Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (11) : 144    https://doi.org/10.1007/s11783-024-1904-4
Advances in the electrochemical degradation of environmental persistent organochlorine pollutants: materials, mechanisms, and applications
Xinlong Pei1, Ruichao Shang1, Baitao Chen1, Zehui Wang1, Xiaolong Yao2(), Hong Zhu1()
1. College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China
2. Department of Environment Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
 Download: PDF(4060 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Electrochemical degradations of the organochlorine pollutants are reviewed.

● Materials and mechanisms of the degradation are introduced.

● Different environmental and property of POCPs are compared.

● Development and applications of modified degradation materials are discussed.

● Molecular, electrode material and solution influences are also illustrated.

Pollution from persistent organic chlorinated pollutants (POCPs) in water environments is attributable to historical reasons and the lack of effective discharge regulations. Electrochemical degradation of POCPs, as a key study for POCP degradation, involves the use of electrons as reducing or oxidizing agents. The occurrence of this degradation depends on the environmental characteristics of the POCPs, the electrochemical materials used, and the technology and mechanisms involved. Furthermore, regarding the development of new materials and technologies, such as micro-, nano-, and atomic-sized materials, the degradation of POCPs achieves higher degradation efficiency and maximizes current utilization efficiency. In this review article, we first summarize the current status and future opportunities of the electrochemical degradation of POCPs. Environmental characteristics of POCPs facilitate a comparison of POCP degradation, and a comparison of electrochemical materials and their methods is made. Subsequently, we discuss technologies for the electrochemical degradation of POCPs from three aspects: oxidation, reduction, and a combination of oxidation and reduction. Moreover, the mechanisms were generalized in terms of molecular structure, electrode materials, and solution environment. In addition to maximizing the intrinsic enhancement factors of degradation, strategies to improve environmental accessibilities are equally important. This review article aims to effectively guide the advancement of POCP degradation and the remediation of environmental water pollution.

Keywords Persistent organochlorine pollutants      Electrochemical degradation      Hydrogenolysis reduction dichlorination      Catalytic oxidation     
Corresponding Author(s): Xiaolong Yao,Hong Zhu   
Issue Date: 20 September 2024
 Cite this article:   
Xinlong Pei,Ruichao Shang,Baitao Chen, et al. Advances in the electrochemical degradation of environmental persistent organochlorine pollutants: materials, mechanisms, and applications[J]. Front. Environ. Sci. Eng., 2024, 18(11): 144.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1904-4
https://academic.hep.com.cn/fese/EN/Y2024/V18/I11/144
Fig.1  The problem and demand diagram for electrochemical degradation of POCPs.
Electrode materials POCPs Degradation methods Current efficiency and environmental conditions Citations
Rh NPs-PdMER TCAA Electrocatalytic hydrogenation Without a supportingElectrolyte, nature water Xu et al. (2023b)
Pd NCs/Ni Six chlorophenols Electrochemical hydrodechlorination High concentration, in agricultural, industrial, and pharmaceuticalwastewaters Wu et al. (2023)
Noble-metal-free 3D hierarchical Ni-WC 4-CP Electrocatalytic hydrodechlorination Current efficiency of 13.9%, low concentration Wang et al. (2023d)
Nanoporous NiPd Benzaldehyde Electrocatalytic hydrogenation High turnover frequency value, low concentration Cheng et al. (2023)
Pd/C@CF Methyl blue and Tetracycline Heterogeneous electro-Fenton Utilization of H* toward a rapid HEF oxidation, industrial,agricultural, and pharmaceutical wastewater
Fe-Ni/rGO/Ni foam chlorinated alkenes EHDC Faradaic efficiency was over 78.8%, in groundwater and surface water Tang et al. (2022)
Electron-rich Fe-N4 Trichloroacetamide DBP Direct dechlorination 37% of current efficiency, drinking water at end-control Lou et al. (2022)
Pd/Ni2P-Ni foam nanosheet array Chlorophenols Electrocatalytic hydrodechlorination In situphosphatization-electrodeposition, simultaneous removal of trace 4-CP and nitrite Li et al. (2022)
Pd/carbon-nanotubes (CNTs)-Nafion/Ti 2,3,5-Trichlorophenol Electrochemical reduction 9.4%, initial pH 2, high concentration Sun et al. (2017)
Pd/MWCNTs 4-Chlorophenol Electrochemical hydrogen reduction 94%–54%, initial pH 5.7, 4-CP (0.2 mmol/L) Shu et al. (2019)
Carbon supported Pd 2,4-Dichlorophenol Adsorption and reduction dechlorination initial pH 5.7 Zhou et al. (2019)
Pd/PPy-rGO/NF 4-Chlorophenol Electrochemical hydrogen dechlorination 39.9%, initial pH 3, 4-CP (100 mg/L) Yu et al. (2020)
Carbon nanomaterials 1,2-Dichloroethylene Electrochemical dechlorination High concentration Gan et al. (2021)
A-Pd-NC 4-Chlorophenol Electrochemical hydrogen dechlorination 3.6%, initial pH 3 Mao et al. (2021)
CTAB-Pd/GAC 2,4-Dichlorophenol Electrochemical reduction 9.8 × 10−3 min/g, added CTAB (80 mg/g) Zhou et al. (2021)
Cu–Ni bimetal TCE Hydrogen dechlorination 6%, finial pH 4.7 Liu et al. (2018)
rGO-Fe/Ni TCE Hydrogen dechlorination water and wastewater treatment Sahu et al. (2018)
Amorphous nickel phosphide TCAA Electrochemical dechlorination 66.3%, dechlorination in a broad pH range Yao et al. (2019)
Ni-P/MWCNTs Hexachlorobenzene Electrochemical dechlorination In DMF Lemesh et al., (2020)
Pd-NiMOF/Ni 2,4-Dichlorophenol Electrochemical hydrogen dechlorination Adsorption and hydrogenolysis, in a broad pH range Shen et al. (2020)
MoS2 FLO Electrochemical oxidation Antibiotic wastewater, initial pH = 5.75 Yang et al. (2022a)
A-Ni-N-C Chloroacetic acid Electrochemical dechlorination 60%, in a broad pH range Xu et al. (2020)
A-Pd-SiC Chlorophenols Electrochemical dechlorination H2 purging Chu et al. (2021)
A-Fe-N-C 1,2-Dichloroethylene Electrochemical dechlorination Groundwater remediation Deng et al. (2021)
Microorganism 2,4-Dichlorophenol Microbial fuel cell In a broad pH range, effluent Leon-Fernandez et al. (2021)
organic copper ligand CH2Cl2 electrochemical dechlorination Heterogeneous method Williams et al. (2021)
A-Fe/Cu-NPC 4-Chlorophenol Electrochemical fenton In a broad pH range, long-term stable Zhao et al. (2021)
Tab.1  Recent studies on electrochemical degradation of POCP
Fig.2  (a) Schematic of TCAA electrochemical dechlorination on Ni2P, dechlorination by H*, and An illustration of the formation of H* by water molecules at the cathode (Yao et al., 2019), copyright 2019, Elsevier; (b) the proposed reaction pathway involves 4-CP adsorption on Ni-WC/NF electrode (Wang et al. 2023d), copyright 2023,Elsevier.
Fig.3  (a) Electrocatalytic hydrogenolysis 2,4-dichlorophenol on Pd NiMOF/Ni (Shen et al., 2020), copyright 2020, Elsevier; (b) indirect dechlorination path of CAPs catalyzed by Pd NCs/Ni; (c) catalytic sites of electrochemical HDC on the surface of Pd NCs (Wu et al., 2023), copyright 2023, Elsevier.
Fig.4  (a) Schematic of dechlorination by copper-based ligand (Williams et al., 2021), copyright 2021, ACS; (b) schematic of rod-like nanostructured Cu−Co spinel for efficient electrocatalytic dechlorination (Wang et al., 2023b), copyright 2023, ACS.
Fig.5  (a) Schematic of electro-Fenton reaction on FeCu-NPC electrode (Zhao et al., 2021), copyright 2021, ACS; (b) illustration of the possible structural evolution mechanism of L10-PtAuFe (Wang et al., 2023c), copyright 2023, Elsevier.
Fig.6  (a)−(b) Schematic of electrode reducing florfenicol on MoS2 (Yang et al., 2022a), copyright 2022, Elsevier; (c) scheme showing the pollutant degradation mechanism in PS/Fe2O3@MCHS system (Narendra Kumar and Shin, 2023), copyright 2023, Elsevier.
Fig.7  Three dechlorination mechanisms: (a) direct dechlorination; (b) indirect dechlorination catalyzed by redox mediator; (c) indirect dechlorination catalyzed by active H*, (Durante et al., 2013), copyright 2013, Springer nature, (d) reduction-oxidation degradation mechanism of 4-CP in the sequential reduction-oxidation process (Yang et al., 2023), copyright 2023, Elsevier.
Fig.8  (a) Two dechlorination mechanisms and their different products (Zhu et al., 2015), copyright 2015, Springer; (b) proposed dechlorination mechanism of TCAA on A-Ni-NG (Xu et al., 2020), copyright 2020, Elsevier.
1 R M Asmussen, M Tian, A Chen. (2009). A new approach to wastewater remediation based on bifunctional electrodes. Environmental Science & Technology, 43(13): 5100–5105
https://doi.org/10.1021/es900582m
2 R Baran, A Srebowata, S Casale, D Łomot, S Dzwigaj. (2014). Hydrodechlorination of 1,2-dichloroethane on nickel loaded Beta zeolite modified by copper: influence of nickel and copper state on product selectivity. Catalysis Today, 226: 134–140
https://doi.org/10.1016/j.cattod.2013.09.005
3 Y Bian, L Liu, D Liu, Z Zhu, Y Shao, M Li. (2020). Electrochemical synthesis of carbon nano onions. Inorganic Chemistry Frontiers, 7(22): 4404–4411
https://doi.org/10.1039/D0QI00950D
4 F Cao, Z Li, Q He, S Lu, P Qin, L Li. (2021). Occurrence, spatial distribution, source, and ecological risk assessment of organochlorine pesticides in Dongting Lake, China. Environmental Science and Pollution Research International, 28(24): 30841–30857
https://doi.org/10.1007/s11356-021-12743-x
5 K E Carter, J Farrell. (2009). Electrochemical oxidation of trichloroethylene using boron-doped diamond film electrodes. Environmental Science & Technology, 43(21): 8350–8354
https://doi.org/10.1021/es9017738
6 D Chen, M Li, Y Chen, Z Shao, Y Wei, Y Xian, X C Liu, X Ying. (2023a). Enhanced mass transfer and optimized electronic structure on Pd–Ag nanoparticles embedded in mesoporous carbon for superior electro-oxidation. Journal of Solid State Electrochemistry, 27(10): 2737–2750
https://doi.org/10.1007/s10008-023-05561-3
7 M Chen, M Yin, Y Su, R Li, K Liu, Z Wu, X Weng. (2023b). Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study. Frontiers of Environmental Science & Engineering, 17(11): 134–145
https://doi.org/10.1007/s11783-023-1734-9
8 S Chen, Z C Qin, X Quan, Y B Zhang, H M Zhao. (2010). Electrocatalytic dechlorination of 2,4,5-trichlorobiphenyl using an aligned carbon nanotubes electrode deposited with palladium nanoparticles. Chinese Science Bulletin, 55(4−5): 358–364
https://doi.org/10.1007/s11434-010-0003-z
9 W Chen, J Wu, B Wang. (2023c). Intermittent oxygen supply facilitates codegradation of trichloroethene and toluene by anaerobic consortia. Environmental Science & Technology, 57(28): 10252–10262
https://doi.org/10.1021/acs.est.3c02481
10 Z Chen, Y Liu, W Wei, B J Ni. (2019). Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environmental Science. Nano, 6(8): 2332–2366
https://doi.org/10.1039/C9EN00411D
11 G Cheng, Z Zhai, J Sun, Y Ran, W Yang, F Tan, Z Zhang. (2023). Elucidating role of alloying in electrocatalytic hydrogenation of benzaldehyde over nanoporous NiPd catalysts. Chemical Engineering Journal, 474: 145631–145638
https://doi.org/10.1016/j.cej.2023.145631
12 C Chu, D Huang, S Gupta, S Weon, J Niu, E Stavitski, C Muhich, J H Kim. (2021). Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 12(1): 5179–5185
https://doi.org/10.1038/s41467-021-25526-2
13 J Deng, X Hu, E Gao, F Wu, W Yin, L Huang, D Dionysiou. (2021). Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon. Journal of Hazardous Materials, 419: 126458–126466
https://doi.org/10.1016/j.jhazmat.2021.126458
14 M K Denk, N S Milutinović. (2018). Reductive dehalogenation of DDT with folate models: formation of the DDT metabolite spectrum under biomimetic conditions. Chemosphere, 191: 408–411
https://doi.org/10.1016/j.chemosphere.2017.10.055
15 C Durante, A A Isse, A Gennaro. (2013). Electrocatalytic dechlorination of polychloroethylenes at silver cathode. Journal of Applied Electrochemistry, 43(2): 227–235
https://doi.org/10.1007/s10800-012-0483-4
16 F Faisal, M G Rasul, M I Jahirul, A A Chowdhury. (2023). Waste plastics pyrolytic oil is a source of diesel fuel: a recent review on diesel engine performance, emissions, and combustion characteristics. Science of the Total Environment, 886: 163756
https://doi.org/10.1016/j.scitotenv.2023.163756–163777
17 J Filip, S Vinter, P Skacelik, J Sotolarova, K Borska, J Osicka. (2021). Silver integrated with carbonaceous 2D nanomaterials as an electrocatalyst for reductive dechlorination of chloroacetanilide herbicide. Journal of the Electrochemical Society, 168(3): 037504–037513
https://doi.org/10.1149/1945-7111/abe8ec
18 G Gan, S Fan, X Li, J Wang, C Bai, X Guo, M Tade, S Liu. (2021). Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catalysis, 11(22): 14284–14292
https://doi.org/10.1021/acscatal.1c03701
19 J Guo, W Chen, M Wu, C Qu, H Sun, J Guo. (2023). Distribution, sources, and risk assessment of organochlorine pesticides in water from Beiluo River, Loess Plateau, China. Toxics, 11(6): 496–509
https://doi.org/10.3390/toxics11060496
20 Q Guo, Y Xin, W Liang, Y Shi, C Jin, L Peng, H Guo. (2020). Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano, 14(8): 9929–9937
https://doi.org/10.1021/acsnano.0c02783
21 R He, X Wu, H Mu, L Chen, H Hu, J Wang, H Ren, B Wu. (2023). Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. Water Research, 243: 120338–120346
https://doi.org/10.1016/j.watres.2023.120338
22 Y Hu, X Ma, R Liu, I Mushtaq, Y Qi, C Yuan, D Huang. (2022). 2,4-Dichlorophenol increases primordial germ cell numbers via ESR2a-dependent pathway in zebrafish larvae. Environmental Science & Technology, 56(19): 13878–13887
https://doi.org/10.1021/acs.est.2c05212
23 Z Huo, M Xi, L Xu, C Jiang, W Chen. (2024). Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments. Frontiers of Environmental Science & Engineering, 18(2): 21–31
https://doi.org/10.1007/s11783-024-1781-x
24 W G Jeong, J G Kim, K Baek. (2022). Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. Journal of Hazardous Materials, 428: 128253
https://doi.org/10.1016/j.jhazmat.2022.128253
25 Y Jiang, H Zhao, J Liang, L Yue, T Li, Y Luo, Q Liu, S Lu, A M Asiri, Z Gong. et al.. (2021). Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms: a mini review. Electrochemistry Communications, 123: 106912
https://doi.org/10.1016/j.elecom.2020.106912
26 S Khene, T Nyokong. (2011). Electrooxidation of chlorophenols catalyzed by nickel octadecylphthalocyanine adsorbed on single-walled carbon nanotubes. Electroanalysis, 23(8): 1901–1911
https://doi.org/10.1002/elan.201100155
27 D Kul, C M A Brett. (2014). Electrochemical investigation and determination of levodopa on Poly(nile blue-a)/multiwalled carbon nanotube modified glassy carbon electrodes. Electroanalysis, 26(6): 1320–1325
https://doi.org/10.1002/elan.201400071
28 N V Lemesh, A M Mishura, J Tang, P E Strizhak. (2020). Simple two-stages synthesis of Ni/P-MWCNTs nanocomposite as efficient catalyst for the hexachlorobenzene electrochemical dechlorination. Fullerenes, Nanotubes, and Carbon Nanostructures, 28(12): 1002–1009
https://doi.org/10.1080/1536383X.2020.1792445
29 L F Leon-Fernandez, M A Rodrigo, J Villaseñor, F J Fernandez-Morales. (2021). Bio-electrocatalytic dechlorination of 2,4-dichlorophenol: effect of pH and operational configuration. Electrochimica Acta, 367: 137456
https://doi.org/10.1016/j.electacta.2020.137456
30 J Li, Y Chen, R Bai, C Chen, W Wang, Y Pan, Y Liu. (2022). Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination. Chemical Engineering Journal, 435: 134932
https://doi.org/10.1016/j.cej.2022.134932
31 J Li, Y J Li, Z K Xiong, G Yao, B Lai. (2019). The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review. Chinese Chemical Letters, 30(12): 2139–2146
https://doi.org/10.1016/j.cclet.2019.04.057
32 J Li, C Zhang, Y Li, Y Pan, Y Liu. (2023). Rational design and structural regulation of robust catalysts for electrocatalytic hydrodechlorination: from nanostructures to single atoms. ACS Catalysis, 13(14): 9633–9655
https://doi.org/10.1021/acscatal.3c01830
33 B Liu, H Zhang, Q Lu, G Li, F Zhang. (2018). A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Science of the Total Environment, 635: 1417–1425
https://doi.org/10.1016/j.scitotenv.2018.04.238
34 L Liu, Y Chen, S Li, W Yu, X Zhang, H Wang, J Ren, Z Bian. (2023a). Enhanced electrocatalytic cathodic degradation of 2,4-dichlorophenoxy acetic acid based on a synergistic effect obtained from Co single atoms and Cu nanoclusters. Applied Catalysis B: Environmental, 332: 122748
https://doi.org/10.1016/j.apcatb.2023.122748
35 Y Liu, W Deng, X Wu, C Hu, L Lyu. (2024). Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction of emerging contaminants. Frontiers of Environmental Science & Engineering, 18(4): 44
https://doi.org/10.1007/s11783-024-1804-7
36 Y Liu, Q Zhang, A Sidike, N Ailijiang, A Mamat, G Zhang, M Pu, W Cheng, Z Pang. (2022). The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure. Frontiers of Environmental Science & Engineering, 16(11): 141
https://doi.org/10.1007/s11783-022-1576-x
37 Y Lou, W He, E Verlato, M Musiani, D Floner, F Fourcade, A Amrane, C Li, Z Q Tian, O Merdrignac-Conanec. et al.. (2019). Ni-coated graphite felt modified with Ag nanoparticles: a new electrode material for electro-reductive dechlorination. Journal of Electroanalytical Chemistry, 849: 113357
https://doi.org/10.1016/j.jelechem.2019.113357
38 Y Lou, S Yin, J Yang, L Ji, J Fang, S Zhang, M Feng, X Yu, Y Jiang, S Sun. (2022). MOF-derived single site catalysts with Electron-Rich Fe-N4 sites for efficient elimination of trichloroacetamide DBP. Chemical Engineering Journal, 446: 137060
https://doi.org/10.1016/j.cej.2022.137060
39 Y Lu, X Li, C Giovanni, B Wang. (2023). Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science & Engineering, 17(7): 89
https://doi.org/10.1007/s11783-023-1689-x
40 T MaclucasP GrützmacherS HusmannJ SchmauchS Keskin S SuarezV PresserC GachotF (2023) Mücklich. Degradation analysis of tribologically loaded carbon nanotubes and carbon onions. npj Materials Degradation, 7(1): 31
41 K Magnoli, C Carranza, M Aluffi, C Magnoli, C Barberis. (2023). Fungal biodegradation of chlorinated herbicides: an overview with an emphasis on 2,4-D in Argentina. Biodegradation, 34(3): 199–214
https://doi.org/10.1007/s10532-023-10022-9
42 Z Mao, L Liu, H B Yang, Y Zhang, Z Yao, H Wu, Y Huang, Y Xu, B Liu. (2021). Atomically dispersed Pd electrocatalyst for efficient aqueous phase dechlorination reaction. Electrochimica Acta, 391: 138886
https://doi.org/10.1016/j.electacta.2021.138886
43 E T Martin, C M Mcguire, M S Mubarak, D G Peters. (2016). Electroreductive remediation of halogenated environmental pollutants. Chemical Reviews, 116(24): 15198–15234
https://doi.org/10.1021/acs.chemrev.6b00531
44 A V Narendra Kumar, W S Shin. (2023). Yolk-shell Fe2O3@mesoporous hollow carbon sphere hybrid sub-micro reactors for effective degradation of organic contaminants. Chemical Engineering Journal, 465: 142922
https://doi.org/10.1016/j.cej.2023.142922
45 L Parra-ArroyoR B González-GonzálezC Castillo-ZacaríasMartínez E M MelchorJ E Sosa-HernándezM BilalH M N Iqbal D BarcelóR (2022) Parra-Saldívar. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Science of the Total Environment, 807(Pt 3): 151879
46 G K Parshetti, R A Doong. (2012). Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions. Chemosphere, 86(4): 392–399
https://doi.org/10.1016/j.chemosphere.2011.10.028
47 T Poursaberi, Z Falsafi, M Hassanisadi, A Jabbari. (2015). Simultaneous adsorption and dechlorination of carbon tetrachloride using copper nanoparticles@graphene oxide composites. Journal of the Iranian Chemical Society, 12(1): 67–74
https://doi.org/10.1007/s13738-014-0455-1
48 X Qin, P Cao, X Quan, K Zhao, S Chen, H Yu, Y Su. (2023). Highly efficient hydroxyl radicals production boosted by the atomically dispersed Fe and Co sites for heterogeneous electro-fenton oxidation. Environmental Science & Technology, 57(7): 2907–2917
https://doi.org/10.1021/acs.est.2c06981
49 S Rondinini, E Pargoletti, A Vertova, A Minguzzi. (2021). Hydrodehalogenation of polychloromethanes on silver-based gas diffusion electrodes. ChemElectroChem, 8(10): 1892–1898
https://doi.org/10.1002/celc.202100379
50 R S Sahu, D L Li, R A Doong. (2018). Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles. Chemical Engineering Journal, 334: 30–40
https://doi.org/10.1016/j.cej.2017.10.019
51 A Sennaoui, F Sakr, S Alahiane, M Dinne, A Assabbane, E Ait Addi. (2024). Electro-Fenton process for treatment of hydroxybenzoic acids solutions using boron-doped diamond/carbon-felt cells: application to olive mill wastewater. International Journal of Environmental Science and Technology, 21(4): 4471–4482
https://doi.org/10.1007/s13762-023-05278-w
52 C Shan, H Liu, M Hua, B Pan. (2020). Enhanced fenton-like oxidation of As(III) over Ce-Ti binary oxide: a new strategy to tune catalytic activity via balancing bimolecular adsorption energies. Environmental Science & Technology, 54(9): 5893–5901
https://doi.org/10.1021/acs.est.0c00159
53 Y Shen, Y Tong, J Xu, S Wang, J Wang, T Zeng, Z He, W Yang, S Song. (2020). Ni-based layered metal-organic frameworks with palladium for electrochemical dechlorination. Applied Catalysis B: Environmental, 264: 118505
https://doi.org/10.1016/j.apcatb.2019.118505
54 Q Shi, H Wang, S Liu, Z Bian. (2014). Electrocatalytic degradation of 2,4-dichlorophenol using a Pd/graphene gas-diffusion electrode. RSC Advances, 4(99): 56263–56272
https://doi.org/10.1039/C4RA09253H
55 X Shu, Q Yang, F Yao, Y Zhong, W Ren, F Chen, J Sun, Y Ma, Z Fu, D Wang. et al.. (2019). Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes. Chemical Engineering Journal, 358: 903–911
https://doi.org/10.1016/j.cej.2018.10.095
56 Z Sun, X Ma, X Hu. (2017). Electrocatalytic dechlorination of 2,3,5-trichlorophenol on palladium/carbon nanotubes-nafion film/titanium mesh electrode. Environmental Science and Pollution Research International, 24(16): 14355–14364
https://doi.org/10.1007/s11356-017-9004-7
57 H Tang, Z Bian, Y Peng, S Li, H Wang. (2022). Stepwise dechlorination of chlorinated alkenes on an Fe-Ni/rGO/Ni foam cathode: product control by one-electron-transfer reactions. Journal of Hazardous Materials, 433: 128744
https://doi.org/10.1016/j.jhazmat.2022.128744
58 N L Teradal, P S Narayan, A K Satpati, J Seetharamappa. (2014). Fabrication of electrochemical sensor based on green reduction of graphene oxide for an antimigraine drug, rizatriptan benzoate. Sensors and Actuators. B, Chemical, 196: 596–603
https://doi.org/10.1016/j.snb.2014.02.015
59 M Varol, M R Sünbül. (2017). Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey. Environmental Pollution, 230: 311–319
https://doi.org/10.1016/j.envpol.2017.06.066
60 B Wang, L Heng, Q Sui, Z Peng, X Xiao, M Zheng, J Hu, H Fiedler, D Barceló, G Yu. (2023a). Insight of chemical environmental risk and its management from the vinyl chloride accident. Frontiers of Environmental Science & Engineering, 17(4): 52
https://doi.org/10.1007/s11783-023-1652-x
61 J Wang, S Fan, X Li, Z Niu, Z Liu, C Bai, J Duan, M O Tadé, S Liu. (2023b). Rod-like nanostructured Cu–Co spinel with rich oxygen vacancies for efficient electrocatalytic dechlorination. ACS Applied Materials & Interfaces, 15(10): 12915–12923
https://doi.org/10.1021/acsami.2c19134
62 M Wang, Y Liu, Y Li, S Chen, Z Wei. (2023c). Stabilizing Fe in intermetallic L10-PtAuFe nanoparticles with strong Au–Fe bond to boost oxygen reduction reaction activity and durability. Chemical Engineering Journal, 465: 142748
https://doi.org/10.1016/j.cej.2023.142748
63 Q Wang, J Du, Y Ma, X Yin, Z Tian, Z Han. (2023d). Noble-metal-free 3D hierarchical Ni-WC heterostructure with enhanced interfacial charge transfer for efficient electrocatalytic hydrodechlorination. Chemical Engineering Journal, 451: 139107
https://doi.org/10.1016/j.cej.2022.139107
64 W Wang, X Yu, H He, Y Wang, Y Li, L Deng, Y N Liu. (2023e). Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction. Chemical Engineering Journal, 465: 142865
https://doi.org/10.1016/j.cej.2023.142865
65 X Wang, J Li, M Fu, B Yuan, H Cui, Y Wang. (2015). Fabrication and evaluation of Au–Pd core-shell nanocomposites for dechlorination of diclofenac in water. Environmental Technology, 36(12): 1510–1518
https://doi.org/10.1080/09593330.2014.994044
66 Z WangX LuB YuY YangL Wang K (2023f) Lei. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. Science of the Total Environment, 887: 164022
67 C K Williams, G A Mccarver, A Lashgari, K D Vogiatzis, J J Jiang. (2021). Electrocatalytic dechlorination of dichloromethane in water using a heterogenized molecular copper complex. Inorganic Chemistry, 60(7): 4915–4923
https://doi.org/10.1021/acs.inorgchem.0c03833
68 H Wu, Z Mao, B Liu, D Chen, M Shi, B Lv, Y Xu, L Wang. (2023). Ultra-low-loading Pd nanocrystals modified Ni foam electrode for efficient electrochemical hydrodechlorination. Applied Catalysis B: Environmental, 337: 122978
https://doi.org/10.1016/j.apcatb.2023.122978
69 J Wu, B Wang, G Cagnetta, J Huang, Y Wang, S Deng, G Yu. (2020). Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Separation and Purification Technology, 239: 116534
https://doi.org/10.1016/j.seppur.2020.116534
70 J Xu, X Fu, Y Liu, Y Zhang, S Chen, D Li, C Zhang, J Gao, Y Fu. (2023a). Electrocatalytic dechlorination of florfenicol using a Pd-loaded on blue TiO2 nanotube arrays cathode. Separation and Purification Technology, 323: 124460
https://doi.org/10.1016/j.seppur.2023.124460
71 Y Xu, X Ding, H Ma, Y Chu, C Ma. (2015). Selective hydrodechlorination of 3,5,6-trichloropicolinic acid at an activated silver cathode: synthesis of 3,5-dichloropicolinic acid. Electrochimica Acta, 151: 284–288
https://doi.org/10.1016/j.electacta.2014.11.039
72 Y Xu, Z Mao, R Qu, J Wang, J Yu, X Luo, M Shi, X Mao, J Ding, B Liu. (2023b). Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nature Water, 1(1): 95–103
https://doi.org/10.1038/s44221-022-00002-3
73 Y Xu, Z Yao, Z Mao, M Shi, X Zhang, F Cheng, H B Yang, H B Tao, B Liu. (2020). Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Applied Catalysis B: Environmental, 277: 119057
https://doi.org/10.1016/j.apcatb.2020.119057
74 M S Yalfani, A Georgi, S Contreras, F Medina, F D Kopinke. (2011). Chlorophenol degradation using a one-pot reduction–oxidation process. Applied Catalysis B: Environmental, 104(1−2): 161–168
75 J Yang, S Jiang, W Hu, H Jiang. (2022a). Highly efficient electrochemical dechlorination of florfenicol by an ultrathin molybdenum disulfide cathode. Chemical Engineering Journal, 427: 131600
https://doi.org/10.1016/j.cej.2021.131600
76 K Yang, I M Abu-Reesh, Z He. (2023). Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system. Journal of Hazardous Materials, 442: 130126
https://doi.org/10.1016/j.jhazmat.2022.130126
77 L Yang, C Chen, R Bao, Z Huang, W Wang, C Zhang, J Xia, J Geng, H Li. (2022b). Effective green electro-Fenton process induced by atomic hydrogen for rapid oxidation of organic pollutants over a highly active and reusable carbon based palladium nanocatalyst. Applied Surface Science, 602: 154325
https://doi.org/10.1016/j.apsusc.2022.154325
78 Q Yao, X Zhou, S Xiao, J Chen, I A Abdelhafeez, Z Yu, H Chu, Y Zhang. (2019). Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Research, 165: 114930
https://doi.org/10.1016/j.watres.2019.114930
79 H Yu, S Yang, B Zhao, Y Lu, S Zhu, X Wang, W Qin, M Huo. (2020). Enhanced electrochemical dechlorination of 4-chlorophenol on a nickel foam electrode modified with palladium, polypyrrole and graphene. Journal of Electroanalytical Chemistry, 869: 114099
https://doi.org/10.1016/j.jelechem.2020.114099
80 L Zhang, M Fang. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5(2): 128–142
https://doi.org/10.1016/j.nantod.2010.03.002
81 M Zhang, Q Shi, X Song, H Wang, Z Bian. (2019). Recent electrochemical methods in electrochemical degradation of halogenated organics: a review. Environmental Science and Pollution Research International, 26(11): 10457–10486
https://doi.org/10.1007/s11356-019-04533-3
82 K Zhao, X Quan, Y Su, X Qin, S Chen, H Yu. (2021). Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst. Environmental Science & Technology, 55(20): 14194–14203
https://doi.org/10.1021/acs.est.1c04943
83 Z Zheng, S Yuan, Y Liu, X Lu, J Wan, X Wu, J Chen. (2009). Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. Journal of Hazardous Materials, 170(2−3): 895–901
https://doi.org/10.1016/j.jhazmat.2009.05.052
84 J Zhou, Z Lou, Z Wang, C Zhou, C Li, S Ali Baig, X Xu. (2021). Electrocatalytic dechlorination of 2,4-DCBA using CTAB functionalized Pd/GAC movable granular catalyst: role of adsorption in catalysis. Chemical Engineering Journal, 414: 128758
https://doi.org/10.1016/j.cej.2021.128758
85 J Zhou, Z Lou, K Yang, J Xu, Y Li, Y Liu, S A Baig, X Xu. (2019). Electrocatalytic dechlorination of 2,4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: adsorption and dechlorination activity. Applied Catalysis B: Environmental, 244: 215–224
https://doi.org/10.1016/j.apcatb.2018.11.052
86 Z Zhou, W Ruan, H Huang, C Shen, B Yuan, C Huang. (2016). Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation. Chemical Engineering Journal, 283: 730–739
https://doi.org/10.1016/j.cej.2015.07.076
87 H Zhu, F Xu, J Zhao, L Jia, K Wu. (2015). Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling. Environmental Science and Pollution Research International, 22(18): 14299–14306
https://doi.org/10.1007/s11356-015-4675-4
88 M Zhuang, D Ren, H Guo, Z Wang, S Zhang, X Zhang, X Gong. (2021). Degradation of 2,4-dichlorophenol contaminated soil by ultrasound-enhanced laccase. Environmental Technology, 42(9): 1428–1437
https://doi.org/10.1080/09593330.2019.1669723
[1] Xin Xing, Na Li, Dandan Liu, Jie Cheng, Zhengping Hao. Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide[J]. Front. Environ. Sci. Eng., 2022, 16(10): 125-.
[2] Na Li, Xin Xing, Yonggang Sun, Jie Cheng, Gang Wang, Zhongshen Zhang, Zhengping Hao. Catalytic oxidation of o-chlorophenol over Co2XAl (X= Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts[J]. Front. Environ. Sci. Eng., 2020, 14(6): 105-.
[3] Tiejun Zhang, Jian Li, Hong He, Qianqian Song, Quanming Liang. NO oxidation over Co-La catalysts and NOx reduction in compact SCR[J]. Front. Environ. Sci. Eng., 2017, 11(2): 4-.
[4] Nanli QIAO,Xin ZHANG,Chi HE,Yang LI,Zhongshen ZHANG,Jie CHENG,Zhengping HAO. Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts[J]. Front. Environ. Sci. Eng., 2016, 10(3): 458-466.
[5] Longli BO, Jianbo LIAO, Yucai ZHANG, Xiaohui WANG, Quan YANG. CuO/zeolite catalyzed oxidation of gaseous toluene under microwave heating[J]. Front Envir Sci Eng, 2013, 7(3): 395-402.
[6] Chang-Mao HUNG, Wen-Liang LAI, Jane-Li LIN. Investigation of fluorescence characterization and electrochemical behavior on the catalysts of nanosized Pt-Rh/γ-Al2O3 to oxidize gaseous ammonia[J]. Front Envir Sci Eng, 2013, 7(3): 428-434.
[7] ZHOU Yunrui, ZHU Wanpeng, CHEN Xun. Catalytic activity of cerium-doped Ru/AlO during ozonation of dimethyl phthalate[J]. Front.Environ.Sci.Eng., 2008, 2(3): 354-357.
[8] GUO Ting, BAI Zhipeng, WU Can, ZHU Tan. Influence of environmental temperature and relative humidity on photocatalytic oxidation of toluene on activated carbon fibers coated TiO[J]. Front.Environ.Sci.Eng., 2008, 2(2): 224-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed