Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2012, Vol. 6 Issue (3) : 350-359    https://doi.org/10.1007/s11783-012-0404-0
RESEARCH ARTICLE
Chemical identification and genotoxicity analysis of petrochemical industrial wastewater
Jing ZHANG1, Shigong WANG1, Can WANG2, Hongying HU3()
1. Department of Environmental Science, School of Recourses and Environment, Lanzhou University, Lanzhou 730000, China; 2. Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; 3. Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(317 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The actual harmful effects of industrial wastewater can not be reflected by the conventional water quality index. Therefore, the change in dissolved organic matter and the genetic toxicity of petrochemical wastewater were observed in the current study by examining the wastewater treatment plant of a large petrochemical enterprise in Northwest China. Using XAD-8, MSC, and DA-7 resins, the wastewater was separated into six fractions, namely, hydrophobic acid (HOA), hydrophobic neutral (HOB), hydrophobic alkaline, hydrophilic acid, hydrophilic alkaline, and hydrophilic neutral. Umu-test was used to detect the genetic toxicity of the wastewater samples, and fluorescence spectra were also obtained to examine genetic toxic substances. The results show that wastewater treatment facilities can effectively reduce the concentration of organic matter in petrochemical wastewater (p<0.05). However, the mixing of aniline wastewater can increase the amount of organic carbon (p<0.05) and can overload facilities. This finding shows that the mixed collection and joint treatment of different types of petrochemical wastewater can affect the water quality of the effluent. Particularly, hydrophobic substances can be difficult to remove and account for a relatively large proportion of the effluent. The mixture of aniline wastewater can increase the genetic toxicity of the effluent (p<0.05), and biologic treatment can not effectively decrease the toxicity. Most of the genetic toxicology may exist in the HOA and HOB fractions. Fluorescence spectroscopy also confirms this result, and tryptophan-like substances may play an important role in genetic toxicity.

Keywords dissolved organic matter      resin fraction      genetic toxicity      fluorescence excitation and emission matrix     
Corresponding Author(s): HU Hongying,Email:hyhu@tsinghua.edu.cn   
Issue Date: 01 June 2012
 Cite this article:   
Jing ZHANG,Shigong WANG,Can WANG, et al. Chemical identification and genotoxicity analysis of petrochemical industrial wastewater[J]. Front Envir Sci Eng, 2012, 6(3): 350-359.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-012-0404-0
https://academic.hep.com.cn/fese/EN/Y2012/V6/I3/350
sampling spotUV254/(cm-1)pHchromaticityDOC/(mg·L-1)TN/(mg·L-1)SUV/(L·(mg·cm) -1)
S1inlet0.098.604798.9179.948.69×10-4
S2outlet0.078.265327.5020.0724.36×10-4
S3inlet0.317.96159158.16101.2619.85×10-4
S4outlet0.207.4910140.7672.4249.80×10-4
Tab.1  Quality of the wastewater samples
Fig.1  DOC of the components of the water samples. These components were obtained by resin fractionation
Fig.2  Proportion of DOC of the different components of the wastewater samples
samplesremoval efficiency of HOS/%removal efficiency of HIS/%
S1-S236.6582.98
S3-S467.1078.47
Tab.2  Removal efficiency of HOS and HIS at two different operation stations
Fig.3  Results of the umu-test used to analyze the genotoxicity of the wastewater samples
Fig.4  Results of the umu-test performed on the components of the treated effluents
Fig.5  Genotoxicity of each unit of DOC of different components
Fig.6  3D fluorescence spectra of the effluents: (a) S2 HOA; (b) S4 HOA; (c) S2 HOB; (d) S4 HOB; (e) S2 HON; (f) S4 HON
samplesFlu1Flu2
Ex/EmFI/nmEx/EmFI/nm
S2HOA225/340&gt;10000280/3456307
HOB230/340&gt;10000280/3442114
HON230/3401160
S4HOA225/330&gt;10000280/3454196
HOB230/3403419
HON230/340614280/345817
Tab.3  Position and intensity of the fluorescence peaks of the components of the treated effluents
1 ScholzW , Fuchs W. Treatment of oil contaminated wastewater in a membrane bioreactor. Water Research , 2000, 34(14): 3621-3629
doi: 10.1016/S0043-1354(00)00106-8
2 BarriosmartinezA, BarbotE, MarrotB, MoulinP, RocheN. Degradation of synthetic phenol-containing wastewaters by MBR. Journal of Membrane Science , 2006, 281( 1-2): 288-296
doi: 10.1016/j.memsci.2006.03.048
3 ?man C. Comparison between the predicted fate of organic compounds in landfills and the actual emissions. Environmental Science &amp; Technology , 2001, 35(1): 232-239
doi: 10.1021/es9812599 pmid:11352019
4 Schwarzbauer J, Heim S, Brinker S, Littke R. Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Research , 2002, 36(9): 2275-2287
doi: 10.1016/S0043-1354(01)00452-3 pmid:12108720
5 Portolés T, Pitarch E, López F J, Hernández F. Development and validation of a rapid and wide-scope qualitative screening method for detection and identification of organic pollutants in natural water and wastewater by gas chromatography time-of-flight mass spectrometry. Journal of Chromatography. A , 2011, 1218(2): 303-315
doi: 10.1016/j.chroma.2010.11.010 pmid:21134677
6 Díaz-Cruz M S, Barceló D. Trace organic chemicals contamination in ground water recharge. Chemosphere , 2008, 72(3): 333-342
doi: 10.1016/j.chemosphere.2008.02.031 pmid:18378277
7 Vanleeuwen S P J, de Boer J. Advances in the gas chromatographic determination of persistent organic pollutants in the aquatic environment. Journal of Chromatography. A , 2008, 1186(1-2): 161-182
doi: 10.1016/j.chroma.2008.01.044 pmid:18291406
8 Botalova O, Schwarzbauer J, Frauenrath T, Dsikowitzky L. Identification and chemical characterization of specific organic constituents of petrochemical effluents. Water Research , 2009, 43(15): 3797-3812
doi: 10.1016/j.watres.2009.06.006 pmid:19577787
9 Krasner S W, Westerhoff P, Chen B, Rittmann B E, Nam S N, Amy G. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effuent organic matter. Environmental Science &amp; Technology , 2009, 43(8): 2911-2918
doi: 10.1021/es802443t pmid:19475970
10 DignacM F, DerenneS, GinestetP, BruchetA, KnickerH, LargeauC. Determination of structure and Origin of Refractory Organic Matter in Bio-equated Wastewater via Spectroscopic Methods. Comparison of Conventional and Ozonation Treatments. Environmental Science &amp; Technology , 2000, 34(16): 3389-3394
doi: 10.1021/es9913838
11 Gulyas H, Reich M. Organic compounds at different stages of a refinery wastewater treatment plant. Water Science and Technology , 1995, 32(7): 119-126
doi: 10.1016/0273-1223(96)00055-8
12 US Environmental Protection Agency. Guidelines Establishing Test Procedures for the Analysis of Pollutants. US Code of Federal Regulation, Part 136, 40 CFR Subchapter D; Federal Register . Washington D C: US Environmental Protection Agency, 1995
13 US Environmental Protection Agency. Water Quality-based Toxics Control; Technical Report, EPA 505/ 2–90–001. Washington D C: US Environmental Protection Agency, 1991
14 European Centre for Ecotoxicology and Toxicology of Chemicals. Whole Effluent Assessment; ECETOC Technical Report No. 94.Brussels, Belgium: European Centre for Ecotoxicology and Toxicology of Chemicals,2004
15 Brandelli A, Baldasso M L, Goettems E P. Toxicity identification and reduction evaluation in petrochemical effluents-SITEL case. Water Science &amp;Technology , 1992, 25(3): 73-84
16 Wang X, Shi W, Wu J, Hao Y, Hu G, Liu H, Han X, Yu H. Reproductive toxicity of organic extracts from petrochemical plant effluents discharged to the Yangtze River, China. Journal of Environmental Sciences (China) , 2010, 22(2): 297-303
doi: 10.1016/S1001-0742(09)60108-X pmid:20397421
17 Vargas V M F, Motta V E P, Henriques J A P. Mutagenic activity detected by the Ames test in river water under the influence of petrochemical industries. Mutation Research/Genetic Toxicology , 1993, 319(1): 31-45
18 Eilersen A M, Arvin E, Henze M. Monitoring toxicity of industrial wastewater and specific chemicals to a green alga, nitrifying bacteria and an aquatic bacterium. Water Science and Technology. 2004, 50(6): 277-283
pmid:15537017
19 Ball B R, Brix K V, Brancato M S, Allison M P, Vail S M. Whole effluent toxicity reduction by ozone. Environment and Progress , 1997, 16(2): 121-124
doi: 10.1002/ep.3300160218
20 K?hlerA, HellwegS, EscherB I, HungerbühlerK. Organic pollutant removal versus toxicity reduction in industrial wastewater treatment:The example of wastewater from fluorescent whitening agent production.Environmental Science &amp; Technology , 2006, 40(10): 3395-3401
doi: 10.1021/es060555f pmid:16749712
21 APHA,AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington D C: APHA/AWWA/WEF, 1998
22 Marhaba T F, Pu Y, Bengraine K. Modified dissolved organic matter fractionation technique for natural water. Journal of Hazardous Materials , 2003, 101(1): 43-53
23 Lu F, Chang C H, Lee D J, He P J, Shao L M, Su A. Dissolved organic matter with multi-peak fluorophores in landfill leachate. Chemosphere , 2009, 74(4): 575-582
doi: 10.1016/j.chemosphere.2008.09.060 pmid:18986674
24 Oda Y, Nakamura S, OkiL, Kato T, Shinagawa H. Evaluation of the new system (umu-test) for the detection of environmental mutagens and carcinogens. Mutation Research , 1985, 147(5): 219-229
pmid:3900709
25 Wang L S, Hu H Y, Ta C H, Tian J, WangC. Changes of Genotoxicity and influences of ammonia nitrogen during the process of disinfection with chlorine dioxide and chlorine. Environmental Sciences , 2007, 28(3): 603-606 (in Chinese)
26 Internatinal Organization for Standardization. ISO13829, Water Quality-Determination of the Genotoxicity of Water and Waste Water Using the Umu-test. Geneva: Internatinal Organization for Standardization , 2000
27 Leenheer J A, Huffman E W D. Classification of organic solutes in water by using macroreticular resins. Journal of Research of the U. S. Geological Survey 1976, 4(6): 737-751
28 Leenheer J A, Huffman E W D. Analytical Method for Dissolved Organic Carbon Fractionation. Denver CO: U.S. Geological Survey, Water-Resources Invest , 1979, 79-84
29 LeenheerJ A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewater. Environmental Science &amp; Technology , 1981, 15( 5): 578-587
doi: 10.1021/es00087a010
30 Baker A, Curry M. Fluorescence of leachates from three contrasting landfills. Water Research , 2004, 38(10): 2605-2613
doi: 10.1016/j.watres.2004.02.027 pmid:15159164
31 Sheng G P, Yu H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy. Water Research , 2006, 40(6): 1233-1239
doi: 10.1016/j.watres.2006.01.023 pmid:16513156
32 Hunt J F, Ohno T. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis. Journal of Agricultural and Food Chemistry. 2007, 55(6): 2121-2128
doi: 10.1021/jf063336m pmid:17305362
33 Saadi I, Borisover M, Armon R, Laor Y. Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements. Chemosphere , 2006, 63(3): 530-539
doi: 10.1016/j.chemosphere.2005.07.075 pmid:16219335
34 Maie N, Scully N M, Pisani O, JafféRudolf R. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Research , 2007, 41(3): 563-570
doi: 10.1016/j.watres.2006.11.006 pmid:17187842
35 Hua B, Dolan F, McGhee C, Clevenger T E, Deng B L. Water-source characterization and classification with fluorescence EEM spectroscopy: PARAFAC analysis. International Journal of Environmental Analytical Chemistry , 2007, 87(2): 135-147
doi: 10.1080/03067310600922154
36 Stedmon C A, Thomas D N, Granskog M, Kaartokallio H, Papadimitriou S, Kuosa H. Characteristics of dissolved organic matter in Baltic coastal sea ice: allochthonous or autochthonous origins? Environmental Science &amp; Technology , 2007, 41(21): 7273-7279
doi: 10.1021/es071210f pmid:18044499
37 Hall G J, Kenny J E. Estuarine water classification using EEM spectroscopy and PARAFAC-SIMCA. Analytica Chimica Acta , 2007, 581(1): 118-124
doi: 10.1016/j.aca.2006.08.034 pmid:17386434
38 ChenW, WesterhoffP, LeenheerJ A, BookshK. Fluorescence excitation-emission matrix regional integration to quality spectra for dissolved organic matter. Environmental Science &amp; Technology , 2003, 37(24): 5701-5710
doi: 10.1021/es034354c
39 LeenheerJ A, CrouéJ P. Characterizing aquqtic dissolved organic matter. Environmental Science &amp; Technology , 2003, 37( 1): 18A-26A
doi: 10.1021/es032333c
40 Du H, Fuh R C A, Li J Z, Corkan L A, Lindsey J S. Photochem CAD: a computer- aided design and research tool in photochemistry. Photochemistry and Photobiology , 1998, 68(2): 141-142
41 Pitts J D, Sloboda R D, Dragnev K H, Dmitrovsky E, Mycek M A. Autofluorescence characteristics of immortalized and carcinogen-transformed human bronchial epithelial cells. Journal of Biomedical Optics , 2001, 6(1): 31-40
doi: 10.1117/1.1333057 pmid:11178578
42 BeltránJ L, FerrerR, GuiterasJ. Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation– emission fluorescence spectra. Analytica Chimica Acta , 1998, 373(2-3): 311-319
doi: 10.1016/S0003-2670(98)00420-6
[1] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[2] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
[3] Jinlan Yu, Kang Xiao, Wenchao Xue, Yue-xiao Shen, Jihua Tan, Shuai Liang, Yanfen Wang, Xia Huang. Excitation-emission matrix (EEM) fluorescence spectroscopy for characterization of organic matter in membrane bioreactors: Principles, methods and applications[J]. Front. Environ. Sci. Eng., 2020, 14(2): 31-.
[4] Yuan ZHANG,Chunming HU,Tao YU. Photodegradation of chromophoric dissolved organic matters in the water of Lake Dianchi, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 575-582.
[5] Yuan ZHANG,Yan ZHANG,Tao YU. Quantitative characterization of Cu binding potential of dissolved organic matter (DOM) in sediment from Taihu Lake using multiple techniques[J]. Front.Environ.Sci.Eng., 2014, 8(5): 666-674.
[6] Yan ZHANG,Yuan ZHANG,Tao YU. Characterization of interaction between different adsorbents and copper by simulation experiments using sediment-extracted organic matter from Taihu Lake, China[J]. Front.Environ.Sci.Eng., 2014, 8(4): 510-518.
[7] Qing ZHOU, Mengqiao WANG, Aimin LI, Chendong SHUANG, Mancheng ZHANG, Xiaohan LIU, Liuyan WU. Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid[J]. Front Envir Sci Eng, 2013, 7(3): 412-419.
[8] Shuang XUE, Qingliang ZHAO, Liangliang WEI, Xiujuan HUI, Xiping MA, Yingzi LIN. Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions[J]. Front Envir Sci Eng, 2012, 6(6): 784-796.
[9] Fang FANG, Yan YANG, Jinsong GUO, Hong ZHOU, Chuan FU, Zhe LI. Three-dimensional fluorescence spectral characterization of soil dissolved organic matters in the fluctuating water-level zone of Kai County, Three Gorges Reservoir[J]. Front Envir Sci Eng Chin, 2011, 5(3): 426-434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed