|
|
Advances in the electrochemical degradation of environmental persistent organochlorine pollutants: materials, mechanisms, and applications |
Xinlong Pei1, Ruichao Shang1, Baitao Chen1, Zehui Wang1, Xiaolong Yao2( ), Hong Zhu1( ) |
1. College of Bioscience and Resource Environment, Beijing University of Agriculture, Beijing 102206, China 2. Department of Environment Science and Engineering, Beijing Technology and Business University, Beijing 100048, China |
|
|
Abstract ● Electrochemical degradations of the organochlorine pollutants are reviewed. ● Materials and mechanisms of the degradation are introduced. ● Different environmental and property of POCPs are compared. ● Development and applications of modified degradation materials are discussed. ● Molecular, electrode material and solution influences are also illustrated. Pollution from persistent organic chlorinated pollutants (POCPs) in water environments is attributable to historical reasons and the lack of effective discharge regulations. Electrochemical degradation of POCPs, as a key study for POCP degradation, involves the use of electrons as reducing or oxidizing agents. The occurrence of this degradation depends on the environmental characteristics of the POCPs, the electrochemical materials used, and the technology and mechanisms involved. Furthermore, regarding the development of new materials and technologies, such as micro-, nano-, and atomic-sized materials, the degradation of POCPs achieves higher degradation efficiency and maximizes current utilization efficiency. In this review article, we first summarize the current status and future opportunities of the electrochemical degradation of POCPs. Environmental characteristics of POCPs facilitate a comparison of POCP degradation, and a comparison of electrochemical materials and their methods is made. Subsequently, we discuss technologies for the electrochemical degradation of POCPs from three aspects: oxidation, reduction, and a combination of oxidation and reduction. Moreover, the mechanisms were generalized in terms of molecular structure, electrode materials, and solution environment. In addition to maximizing the intrinsic enhancement factors of degradation, strategies to improve environmental accessibilities are equally important. This review article aims to effectively guide the advancement of POCP degradation and the remediation of environmental water pollution.
|
Keywords
Persistent organochlorine pollutants
Electrochemical degradation
Hydrogenolysis reduction dichlorination
Catalytic oxidation
|
Corresponding Author(s):
Xiaolong Yao,Hong Zhu
|
Issue Date: 20 September 2024
|
|
1 |
R M Asmussen, M Tian, A Chen. (2009). A new approach to wastewater remediation based on bifunctional electrodes. Environmental Science & Technology, 43(13): 5100–5105
https://doi.org/10.1021/es900582m
|
2 |
R Baran, A Srebowata, S Casale, D Łomot, S Dzwigaj. (2014). Hydrodechlorination of 1,2-dichloroethane on nickel loaded Beta zeolite modified by copper: influence of nickel and copper state on product selectivity. Catalysis Today, 226: 134–140
https://doi.org/10.1016/j.cattod.2013.09.005
|
3 |
Y Bian, L Liu, D Liu, Z Zhu, Y Shao, M Li. (2020). Electrochemical synthesis of carbon nano onions. Inorganic Chemistry Frontiers, 7(22): 4404–4411
https://doi.org/10.1039/D0QI00950D
|
4 |
F Cao, Z Li, Q He, S Lu, P Qin, L Li. (2021). Occurrence, spatial distribution, source, and ecological risk assessment of organochlorine pesticides in Dongting Lake, China. Environmental Science and Pollution Research International, 28(24): 30841–30857
https://doi.org/10.1007/s11356-021-12743-x
|
5 |
K E Carter, J Farrell. (2009). Electrochemical oxidation of trichloroethylene using boron-doped diamond film electrodes. Environmental Science & Technology, 43(21): 8350–8354
https://doi.org/10.1021/es9017738
|
6 |
D Chen, M Li, Y Chen, Z Shao, Y Wei, Y Xian, X C Liu, X Ying. (2023a). Enhanced mass transfer and optimized electronic structure on Pd–Ag nanoparticles embedded in mesoporous carbon for superior electro-oxidation. Journal of Solid State Electrochemistry, 27(10): 2737–2750
https://doi.org/10.1007/s10008-023-05561-3
|
7 |
M Chen, M Yin, Y Su, R Li, K Liu, Z Wu, X Weng. (2023b). Atmospheric heterogeneous reaction of chlorobenzene on mineral α-Fe2O3 particulates: a chamber experiment study. Frontiers of Environmental Science & Engineering, 17(11): 134–145
https://doi.org/10.1007/s11783-023-1734-9
|
8 |
S Chen, Z C Qin, X Quan, Y B Zhang, H M Zhao. (2010). Electrocatalytic dechlorination of 2,4,5-trichlorobiphenyl using an aligned carbon nanotubes electrode deposited with palladium nanoparticles. Chinese Science Bulletin, 55(4−5): 358–364
https://doi.org/10.1007/s11434-010-0003-z
|
9 |
W Chen, J Wu, B Wang. (2023c). Intermittent oxygen supply facilitates codegradation of trichloroethene and toluene by anaerobic consortia. Environmental Science & Technology, 57(28): 10252–10262
https://doi.org/10.1021/acs.est.3c02481
|
10 |
Z Chen, Y Liu, W Wei, B J Ni. (2019). Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environmental Science. Nano, 6(8): 2332–2366
https://doi.org/10.1039/C9EN00411D
|
11 |
G Cheng, Z Zhai, J Sun, Y Ran, W Yang, F Tan, Z Zhang. (2023). Elucidating role of alloying in electrocatalytic hydrogenation of benzaldehyde over nanoporous NiPd catalysts. Chemical Engineering Journal, 474: 145631–145638
https://doi.org/10.1016/j.cej.2023.145631
|
12 |
C Chu, D Huang, S Gupta, S Weon, J Niu, E Stavitski, C Muhich, J H Kim. (2021). Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 12(1): 5179–5185
https://doi.org/10.1038/s41467-021-25526-2
|
13 |
J Deng, X Hu, E Gao, F Wu, W Yin, L Huang, D Dionysiou. (2021). Electrochemical reductive remediation of trichloroethylene contaminated groundwater using biomimetic iron-nitrogen-doped carbon. Journal of Hazardous Materials, 419: 126458–126466
https://doi.org/10.1016/j.jhazmat.2021.126458
|
14 |
M K Denk, N S Milutinović. (2018). Reductive dehalogenation of DDT with folate models: formation of the DDT metabolite spectrum under biomimetic conditions. Chemosphere, 191: 408–411
https://doi.org/10.1016/j.chemosphere.2017.10.055
|
15 |
C Durante, A A Isse, A Gennaro. (2013). Electrocatalytic dechlorination of polychloroethylenes at silver cathode. Journal of Applied Electrochemistry, 43(2): 227–235
https://doi.org/10.1007/s10800-012-0483-4
|
16 |
F Faisal, M G Rasul, M I Jahirul, A A Chowdhury. (2023). Waste plastics pyrolytic oil is a source of diesel fuel: a recent review on diesel engine performance, emissions, and combustion characteristics. Science of the Total Environment, 886: 163756
https://doi.org/10.1016/j.scitotenv.2023.163756–163777
|
17 |
J Filip, S Vinter, P Skacelik, J Sotolarova, K Borska, J Osicka. (2021). Silver integrated with carbonaceous 2D nanomaterials as an electrocatalyst for reductive dechlorination of chloroacetanilide herbicide. Journal of the Electrochemical Society, 168(3): 037504–037513
https://doi.org/10.1149/1945-7111/abe8ec
|
18 |
G Gan, S Fan, X Li, J Wang, C Bai, X Guo, M Tade, S Liu. (2021). Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catalysis, 11(22): 14284–14292
https://doi.org/10.1021/acscatal.1c03701
|
19 |
J Guo, W Chen, M Wu, C Qu, H Sun, J Guo. (2023). Distribution, sources, and risk assessment of organochlorine pesticides in water from Beiluo River, Loess Plateau, China. Toxics, 11(6): 496–509
https://doi.org/10.3390/toxics11060496
|
20 |
Q Guo, Y Xin, W Liang, Y Shi, C Jin, L Peng, H Guo. (2020). Active sites in single-atom Fe-Nx-C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano, 14(8): 9929–9937
https://doi.org/10.1021/acsnano.0c02783
|
21 |
R He, X Wu, H Mu, L Chen, H Hu, J Wang, H Ren, B Wu. (2023). Priority control sequence of 34 typical pollutants in effluents of Chinese wastewater treatment plants. Water Research, 243: 120338–120346
https://doi.org/10.1016/j.watres.2023.120338
|
22 |
Y Hu, X Ma, R Liu, I Mushtaq, Y Qi, C Yuan, D Huang. (2022). 2,4-Dichlorophenol increases primordial germ cell numbers via ESR2a-dependent pathway in zebrafish larvae. Environmental Science & Technology, 56(19): 13878–13887
https://doi.org/10.1021/acs.est.2c05212
|
23 |
Z Huo, M Xi, L Xu, C Jiang, W Chen. (2024). Colloid-facilitated release of polybrominated diphenyl ethers at an e-waste recycling site: evidence from undisturbed soil core leaching experiments. Frontiers of Environmental Science & Engineering, 18(2): 21–31
https://doi.org/10.1007/s11783-024-1781-x
|
24 |
W G Jeong, J G Kim, K Baek. (2022). Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. Journal of Hazardous Materials, 428: 128253
https://doi.org/10.1016/j.jhazmat.2022.128253
|
25 |
Y Jiang, H Zhao, J Liang, L Yue, T Li, Y Luo, Q Liu, S Lu, A M Asiri, Z Gong. et al.. (2021). Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms: a mini review. Electrochemistry Communications, 123: 106912
https://doi.org/10.1016/j.elecom.2020.106912
|
26 |
S Khene, T Nyokong. (2011). Electrooxidation of chlorophenols catalyzed by nickel octadecylphthalocyanine adsorbed on single-walled carbon nanotubes. Electroanalysis, 23(8): 1901–1911
https://doi.org/10.1002/elan.201100155
|
27 |
D Kul, C M A Brett. (2014). Electrochemical investigation and determination of levodopa on Poly(nile blue-a)/multiwalled carbon nanotube modified glassy carbon electrodes. Electroanalysis, 26(6): 1320–1325
https://doi.org/10.1002/elan.201400071
|
28 |
N V Lemesh, A M Mishura, J Tang, P E Strizhak. (2020). Simple two-stages synthesis of Ni/P-MWCNTs nanocomposite as efficient catalyst for the hexachlorobenzene electrochemical dechlorination. Fullerenes, Nanotubes, and Carbon Nanostructures, 28(12): 1002–1009
https://doi.org/10.1080/1536383X.2020.1792445
|
29 |
L F Leon-Fernandez, M A Rodrigo, J Villaseñor, F J Fernandez-Morales. (2021). Bio-electrocatalytic dechlorination of 2,4-dichlorophenol: effect of pH and operational configuration. Electrochimica Acta, 367: 137456
https://doi.org/10.1016/j.electacta.2020.137456
|
30 |
J Li, Y Chen, R Bai, C Chen, W Wang, Y Pan, Y Liu. (2022). Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination. Chemical Engineering Journal, 435: 134932
https://doi.org/10.1016/j.cej.2022.134932
|
31 |
J Li, Y J Li, Z K Xiong, G Yao, B Lai. (2019). The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review. Chinese Chemical Letters, 30(12): 2139–2146
https://doi.org/10.1016/j.cclet.2019.04.057
|
32 |
J Li, C Zhang, Y Li, Y Pan, Y Liu. (2023). Rational design and structural regulation of robust catalysts for electrocatalytic hydrodechlorination: from nanostructures to single atoms. ACS Catalysis, 13(14): 9633–9655
https://doi.org/10.1021/acscatal.3c01830
|
33 |
B Liu, H Zhang, Q Lu, G Li, F Zhang. (2018). A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Science of the Total Environment, 635: 1417–1425
https://doi.org/10.1016/j.scitotenv.2018.04.238
|
34 |
L Liu, Y Chen, S Li, W Yu, X Zhang, H Wang, J Ren, Z Bian. (2023a). Enhanced electrocatalytic cathodic degradation of 2,4-dichlorophenoxy acetic acid based on a synergistic effect obtained from Co single atoms and Cu nanoclusters. Applied Catalysis B: Environmental, 332: 122748
https://doi.org/10.1016/j.apcatb.2023.122748
|
35 |
Y Liu, W Deng, X Wu, C Hu, L Lyu. (2024). Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction of emerging contaminants. Frontiers of Environmental Science & Engineering, 18(4): 44
https://doi.org/10.1007/s11783-024-1804-7
|
36 |
Y Liu, Q Zhang, A Sidike, N Ailijiang, A Mamat, G Zhang, M Pu, W Cheng, Z Pang. (2022). The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure. Frontiers of Environmental Science & Engineering, 16(11): 141
https://doi.org/10.1007/s11783-022-1576-x
|
37 |
Y Lou, W He, E Verlato, M Musiani, D Floner, F Fourcade, A Amrane, C Li, Z Q Tian, O Merdrignac-Conanec. et al.. (2019). Ni-coated graphite felt modified with Ag nanoparticles: a new electrode material for electro-reductive dechlorination. Journal of Electroanalytical Chemistry, 849: 113357
https://doi.org/10.1016/j.jelechem.2019.113357
|
38 |
Y Lou, S Yin, J Yang, L Ji, J Fang, S Zhang, M Feng, X Yu, Y Jiang, S Sun. (2022). MOF-derived single site catalysts with Electron-Rich Fe-N4 sites for efficient elimination of trichloroacetamide DBP. Chemical Engineering Journal, 446: 137060
https://doi.org/10.1016/j.cej.2022.137060
|
39 |
Y Lu, X Li, C Giovanni, B Wang. (2023). Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science & Engineering, 17(7): 89
https://doi.org/10.1007/s11783-023-1689-x
|
40 |
T MaclucasP GrützmacherS HusmannJ SchmauchS Keskin S SuarezV PresserC GachotF (2023) Mücklich. Degradation analysis of tribologically loaded carbon nanotubes and carbon onions. npj Materials Degradation, 7(1): 31
|
41 |
K Magnoli, C Carranza, M Aluffi, C Magnoli, C Barberis. (2023). Fungal biodegradation of chlorinated herbicides: an overview with an emphasis on 2,4-D in Argentina. Biodegradation, 34(3): 199–214
https://doi.org/10.1007/s10532-023-10022-9
|
42 |
Z Mao, L Liu, H B Yang, Y Zhang, Z Yao, H Wu, Y Huang, Y Xu, B Liu. (2021). Atomically dispersed Pd electrocatalyst for efficient aqueous phase dechlorination reaction. Electrochimica Acta, 391: 138886
https://doi.org/10.1016/j.electacta.2021.138886
|
43 |
E T Martin, C M Mcguire, M S Mubarak, D G Peters. (2016). Electroreductive remediation of halogenated environmental pollutants. Chemical Reviews, 116(24): 15198–15234
https://doi.org/10.1021/acs.chemrev.6b00531
|
44 |
A V Narendra Kumar, W S Shin. (2023). Yolk-shell Fe2O3@mesoporous hollow carbon sphere hybrid sub-micro reactors for effective degradation of organic contaminants. Chemical Engineering Journal, 465: 142922
https://doi.org/10.1016/j.cej.2023.142922
|
45 |
L Parra-ArroyoR B González-GonzálezC Castillo-ZacaríasMartínez E M MelchorJ E Sosa-HernándezM BilalH M N Iqbal D BarcelóR (2022) Parra-Saldívar. Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Science of the Total Environment, 807(Pt 3): 151879
|
46 |
G K Parshetti, R A Doong. (2012). Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions. Chemosphere, 86(4): 392–399
https://doi.org/10.1016/j.chemosphere.2011.10.028
|
47 |
T Poursaberi, Z Falsafi, M Hassanisadi, A Jabbari. (2015). Simultaneous adsorption and dechlorination of carbon tetrachloride using copper nanoparticles@graphene oxide composites. Journal of the Iranian Chemical Society, 12(1): 67–74
https://doi.org/10.1007/s13738-014-0455-1
|
48 |
X Qin, P Cao, X Quan, K Zhao, S Chen, H Yu, Y Su. (2023). Highly efficient hydroxyl radicals production boosted by the atomically dispersed Fe and Co sites for heterogeneous electro-fenton oxidation. Environmental Science & Technology, 57(7): 2907–2917
https://doi.org/10.1021/acs.est.2c06981
|
49 |
S Rondinini, E Pargoletti, A Vertova, A Minguzzi. (2021). Hydrodehalogenation of polychloromethanes on silver-based gas diffusion electrodes. ChemElectroChem, 8(10): 1892–1898
https://doi.org/10.1002/celc.202100379
|
50 |
R S Sahu, D L Li, R A Doong. (2018). Unveiling the hydrodechlorination of trichloroethylene by reduced graphene oxide supported bimetallic Fe/Ni nanoparticles. Chemical Engineering Journal, 334: 30–40
https://doi.org/10.1016/j.cej.2017.10.019
|
51 |
A Sennaoui, F Sakr, S Alahiane, M Dinne, A Assabbane, E Ait Addi. (2024). Electro-Fenton process for treatment of hydroxybenzoic acids solutions using boron-doped diamond/carbon-felt cells: application to olive mill wastewater. International Journal of Environmental Science and Technology, 21(4): 4471–4482
https://doi.org/10.1007/s13762-023-05278-w
|
52 |
C Shan, H Liu, M Hua, B Pan. (2020). Enhanced fenton-like oxidation of As(III) over Ce-Ti binary oxide: a new strategy to tune catalytic activity via balancing bimolecular adsorption energies. Environmental Science & Technology, 54(9): 5893–5901
https://doi.org/10.1021/acs.est.0c00159
|
53 |
Y Shen, Y Tong, J Xu, S Wang, J Wang, T Zeng, Z He, W Yang, S Song. (2020). Ni-based layered metal-organic frameworks with palladium for electrochemical dechlorination. Applied Catalysis B: Environmental, 264: 118505
https://doi.org/10.1016/j.apcatb.2019.118505
|
54 |
Q Shi, H Wang, S Liu, Z Bian. (2014). Electrocatalytic degradation of 2,4-dichlorophenol using a Pd/graphene gas-diffusion electrode. RSC Advances, 4(99): 56263–56272
https://doi.org/10.1039/C4RA09253H
|
55 |
X Shu, Q Yang, F Yao, Y Zhong, W Ren, F Chen, J Sun, Y Ma, Z Fu, D Wang. et al.. (2019). Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes. Chemical Engineering Journal, 358: 903–911
https://doi.org/10.1016/j.cej.2018.10.095
|
56 |
Z Sun, X Ma, X Hu. (2017). Electrocatalytic dechlorination of 2,3,5-trichlorophenol on palladium/carbon nanotubes-nafion film/titanium mesh electrode. Environmental Science and Pollution Research International, 24(16): 14355–14364
https://doi.org/10.1007/s11356-017-9004-7
|
57 |
H Tang, Z Bian, Y Peng, S Li, H Wang. (2022). Stepwise dechlorination of chlorinated alkenes on an Fe-Ni/rGO/Ni foam cathode: product control by one-electron-transfer reactions. Journal of Hazardous Materials, 433: 128744
https://doi.org/10.1016/j.jhazmat.2022.128744
|
58 |
N L Teradal, P S Narayan, A K Satpati, J Seetharamappa. (2014). Fabrication of electrochemical sensor based on green reduction of graphene oxide for an antimigraine drug, rizatriptan benzoate. Sensors and Actuators. B, Chemical, 196: 596–603
https://doi.org/10.1016/j.snb.2014.02.015
|
59 |
M Varol, M R Sünbül. (2017). Organochlorine pesticide, antibiotic and heavy metal residues in mussel, crayfish and fish species from a reservoir on the Euphrates River, Turkey. Environmental Pollution, 230: 311–319
https://doi.org/10.1016/j.envpol.2017.06.066
|
60 |
B Wang, L Heng, Q Sui, Z Peng, X Xiao, M Zheng, J Hu, H Fiedler, D Barceló, G Yu. (2023a). Insight of chemical environmental risk and its management from the vinyl chloride accident. Frontiers of Environmental Science & Engineering, 17(4): 52
https://doi.org/10.1007/s11783-023-1652-x
|
61 |
J Wang, S Fan, X Li, Z Niu, Z Liu, C Bai, J Duan, M O Tadé, S Liu. (2023b). Rod-like nanostructured Cu–Co spinel with rich oxygen vacancies for efficient electrocatalytic dechlorination. ACS Applied Materials & Interfaces, 15(10): 12915–12923
https://doi.org/10.1021/acsami.2c19134
|
62 |
M Wang, Y Liu, Y Li, S Chen, Z Wei. (2023c). Stabilizing Fe in intermetallic L10-PtAuFe nanoparticles with strong Au–Fe bond to boost oxygen reduction reaction activity and durability. Chemical Engineering Journal, 465: 142748
https://doi.org/10.1016/j.cej.2023.142748
|
63 |
Q Wang, J Du, Y Ma, X Yin, Z Tian, Z Han. (2023d). Noble-metal-free 3D hierarchical Ni-WC heterostructure with enhanced interfacial charge transfer for efficient electrocatalytic hydrodechlorination. Chemical Engineering Journal, 451: 139107
https://doi.org/10.1016/j.cej.2022.139107
|
64 |
W Wang, X Yu, H He, Y Wang, Y Li, L Deng, Y N Liu. (2023e). Electrochemical reconstitution of Prussian blue analogue for coupling furfural electro-oxidation with photo-assisted hydrogen evolution reaction. Chemical Engineering Journal, 465: 142865
https://doi.org/10.1016/j.cej.2023.142865
|
65 |
X Wang, J Li, M Fu, B Yuan, H Cui, Y Wang. (2015). Fabrication and evaluation of Au–Pd core-shell nanocomposites for dechlorination of diclofenac in water. Environmental Technology, 36(12): 1510–1518
https://doi.org/10.1080/09593330.2014.994044
|
66 |
Z WangX LuB YuY YangL Wang K (2023f) Lei. Ascertaining priority control pollution sources and target pollutants in toxic metal risk management of a medium-sized industrial city. Science of the Total Environment, 887: 164022
|
67 |
C K Williams, G A Mccarver, A Lashgari, K D Vogiatzis, J J Jiang. (2021). Electrocatalytic dechlorination of dichloromethane in water using a heterogenized molecular copper complex. Inorganic Chemistry, 60(7): 4915–4923
https://doi.org/10.1021/acs.inorgchem.0c03833
|
68 |
H Wu, Z Mao, B Liu, D Chen, M Shi, B Lv, Y Xu, L Wang. (2023). Ultra-low-loading Pd nanocrystals modified Ni foam electrode for efficient electrochemical hydrodechlorination. Applied Catalysis B: Environmental, 337: 122978
https://doi.org/10.1016/j.apcatb.2023.122978
|
69 |
J Wu, B Wang, G Cagnetta, J Huang, Y Wang, S Deng, G Yu. (2020). Nanoscale zero valent iron-activated persulfate coupled with Fenton oxidation process for typical pharmaceuticals and personal care products degradation. Separation and Purification Technology, 239: 116534
https://doi.org/10.1016/j.seppur.2020.116534
|
70 |
J Xu, X Fu, Y Liu, Y Zhang, S Chen, D Li, C Zhang, J Gao, Y Fu. (2023a). Electrocatalytic dechlorination of florfenicol using a Pd-loaded on blue TiO2 nanotube arrays cathode. Separation and Purification Technology, 323: 124460
https://doi.org/10.1016/j.seppur.2023.124460
|
71 |
Y Xu, X Ding, H Ma, Y Chu, C Ma. (2015). Selective hydrodechlorination of 3,5,6-trichloropicolinic acid at an activated silver cathode: synthesis of 3,5-dichloropicolinic acid. Electrochimica Acta, 151: 284–288
https://doi.org/10.1016/j.electacta.2014.11.039
|
72 |
Y Xu, Z Mao, R Qu, J Wang, J Yu, X Luo, M Shi, X Mao, J Ding, B Liu. (2023b). Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nature Water, 1(1): 95–103
https://doi.org/10.1038/s44221-022-00002-3
|
73 |
Y Xu, Z Yao, Z Mao, M Shi, X Zhang, F Cheng, H B Yang, H B Tao, B Liu. (2020). Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Applied Catalysis B: Environmental, 277: 119057
https://doi.org/10.1016/j.apcatb.2020.119057
|
74 |
M S Yalfani, A Georgi, S Contreras, F Medina, F D Kopinke. (2011). Chlorophenol degradation using a one-pot reduction–oxidation process. Applied Catalysis B: Environmental, 104(1−2): 161–168
|
75 |
J Yang, S Jiang, W Hu, H Jiang. (2022a). Highly efficient electrochemical dechlorination of florfenicol by an ultrathin molybdenum disulfide cathode. Chemical Engineering Journal, 427: 131600
https://doi.org/10.1016/j.cej.2021.131600
|
76 |
K Yang, I M Abu-Reesh, Z He. (2023). Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system. Journal of Hazardous Materials, 442: 130126
https://doi.org/10.1016/j.jhazmat.2022.130126
|
77 |
L Yang, C Chen, R Bao, Z Huang, W Wang, C Zhang, J Xia, J Geng, H Li. (2022b). Effective green electro-Fenton process induced by atomic hydrogen for rapid oxidation of organic pollutants over a highly active and reusable carbon based palladium nanocatalyst. Applied Surface Science, 602: 154325
https://doi.org/10.1016/j.apsusc.2022.154325
|
78 |
Q Yao, X Zhou, S Xiao, J Chen, I A Abdelhafeez, Z Yu, H Chu, Y Zhang. (2019). Amorphous nickel phosphide as a noble metal-free cathode for electrochemical dechlorination. Water Research, 165: 114930
https://doi.org/10.1016/j.watres.2019.114930
|
79 |
H Yu, S Yang, B Zhao, Y Lu, S Zhu, X Wang, W Qin, M Huo. (2020). Enhanced electrochemical dechlorination of 4-chlorophenol on a nickel foam electrode modified with palladium, polypyrrole and graphene. Journal of Electroanalytical Chemistry, 869: 114099
https://doi.org/10.1016/j.jelechem.2020.114099
|
80 |
L Zhang, M Fang. (2010). Nanomaterials in pollution trace detection and environmental improvement. Nano Today, 5(2): 128–142
https://doi.org/10.1016/j.nantod.2010.03.002
|
81 |
M Zhang, Q Shi, X Song, H Wang, Z Bian. (2019). Recent electrochemical methods in electrochemical degradation of halogenated organics: a review. Environmental Science and Pollution Research International, 26(11): 10457–10486
https://doi.org/10.1007/s11356-019-04533-3
|
82 |
K Zhao, X Quan, Y Su, X Qin, S Chen, H Yu. (2021). Enhanced chlorinated pollutant degradation by the synergistic effect between dechlorination and hydroxyl radical oxidation on a bimetallic single-atom catalyst. Environmental Science & Technology, 55(20): 14194–14203
https://doi.org/10.1021/acs.est.1c04943
|
83 |
Z Zheng, S Yuan, Y Liu, X Lu, J Wan, X Wu, J Chen. (2009). Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. Journal of Hazardous Materials, 170(2−3): 895–901
https://doi.org/10.1016/j.jhazmat.2009.05.052
|
84 |
J Zhou, Z Lou, Z Wang, C Zhou, C Li, S Ali Baig, X Xu. (2021). Electrocatalytic dechlorination of 2,4-DCBA using CTAB functionalized Pd/GAC movable granular catalyst: role of adsorption in catalysis. Chemical Engineering Journal, 414: 128758
https://doi.org/10.1016/j.cej.2021.128758
|
85 |
J Zhou, Z Lou, K Yang, J Xu, Y Li, Y Liu, S A Baig, X Xu. (2019). Electrocatalytic dechlorination of 2,4-dichlorobenzoic acid using different carbon-supported palladium moveable catalysts: adsorption and dechlorination activity. Applied Catalysis B: Environmental, 244: 215–224
https://doi.org/10.1016/j.apcatb.2018.11.052
|
86 |
Z Zhou, W Ruan, H Huang, C Shen, B Yuan, C Huang. (2016). Fabrication and characterization of Fe/Ni nanoparticles supported by polystyrene resin for trichloroethylene degradation. Chemical Engineering Journal, 283: 730–739
https://doi.org/10.1016/j.cej.2015.07.076
|
87 |
H Zhu, F Xu, J Zhao, L Jia, K Wu. (2015). Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling. Environmental Science and Pollution Research International, 22(18): 14299–14306
https://doi.org/10.1007/s11356-015-4675-4
|
88 |
M Zhuang, D Ren, H Guo, Z Wang, S Zhang, X Zhang, X Gong. (2021). Degradation of 2,4-dichlorophenol contaminated soil by ultrasound-enhanced laccase. Environmental Technology, 42(9): 1428–1437
https://doi.org/10.1080/09593330.2019.1669723
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|