|
|
Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions |
Shuang XUE1,2, Qingliang ZHAO3, Liangliang WEI3, Xiujuan HUI1,2( ), Xiping MA1,2, Yingzi LIN4 |
1. School of Environmental Science, Liaoning University, Shenyang 110036, China; 2. Key Laboratory of Water Environment Biomonitoring and Ecological Security Liaoning Province, Shenyang 110036, China; 3. School of Municipal & Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; 4. Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Architectural and Civil Engineering Institute, Changchun 130118, China |
|
|
Abstract This work investigated the effect of granular activated carbon adsorption (GACA) on fluorescence characteristics of dissolved organic matter (DOM) in secondary effluent, by means of excitation–emission matrix (EEM) spectra, the fluorescence regional integration (FRI) method, synchronous spectra, the fluorescence index defined as the ratio of fluorescence emission intensity at wavelength 450 nm to that at 500 nm at excitation (λex)=370 nm, and the wavelength that corresponds to the position of the normalized emission band at its half intensity (λ0.5). DOM in the secondary effluent from the North Wastewater Treatment Plant (Shenyang, China) was fractionated using XAD resins into 5 fractions: hydrophobic acid (HPO–A), hydrophobic neutral (HPO–N), transphilic acid (TPI–A), transphilic neutral (TPI–N) and hydrophilic fraction (HPI). Results showed that fluorescent materials in HPO–N and TPI–N were less readily removed than those in the other fractions by GACA. The relative content of fluorescent materials in HPO–A, TPI–A and HPI decreased whereas that in HPO–N and TPI–N increased as a consequence of GACA. Polycyclic aromatics in all DOM fractions were preferentially absorbed by GACA, in comparison with bulk DOM expressed as DOC. On the other hand, the adsorption of aromatic amino acids and humic acid-like fluorophores exhibiting fluorescence peaks in synchronous spectra by GACA seemed to be dependent on the acid/neutral properties of DOM fractions. All five fractions had decreased fluorescence indices as a result of GACA. GACA led to a decreased λ0.5 value for HPO–A, increased λ0.5 values for HPO–N, TPI–A and HPI, and a consistent λ0.5 value for TPI–N.
|
Keywords
granular activated carbon adsorption
dissolved organic matter
fractionation
fluorescence
|
Corresponding Author(s):
HUI Xiujuan,Email:shuangxue_777@163.com
|
Issue Date: 01 December 2012
|
|
1 |
Ryu H, Alum A, Abbaszadegan M. Microbial characterization and population changes in nonpotable reclaimed water distribution systems. Environmental Science & Technology , 2005, 39(22): 8600-8605 doi: 10.1021/es050607l pmid:16323753
|
2 |
Matamoros V, Mujeriego R, Bayona J M. Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain. Water Research , 2007, 41(15): 3337-3344 doi: 10.1016/j.watres.2007.04.021 pmid:17585988
|
3 |
Cloirec P L, Brasquet C, Subrenat E. Adsorptiononto fibrous activated carbon: applications to water treatment. Energy & Fuels , 1997, 11(2): 331-336 doi: 10.1021/ef9601430
|
4 |
Karanfil T, Kitis M, Kilduff J E, Wigton A. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environmental Science & Technology , 1999, 33(18): 3225-3233 doi: 10.1021/es9810179
|
5 |
Vahala R, Langvik V A, Laukkanen R. Controlling adsorbable organic halogens (AOX) and trihalomethanes (THM) formation by ozonation and two-step granule activated carbon (GAC) filtration. Water Science and Technology , 1999, 40(9): 249-256 doi: 10.1016/S0273–1223(99)00663–0
|
6 |
Uyak V, Yavuz S, Toroz I, Ozaydin S, Genceli E A. Disinfection by-products precursors removal by enhanced coagulation and PAC adsorption. Desalination , 2007, 216(1-3): 334-344 doi: 10.1016/j.desal.2006.11.026
|
7 |
Humbert H, Gallard H, Suty H, Croué J P. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC). Water Research , 2008, 42(6-7): 1635-1643 doi: 10.1016/j.watres.2007.10.012 pmid:18006038
|
8 |
Cheng W, Dastgheib S A, Karanfil T. Adsorption of dissolved natural organic matter by modified activated carbons. Water Research , 2005, 39(11): 2281-2290 doi: 10.1016/j.watres.2005.01.031 pmid:15927230
|
9 |
Quinlivan P A, Li L, Knappe D R U. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Research , 2005, 39(8): 1663-1673 doi: 10.1016/j.watres.2005.01.029 pmid:15878039
|
10 |
Schreiber B, Brinkmann T, Schmalz V, Worch E. Adsorption of dissolved organic matter onto activated carbon—the influence of temperature, absorption wavelength, and molecular size. Water Research , 2005, 39(15): 3449-3456 doi: 10.1016/j.watres.2005.05.050 pmid:16055163
|
11 |
Haberkamp J, Ruhl A S, Ernst M, Jekel M. Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration. Water Research , 2007, 41(17): 3794-3802 doi: 10.1016/j.watres.2007.05.029 pmid:17585987
|
12 |
Wei L L, Zhao Q L, Xue S, Jia T. Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment. JournalβofβZhejiangβUniversity-ScienceβA , 2008, 9(7): 994-1003 doi: 10.1631/jzus.A071508
|
13 |
Kweon J H, Hur H W, Seo G T, Jang T R, Park J H, Choi K Y, Kim H S. Evaluation of coagulation and PAC adsorption pretreatments on membrane filtration for a surface water in Korea: a pilot study. Desalination , 2009, 249(1): 212-216 doi: 10.1016/j.desal.2008.08.014
|
14 |
Wei L L, Zhao Q L, Xue S, Chang C C, Tang F, Liang G L, Jia T. Reduction of trihalomethane precursors of dissolved organic matter in the secondary effluent by advanced treatment processes. Journal of Hazardous Materials , 2009, 169(1-3): 1012-1021 doi: 10.1016/j.jhazmat.2009.04.045 pmid:19443112
|
15 |
Gur-Reznik S, Katz I, Dosoretz C G. Removal of dissolved organic matter by granular activated carbon adsorption as a pretreatment to reverse osmosis of membrane bioreactor effluents. Water Research , 2008, 42(6-7): 1595-1605 doi: 10.1016/j.watres.2007.10.004 pmid:17980400
|
16 |
Luciani X, Mounier S, Paraquetti H H M, Redon R, Lucas Y, Bois A, Lacerda L D, Raynaud M, Ripert M. Tracing of dissolved organic matter from the Sepetiba Bay (Brazil) by PARAFAC analysis of total luminescence matrices. Marine Environmental Research , 2008, 65(2): 148-157 doi: 10.1016/j.marenvres.2007.09.004 pmid:17976715
|
17 |
Yamashita Y, Tanoue E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Marine Chemistry , 2003, 82(3-4): 255-271 doi: 10.1016/S0304–4203(03)00073–2
|
18 |
Chen J, Gu B, Leboeuf E J, Pan H, Dai S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere , 2002, 48(1): 59-68 doi: 10.1016/S0045–6535(02)00041–3 pmid:12137058
|
19 |
Chen J, LeBoeuf E J, Dai S, Gu B. Fluorescence spectroscopic studies of natural organic matter fractions. Chemosphere , 2003, 50(5): 639-647 doi: 10.1016/S0045–6535(02)00616–1 pmid:12685740
|
20 |
Kim H C, Yu M J. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Research , 2005, 39(19): 4779-4789 doi: 10.1016/j.watres.2005.09.021 pmid:16253305
|
21 |
Aiken G R, McKnight D M, Thorn K A, Thurman E M. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochemistry , 1992, 18(4): 567-573 doi: 10.1016/0146–6380(92)90119–I
|
22 |
Chow A T, Guo F, Gao S, Breuer R S. Size and XAD fractionations of trihalomethane precursors from soils. Chemosphere , 2006, 62(10): 1636-1646 doi: 10.1016/j.chemosphere.2005.06.039 pmid:16095666
|
23 |
McKnight D M, Boyer E W, Westerhoff P K, Doran P T, Kulbe T, Andersen D T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic materials and aromaticity. Limnology and Oceanography , 2001, 46(1): 38-48 doi: 10.4319/lo.2001.46.1.0038
|
24 |
Xiao X, Zhang Y J, Wang Z G, Jin D, Yin G F, Zhao N J, Liu W Q. Experimental studies on three-dimensional fluorescence spectral of mineral oil in ethanol. SpectroscopyβandβSpectralβAnalysis , 2010, 30(6): 1549-1554 pmid:20707148
|
25 |
Chen W, Westerhoff P, Leenheer J A, Booksh K. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology , 2003, 37(24): 5701-5710 doi: 10.1021/es034354c pmid:14717183
|
26 |
Panyapinyopol B, Marhaba T F, Kanokkantapong V, Pavasant P. Characterization of precursors to trihalomethanes formation in Bangkok source water. Journal of Hazardous Materials , 2005, 120(1-3): 229-236 doi: 10.1016/j.jhazmat.2005.01.009 pmid:15811685
|
27 |
Kanokkantapong V, Marhaba T F, Pavasant P, Panyapinyophol B. Characterization of haloacetic acid precursors in source water. Journal of Environmental Management , 2006, 80(3): 214-221 doi: 10.1016/j.jenvman.2005.09.006 pmid:16377072
|
28 |
Hur J, Jung N C, Shin J K. Spectroscopic distribution of dissolved organic matter in a dam reservoir impacted by turbid storm runoff. Environmental Monitoring and Assessment , 2007, 133(1-3): 53-67 doi: 10.1007/s10661–006–9559–0 pmid:17286180
|
29 |
Drewes J E, Quanrud D M, Amy G L, Westerhoff P K. Character of organic matter in soil–aquifer treatment systems. Journal of Environmental Engineering , 2006, 132(11): 1447-1458 doi: 10.1061/(ASCE)0733–9372(2006)132:11(1447)
|
30 |
Maie N, Scully N M, Pisani O, Jaffé R. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Research , 2007, 41(3): 563-570 doi: 10.1016/j.watres.2006.11.006 pmid:17187842
|
31 |
Sierra M M D, Giovanela M, Parlanti E, Soriano Sierra E J. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere , 2005, 58(6): 715-733 doi: 10.1016/j.chemosphere.2004.09.038 pmid:15621185
|
32 |
Vo Dinh T. Multicomponent analysis by synchronous lumines cence spectrometry. Analytical Chemistry , 1978, 50(3): 396-401 doi: 10.1021/ac50025a010
|
33 |
Peuravuori J, Koivikko R, Pihlaja K. Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Research , 2002, 36(18): 4552-4562 doi: 10.1016/S0043–1354(02)00172–0 pmid:12418658
|
34 |
Zhang T, Lu J F, Ma J, Qiang Z. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation. Chemosphere , 2008, 71(5): 911-921 doi: 10.1016/j.chemosphere.2007.11.030 pmid:18190948
|
35 |
Fabbricino M, Korshin G V. Probing the mechanisms of NOM chlorination using fluorescence: formation of disinfection by-products in Alento River water. Water Science and Technology: Water Supply , 2004, 4(4): 227-233
|
36 |
Kim H C, Yu M J, Han I. Multi-method study of the characteristic chemical nature of aquatic humic substances isolated from the Han River, Korea. Applied Geochemistry , 2006, 21(7): 1226-1239 doi: 10.1016/j.apgeochem.2006.03.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|