2023.07.006
114 X Si, X Quan. (2017). Prevention of multi-species wastewater biofilm formation using vanillin and EPS disruptors through non-microbicidal mechanisms. International Biodeterioration & Biodegradation, 116: 211–218
https://doi.org/10.1016/j.ibiod.2016.11.009
115 S Silva, M Negri, M Henriques, R Oliveira, D W Williams, J Azeredo. (2011). Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 19(5): 241–247
https://doi.org/10.1016/j.tim.2011.02.003
116 S V Somerville, Q Li, J Wordsworth, S Jamali, M R Eskandarian, R D Tilley, J J Gooding. (2024). Approaches to improving the selectivity of nanozymes. Advanced Materials, 36: 2211288
https://doi.org/10.1002/adma.202211288
117 P Stoodley, K Sauer, D G Davies, J W Costerton. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56(1): 187–209
https://doi.org/10.1146/annurev.micro.56.012302.160705
118 H Sun, A Zhao, N Gao, K Li, J Ren, X Qu. (2015). Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angewandte Chemie International Edition, 54(24): 7176–7180
https://doi.org/10.1002/anie.201500626
119 Z Sun, J Xi, C Yang, W Cong. (2022). Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review. Frontiers of Environmental Science & Engineering, 16(7): 87
https://doi.org/10.1007/s11783-021-1495-2
120 Y Tao, E Ju, J Ren, X Qu. (2015). Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Advanced Materials, 27(6): 1097–1104
https://doi.org/10.1002/adma.201405105
121 E Teirlinck, R Xiong, T Brans, K Forier, J Fraire, Acker H Van, N Matthijs, Rycke R De, Smedt S C De, T Coenye. et al.. (2018). Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nature Communications, 9(1): 4518
https://doi.org/10.1038/s41467-018-06884-w
122 R Tian, Y Li, J Xu, C Hou, Q Luo, J Liu. (2022). Recent development in the design of artificial enzymes through molecular imprinting technology. Journal of Materials Chemistry. B, 10(35): 6590–6606
https://doi.org/10.1039/D2TB00276K
123 P Urban, G Truan, D Pompon. (2015). Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes. Biochimica et Biophysica Acta, 1850(4): 696–707
https://doi.org/10.1016/j.bbagen.2014.12.015
124 A Vishwakarma, F Dang, A Ferrell, H A Barton, A Joy. (2021). Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms. Journal of the American Chemical Society, 143(25): 9440–9449
https://doi.org/10.1021/jacs.1c02324
125 V Vishwakarma. (2020). Impact of environmental biofilms: Industrial components and its remediation. Journal of Basic Microbiology, 60(3): 198–206
https://doi.org/10.1002/jobm.201900569
126 A Wang, P J Weldrick, L A Madden, V N Paunov. (2021a). Biofilm-infected human clusteroid three-dimensional coculture platform to replace animal models in testing antimicrobial nanotechnologies. ACS Applied Materials & Interfaces, 13(19): 22182–22194
https://doi.org/10.1021/acsami.1c02679
127 F Wang, J Tan, S Zhang, Y Zhou, D He, L Deng. (2021b). Efficient eradication of bacterial biofilms with highly specific graphene-based nanocomposite sheets. ACS Biomaterials Science & Engineering, 7(11): 5118–5128
https://doi.org/10.1021/acsbiomaterials.1c00575
128 H Wang, C Hu, X Hu, M Yang, J Qu. (2012). Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Research, 46(4): 1070–1078
https://doi.org/10.1016/j.watres.2011.12.001
129 H Wang, K Wan, X Shi. (2019). Recent advances in nanozyme research. Advanced Materials, 31(45): 1805368
https://doi.org/10.1002/adma.201805368
130 L Wang, F Gao, A Wang, X Chen, H Li, X Zhang, H Zheng, R Ji, B Li, X Yu. et al.. (2020a). Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Advanced Materials, 32(48): 2005423
https://doi.org/10.1002/adma.202005423
131 W Wang, Q Luo, J Li, L Li, Y Li, X Huo, X Du, Z Li, N Wang. (2022a). Photothermal-amplified single atom nanozyme for biofouling control in seawater. Advanced Functional Materials, 32(36): 2205461
https://doi.org/10.1002/adfm.202205461
132 W Wang, Q Luo, J Li, Y Li, R Wu, Y Li, X Huo, N Wang. (2022b). Single-atom tungsten engineering of MOFs with biomimetic antibiofilm activity toward robust uranium extraction from seawater. Chemical Engineering Journal, 431: 133483
https://doi.org/10.1016/j.cej.2021.133483
133 W Wang, Q Luo, L Li, S Chen, Y Wang, X Du, N Wang. (2023). Hybrid nickel-molybdenum bimetallic sulfide nanozymes for antibacterial and antibiofouling applications. Advanced Composites and Hybrid Materials, 6(4): 139
https://doi.org/10.1007/s42114-023-00718-0
134 Z Wang, K Dong, Z Liu, Y Zhang, Z Chen, H Sun, J Ren, X Qu. (2017). Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials, 113: 145–157
https://doi.org/10.1016/j.biomaterials.2016.10.041
135 Z Wang, R Zhang, X Yan, K Fan. (2020b). Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Materials Today, 41: 81–119
https://doi.org/10.1016/j.mattod.2020.08.020
136 Z Wang, Y Zhang, S Chen, Y Qu, M Tang, W Wang, W Li, L Gu. (2024). Multifunctional CeO2 nanozymes for mitigating high-glucose induced senescence and enhancing bone regeneration in type 2 diabetes mellitus. Chemical Engineering Journal, 485: 149842
https://doi.org/10.1016/j.cej.2024.149842
137 P Watnick, R Kolter. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182(10): 2675–2679
https://doi.org/10.1128/JB.182.10.2675-2679.2000
138 H Wei, L Gao, K Fan, J Liu, J He, X Qu, S Dong, E Wang, X Yan. (2021). Nanozymes: a clear definition with fuzzy edges. Nano Today, 40: 101269
https://doi.org/10.1016/j.nantod.2021.101269
139 J N Wei, D Duvenaud, A Aspuru-Guzik. (2016). Neural networks for the prediction of organic chemistry reactions. ACS Central Science, 2(10): 725–732
https://doi.org/10.1021/acscentsci.6b00219
140 Y Wei, J Wu, Y Wu, H Liu, F Meng, Q Liu, A C Midgley, X Zhang, T Qi, H Kang. et al.. (2022). Prediction and design of nanozymes using explainable machine learning. Advanced Materials, 34(27): 2201736
https://doi.org/10.1002/adma.202201736
141 B Wu, E F Haney, N Akhoundsadegh, D Pletzer, M J Trimble, A E Adriaans, P H Nibbering, R E W Hancock. (2021). Human organoid biofilm model for assessing antibiofilm activity of novel agents. NPJ Biofilms and Microbiomes, 7(1): 8
https://doi.org/10.1038/s41522-020-00182-4
142 H Wu, M Wei, S Hu, P Cheng, S Shi, F Xia, L Xu, L Yin, G Liang, F Li. et al.. (2023). A photomodulable bacteriophage-spike nanozyme enables dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of mrsa infections. Advanced Science, 10(24): 2301694
https://doi.org/10.1002/advs.202301694
143 J Wu, S Li, H Wei. (2018). Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horizons, 3(4): 367–382
https://doi.org/10.1039/C8NH00070K
144 J Wu, X Wang, Q Wang, Z Lou, S Li, Y Zhu, L Qin, H Wei. (2019a). Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chemical Society Reviews, 48(4): 1004–1076
https://doi.org/10.1039/C8CS00457A
145 Y K Wu, N C Cheng, C M Cheng. (2019b). Biofilms in chronic wounds: pathogenesis and diagnosis. Trends in Biotechnology, 37(5): 505–517
https://doi.org/10.1016/j.tibtech.2018.10.011
146 Z Xi, K Wei, Q Wang, M J Kim, S Sun, V Fung, X Xia. (2021). Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. Journal of the American Chemical Society, 143(7): 2660–2664
https://doi.org/10.1021/jacs.0c12605
147 Y Xiao, H Zou, J Li, T Song, W Lv, W Wang, Z Wang, S Tao. (2022). Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes, 14(1): 2039048
https://doi.org/10.1080/19490976.2022.2039048
148 D Xu, T Gu, D R Lovley. (2023a). Microbially mediated metal corrosion. Nature Reviews Microbiology, 21(11): 705–718
https://doi.org/10.1038/s41579-023-00920-3
149 D Xu, L Wu, H Yao, L Zhao. (2022). Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small, 18(37): 2203400
https://doi.org/10.1002/smll.202203400
150 Y Xu, Y Luo, Z Weng, H Xu, W Zhang, Q Li, H Liu, L Liu, Y Wang, X Liu. et al.. (2023b). Microenvironment-responsive metal-phenolic nanozyme release platform with antibacterial, ROS scavenging, and osteogenesis for periodontitis. ACS Nano, 17(19): 18732–18746
https://doi.org/10.1021/acsnano.3c01940
151 X Yan, J Sun, Y Wang, Z Zhang, C Zhang, W Li, J Xu, X Dai, B J Ni. (2023). Low-rate ferrate dosing damages the microbial biofilm structure through humic substances destruction and facilitates the sewer biofilm control. Water Research, 235: 119834
https://doi.org/10.1016/j.watres.2023.119834
152 W Yang, X Yang, L Zhu, H Chu, X Li, W Xu. (2021). Nanozymes: activity origin, catalytic mechanism, and biological application. Coordination Chemistry Reviews, 448: 214170
https://doi.org/10.1016/j.ccr.2021.214170
153 Y R Yang, X D Wang, J S Chang, D J Lee. (2022). Homogeneously and heterogeneously structured biofilm models for wastewater treatment. Bioresource Technology, 362: 127763
https://doi.org/10.1016/j.biortech.2022.127763
154 Z Ye, Y Fan, T Zhu, D Cao, X Hu, S Xiang, J Li, Z Guo, X Chen, K Tan. et al.. (2022). Preparation of two-dimensional Pd@Ir nanosheets and application in bacterial infection treatment by the generation of reactive oxygen species. ACS Applied Materials & Interfaces, 14(20): 23194–23205
https://doi.org/10.1021/acsami.2c03952
155 W Yin, S Xu, Y Wang, Y Zhang, S H Chou, M Y Galperin, J He. (2021). Ways to control harmful biofilms: prevention, inhibition, and eradication. Critical Reviews in Microbiology, 47(1): 57–78
https://doi.org/10.1080/1040841X.2020.1842325
156 J P Yuan, Z J Guan, H Y Lin, B Yan, K K Liu, H C Zhou, Y Fang. (2023). Modeling the enzyme specificity by molecular cages through regulating reactive oxygen species evolution. Angewandte Chemie International Edition, 62(31): e202303896
https://doi.org/10.1002/anie.202303896
157 A F Zahrt, J J Henle, B T Rose, Y Wang, W T Darrow, S E Denmark. (2019). Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science, 363(6424): eaau5631
https://doi.org/10.1126/science.aau5631
158 P Zhang, Y P Chen, J H Qiu, Y Z Dai, B Feng. (2019). Imaging the microprocesses in biofilm matrices. Trends in Biotechnology, 37(2): 214–226
https://doi.org/10.1016/j.tibtech.2018.07.006
159 R Zhang, B Xue, Y Tao, H Zhao, Z Zhang, X Wang, X Zhou, B Jiang, Z Yang, X Yan. et al.. (2022). Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Advanced Materials, 34(39): 2205324
https://doi.org/10.1002/adma.202205324
160 X Zhao, X Liu, X Xu, Y V Fu. (2017). Microbe social skill: the cell-to-cell communication between microorganisms. Science Bulletin, 62(7): 516–524
https://doi.org/10.1016/j.scib.2017.02.010
161 C Zhou, Q Wang, J Jiang, L Gao. (2022a). Nanozybiotics: nanozyme-based antibacterials against bacterial resistance. Antibiotics, 11(3): 390
https://doi.org/10.3390/antibiotics11030390
162 Z Zhou, W He, H Chao, H Wang, P Su, J Song, Y Yang. (2022b). Insertion of hemin into metal–organic frameworks: mimicking natural peroxidase microenvironment for the rapid ultrasensitive detection of uranium. Analytical Chemistry, 94(18): 6833–6841
https://doi.org/10.1021/acs.analchem.2c00661
163 G Zhu, P Zheng, M Wang, W Chen, C Li. (2022). A novel CuCoS nanozyme for synergistic photothermal and chemodynamic therapy of tumors. Inorganic Chemistry Frontiers, 9(5): 1006–1015
https://doi.org/10.1039/D1QI01563J
164 Z Zhu, L Wang, Q Li. (2018). A bioactive poly (vinylidene fluoride)/graphene oxide@acylase nanohybrid membrane: Enhanced anti-biofouling based on quorum quenching. Journal of Membrane Science, 547: 110–122
https://doi.org/10.1016/j.memsci.2017.10.041
165 J Zhuang, A C Midgley, Y Wei, Q Liu, D Kong, X Huang. (2024). Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Advanced Materials, 36(10): 2210848
https://doi.org/10.1002/adma.202210848
[1] Qiannan Duan, Pengwei Yan, Yichen Feng, Qianru Wan, Xiaoli Zhu. Machine learning assisted adsorption performance evaluation of biochar on heavy metal[J]. Front. Environ. Sci. Eng., 2024, 18(5): 55-.
[2] Joe F. Bozeman III. Bolstering integrity in environmental data science and machine learning requires understanding socioecological inequity[J]. Front. Environ. Sci. Eng., 2024, 18(5): 65-.
[3] Yanpeng Huang, Chao Wang, Yuanhao Wang, Guangfeng Lyu, Sijie Lin, Weijiang Liu, Haobo Niu, Qing Hu. Application of machine learning models in groundwater quality assessment and prediction: progress and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(3): 29-.
[4] Wiley Helm, Shifa Zhong, Elliot Reid, Thomas Igou, Yongsheng Chen. Development of gradient boosting-assisted machine learning data-driven model for free chlorine residual prediction[J]. Front. Environ. Sci. Eng., 2024, 18(2): 17-.
[5] Yuchao Chen, Kun Dong, Yiming Zhang, Junjian Zheng, Minmin Jiang, Dunqiu Wang, Xuehong Zhang, Xiaowu Huang, Lijie Zhou, Haixiang Li. Enhancing biofilm formation in the hydrogen-based membrane biofilm reactor through bacterial Acyl-homoserine lactones[J]. Front. Environ. Sci. Eng., 2024, 18(11): 142-.
[6] Mahmoud A. Ahmed, Safwat A. Mahmoud, Ashraf A. Mohamed. Unveiling the complexities of microbiologically induced corrosion: mechanisms, detection techniques, and mitigation strategies[J]. Front. Environ. Sci. Eng., 2024, 18(10): 120-.
[7] Xin Tang, Yin Ye, Chunlin Wang, Bingqian Wang, Zemin Qin, Cui Li, Yanlong Chen, Yuheng Wang, Zhiling Li, Miao Lv, Aijie Wang, Fan Chen. Microbial-driven ectopic uranium extraction with net electrical energy production[J]. Front. Environ. Sci. Eng., 2024, 18(1): 4-.
[8] Yang Zhang, Mei Lei, Kai Li, Tienan Ju. Spatial prediction of soil contamination based on machine learning: a review[J]. Front. Environ. Sci. Eng., 2023, 17(8): 93-.
[9] Zhongyao Liang, Yaoyang Xu, Gang Zhao, Wentao Lu, Zhenghui Fu, Shuhang Wang, Tyler Wagner. Approaching the upper boundary of driver-response relationships: identifying factors using a novel framework integrating quantile regression with interpretable machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(6): 76-.
[10] Yirong Hu, Wenjie Du, Cheng Yang, Yang Wang, Tianyin Huang, Xiaoyi Xu, Wenwei Li. Source identification and prediction of nitrogen and phosphorus pollution of Lake Taihu by an ensemble machine learning technique[J]. Front. Environ. Sci. Eng., 2023, 17(5): 55-.
[11] Yinghui Mo, Liping Sun, Lu Zhang, Jianxin Li, Jixiang Li, Xiuru Chu, Liang Wang. Electrocatalytic biofilm reactor for effective and energy-efficient azo dye degradation: the synergistic effect of MnOx/Ti flow-through anode and biofilm on the cathode[J]. Front. Environ. Sci. Eng., 2023, 17(4): 49-.
[12] Rui Liang, Chao Chen, Akash Kumar, Junyu Tao, Yan Kang, Dong Han, Xianjia Jiang, Pei Tang, Beibei Yan, Guanyi Chen. State-of-the-art applications of machine learning in the life cycle of solid waste management[J]. Front. Environ. Sci. Eng., 2023, 17(4): 44-.
[13] Zhuqiu Sun, Bairen Yang, Marvin Yeung, Jinying Xi. Effects of exogenous acylated homoserine lactones on biofilms in biofilters for gaseous toluene treatment[J]. Front. Environ. Sci. Eng., 2023, 17(2): 17-.
[14] Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi. A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning[J]. Front. Environ. Sci. Eng., 2023, 17(12): 148-.
[15] Weishuai Li, Jingang Huang, Zhuoer Shi, Wei Han, Ting Lü, Yuanyuan Lin, Jianfang Meng, Xiaobing Xu, Pingzhi Hou. Machine learning enabled prediction and process optimization of VFA production from riboflavin-mediated sludge fermentation[J]. Front. Environ. Sci. Eng., 2023, 17(11): 135-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed