Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (2) : 128-155    https://doi.org/10.1007/s11515-010-0020-y
Research articles
Adaptive mechanisms underlying the bat biosonar behavior
Philip H.-S. Jen,
Division of Biological Sciences and Interdisciplinary Neuroscience Program, University of Missouri-Columbia, MO, USA 65211;
 Download: PDF(1861 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract For survival, bats of the suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes to extract the direction, distance, velocity, size, and shape of the prey. Although these bats and other mammals share the common layout of the auditory pathway and sound coding mechanism, they have highly developed auditory systems to process biologically relevant pulses at the expense of a reduced visual system. During this active biosonar behavior, they progressively shorten the pulse duration, decrease the amplitude and pulse-echo gap as they search, approach and finally intercept the prey. Presumably, these changes in multiple pulse parameters throughout the entire course of hunting enable them to extract maximal information about localized prey from the returning echoes. To hunt successfully, the auditory system of these bats must be less sensitive to intense emitted pulses but highly sensitive to weak returning echoes. They also need to recognize and differentiate the echoes of their emitted pulses from echoes of pulses emitted by other conspecifics. Past studies have shown the following mechanical and neural adaptive mechanisms underlying the successful bat biosonar behavior: (1) Forward orienting and highly mobile pinnae for effective scanning, signal reception, sound pressure transformation and mobile auditory sensitivity; (2) Avoiding and detecting moving targets more successfully than stationary ones; (3) Coordinated activity of highly developed laryngeal and middle ear muscles during pulse emission and reception; (4) Mechanical and neural attenuation of intense emitted pulses to prepare for better reception of weak returning echoes; (5) Increasing pulse repetition rate to improve multiple-parametric selectivity to echoes; (6) Dynamic variation of duration selectivity and recovery cycle of auditory neurons with hunting phase for better echo analysis; (7) Maximal multiple-parametric selectivity to expected echoes returning within a time window after pulse emission; (8) Pulse-echo delay-sensitive neurons in higher auditory centers for echo ranging; (9) Corticofugal modulation to improve on-going multiple-parametric signal processing and reorganize signal representation, and (10) A large area of the superior colliculus, pontine nuclei and cerebellum that is sensitive to sound for sensori-motor integration. All these adaptive mechanisms facilitate the bat to effectively extract prey features for successful hunting.
Keywords adaptive mechanisms      bat biosonar      behavior      
Issue Date: 01 April 2010
 Cite this article:   
Philip H.-S. Jen. Adaptive mechanisms underlying the bat biosonar behavior[J]. Front. Biol., 2010, 5(2): 128-155.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0020-y
https://academic.hep.com.cn/fib/EN/Y2010/V5/I2/128
Allen G I, Tsukahara N (1974). Cerebrocerebellar communication systems. Physiol Rev, 54: 957–1006
Aitkin L M, Rawson J A (1983). Frontal sound source location is represented in thecat cerebellum. Brain Res, 265: 317–321

doi: 10.1016/0006-8993(83)90349-9
Azizi S A, Burne, R A, Woodward D J (1985). The auditory corticopontocerebellar projection in the rat: inputs to the parnflocculusand midvermis. An anatomical and physiological study. Exp Brain Res, 59: 36–49

doi: 10.1007/BF00237663
Brand A, Urban A, Grothe B (2000). Duration tuning in mouse auditory midbrain. J Neurophysiol, 84: 1790–1799
Brodal P (1982). The corticopontocerebellar pathway:salient feature of its organization. Exp Brain Res, 6(Suppl): 108–133
Burne R A, Azizi S A, Mihailoff G A, Woodward D J (1981). The tectopontine projections in rat with comments on visual pathways to the basilar pons. J Compo Neurol, 202: 287–307

doi: 10.1002/cne.902020212
Carpenter M B, Sutin J (1983). Human Neuroanatomy. Baltimore:Williams and Wilkins
Casseday J H, Ehrlich D, Covey E (1994). Neural tuning for sound duration: role of inhibitory mechanisms in the inferiorcolliculus. Science (USA), 264: 847–850
Chen Q C, Jen P H-S (1994). Pulse repetition rate increases the minimum thresholdand latency of auditory neurons. Brain Res, 654: 155–158

doi: 10.1016/0006-8993(94)91582-2
Cho Y, Sidie J M, DeBruyn P H (1972). Electron microscopic studies on a tubulo filamentous fasciculus in the bat cricothyroidmuscle. J Ultrastruct Res, 41: 344–357

doi: 10.1016/S0022-5320(72)90074-3
Cicirata F, Ponto M R, Angaut P (1982). An autoradiographic study of the cerebellopontine projections in the rat. 1. Projectionsfrom the medial cerebellar nucleus. Brain Res, 253: 303–308

doi: 10.1016/0006-8993(82)90697-7
Covey E, Casseday J H (1999). Timing in the auditory system of the bat. Annu Rev Physiol, 61: 457–476

doi: 10.1146/annurev.physiol.61.1.457
Ehrlich D, Casseday J H, Covey E (1997). Neural tuning to sound duration in the inferior colliculus of the big brownbat, Eptesicus fuscus. J Neurophysiol, 77: 2360–2372
Fadiga E, Pupilli G C (1964). Teleceptive components of the cerebellar function. Physiol Rev, 44: 432–486
Galazyuk A V, Feng A S (1997). Encoding of sound duration by neurons in the auditory cortex of thelittle brown bat, Myotis lucifugus. J Comp Physiol A, 180: 301–311

doi: 10.1007/s003590050050
Games K D, Winer J A (1988). Layer V in rat auditory cortex: projections to the inferior colliculusand contralateral cortex. Hearing Res, 34: 1–25

doi: 10.1016/0378-5955(88)90047-0
Goldman L J, Henson O W (1977). Prey recognition and selection by the constant frequencybat, Pteronotus p. parnellii. Behav Ecol Sociobiol, 2: 411–419

doi: 10.1007/BF00299509
Griffin D R (1944). Echolocation by blind men, bat, andradar. Science (USA), 100: 458–590
Griffin D R (1958). Listening in the dark. New Haven, CT: Yale University Press, 413 (Reprinted by Comstock Publ Assoc, Cornell University, Press, Ithaca,NY, 1986)
Griffin D R, Friend J H, Webster F A (1965). Target discrimination by the echolocation of bats. J Exp Zool, 158: 155–168

doi: 10.1002/jez.1401580204
Griffin D R, Galambos R (1941). The sensory basis of obstacle avoidance by flying bats. J Exp Zool, 86: 481–506

doi: 10.1002/jez.1400860310
Griffin D R, Webster F A, Michael C (1960). The echolocation of flying insects by bats. Animal Behavior, 8: 141–154

doi: 10.1016/0003-3472(60)90022-1
Hahn W L (1908). Some habits and sensory adaptationsof cave-inhabiting bats. Biol Bull, 15: 135–193

doi: 10.2307/1536066
Harris L R (1980). The superior colliculus and movementsof the head and eyes in cats. J Physiol (Lond), 300: 367–391
Hartridge H (1920). The avoidance of objects by batsin their flight. J Physiol, 54: 54–57
Henson O W (1961). Some morphological and functionalaspects of certain structures of the middle ear in bats and insectivores. Univ Kans Sci Bull, 42: 151–255
Henson O W Jr (1965). The activity and function of the middle ear muscles in echolocating bats. J Physiol (London), 180: 871–887
Henson O W Jr (1970). The ear and audition. In: Wimsatt W A, ed. Biology of bats, Vol. II. New York: Academic Press, 181–264
Herbert H, Aschoff A, Ostwald J (1991). Topography of projections from the auditory cortex to the inferior colliculusin the rat. J Comp Neurol, 304: 103–122

doi: 10.1002/cne.903040108
Hou T T, Wu M, Jen P H-S (1992). Pulse repetition rate and duration affect the responses of bat auditory cortical neurons. Chin J Physiol, 35(4): 259–278
Huffman R F, Henson O W (1990). The descending auditory pathways and acoustic motorsystems: connections with the inferior colliculus. Brain Res Rev, 15: 295–323

doi: 10.1016/0165-0173(90)90005-9
Jen P H-S (1982a). Echolocation in the bat: obstacleavoidance by the bat and signal coding in the bat’s cerebellum. Proc Nation Sci Coun (China), 6(1): 71–80
Jen P H-S (1982b). Electrophysiological analysis ofecholocation system in bats. In: Neff W D, ed. Contributions to Sensory Physiology, Vol. 6. New York: Academic Press. 115–158
Jen P H-S, Chen D M (1988). Directionality of sound pressure transformation at the pinna of echolocatingbats. Hearing Res, 34: 101–118

doi: 10.1016/0378-5955(88)90098-6
Jen P H-S, Chen Q C (1998). The effect of pulse repetition rate, pulse intensity, and bicucullineon the minimum threshold and latency of bat inferior collicular neurons. J Comp Pysiol, 182: 455–465

doi: 10.1007/s003590050193
Jen P H-S, Chen Q C, Sun X D (1998). Corticofugal regulation of auditory sensitivity in bat inferior colliculus. J Comp Physiol, 183: 683–697

doi: 10.1007/s003590050291
Jen P H-S, Feng R B (1999). Bicuculline application affects pulse duration tuning characteristicsof bat inferior collicular neurons. J Comp Physiol, 184: 185–194

doi: 10.1007/s003590050317
Jen P H-S, Gold C G (2004). Detection of stationary and moving targets under clutter interferenceby the big brown bat, Eptesicus fuscus. Acta Zool Sinica, 50(1): 9–18
Jen P H-S, Hou T-T, Wu M (1993). Neurons in the inferior colliculus, auditory cortex and pontine nuclei of the FM bat, Eptesicus fuscus respond to pulse repetition rate differently. Brain Res, 613: 152–155

doi: 10.1016/0006-8993(93)90466-Z
Jen P H-S, Kamada T (1982). Analysis of orientation signals emitted by the CF-FMbat, Pteronotus parnellii parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacles. J Comp Physiol, 148: 389–398

doi: 10.1007/BF00679023
Jen P H-S, Kamada T, Sun X D, Schlegel P, Vater M, Harnischfeger G, Rubsamen R (1984). Responses of cerebellar neurons to acoustic stimuli in certain FM and CF-FM bats. Chin J Physiol, 27: 1–26
Jen P H-S, Lee Y H, Wieder R K (1980a). The avoidance of stationary and moving obstacles by little brown bats, Myotis lucifugus. In: Busnel RG, Fish J F, eds. Animal Sonar Systems. New York: Plenum Publishing Corporation, 917–919
Jen P H-S, McCarty J K (1978a). Bats avoid moving objects more successfully than stationaryones. Nature (London), 275: 743–744

doi: 10.1038/275743a0
Jen P H-S, McCarty J K (1978b). Obstacle avoidance by echolocating bats. Bat Res News, 19: 4–83
Jen P H-S, McCarty J K, Lee Y H (1980b). The avoidance of obstacles by little brown bats, Myotis lucifugus. In: Wilson D E, Gardner A L, eds. Proc 5th Int Bat Res Conf. Lubbock, Texas: Texas Technical University Press, 23–27
Jen P H-S, Ostwald J (1977). Response of cricothyroid muscles to frequency modulatedsounds on the FM bats, Myotis lucifugus. Nature (London), 265: 77–78

doi: 10.1038/265077a0
Jen P H-S, Ostwald J, Suga N (1978). Electrophysiological properties of the acoustic middle ear and laryngeal muscles reflexesin the awake echolocating FM bats, Myotis lucifugus. J Comp Physiol, 124: 61–73

doi: 10.1007/BF00656392
Jen P H-S, Schlegel P (1982). Auditory physiological properties of the neurons inthe inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol, 147: 351–364

doi: 10.1007/BF00609669
Jen P H-S, Schlegel P A (1980). Neurons in the cerebellum of echolocating bats respondto acoustic signals. Brain Res, 196: 502–507

doi: 10.1016/0006-8993(80)90415-1
Jen P H-S, Suga N (1976). Coordinated activities of the middle-ear and laryngeal muscles inecholocating bats. Science (USA), 191: 950–952
Jen P H-S, Sun X D (1984). Pinna orientation determines the maximal directional sensitivityof bat auditory neurons. Brain Res, 301: 157–161

doi: 10.1016/0006-8993(84)90415-3
Jen P H-S, Sun X D (1988). Frontal auditory space representation in the cerebellar vermis ofecholocating bats. In: Nautigall P E, Moore P W B, eds. Animal Sonar Systems. New York: Plenum Publishing Corporation, 271–274
Jen P H-S, Sun X D, Chen D M, Teng H B (1987). Auditory space representation in the inferior colliculusof the FM bat, Eptesicus fuscus. Brain Res, 419: 7–18

doi: 10.1016/0006-8993(87)90563-4
Jen P H-S, Sun X D, Chen Q C (2001). An electrophysiological study of neural pathways for corticofugally inhibited neurons in thecentral nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus. Exp Brain Res, 137: 292–302

doi: 10.1007/s002210000637
Jen P H-S, Sun X, D, Chen Q C, Zhang J P, Zhou X M (2003). Corticofugal regulation of bat midbrain auditory sensitivity. In: Advances in the Study of Echolocation in Bats and Dolphins. Chicago: University of Chicago Press, 196–200
Jen P H-S, Sun X D, Kamada T (1982). Responses of cerebellar neurons of the CF-FM bat, Pteronotus parnellii to acoustic stimuli. Brain Res, 252: 167–171

doi: 10.1016/0006-8993(82)90992-1
Jen P H-S, Sun X D, Kamada T, Zhang S Q, Shimozawa T (1984). Auditory response properties and spatial response areas of superior collicularneurons of the FM bats, Eptesicus fuscus. J Comp Physiol, 154: 407–413

doi: 10.1007/BF00605239
Jen P H-S, Sun X D, Lin P J (1989). Frequency and space representation in the primary auditory cortex of the FM bat, Eptesicus fuscus. J Comp Physiol, 165: 1–14

doi: 10.1007/BF00613794
Jen P H-S, Vater M, Harnischfeger G, Rubsamen R (1981). Mapping of the auditory area in thecerebellar vermis and hemispheres of the little brown bats, Myotis lucifugus. Brain Res, 219: 156–161

doi: 10.1016/0006-8993(81)90275-4
Jen P H-S, Wu C H (2005). The role of GABAergic inhibition in shaping the response size andduration selectivity of bat inferior collicular neurons to sound pulsesin rapid sequences. Hearing Res, 202: 222–234

doi: 10.1016/j.heares.2004.11.008
Jen P H-S, Wu C H (2006). Duration selectivity organization in the inferior colliculus of thebig brown bat, Eptesicus fuscus. Brain Res, 1108: 76–87

doi: 10.1016/j.brainres.2006.06.017
Jen P H-S, Wu C H (2008). Echo duration selectivity of the bat varies with pulse-echo amplitudedifference. NeuroReport, 19(3): 373–377

doi: 10.1097/WNR.0b013e3282f52c61
Jen P H-S, Wu C H, Luan R H, Zhou X M (2002). GABAergic inhibition contributes to pulse repetitionrate-dependent frequency selectivity in the inferior colliculus ofthe big brown bat, Eptesicus fuscus. Brain Res, 948: 159–164

doi: 10.1016/S0006-8993(02)03056-1
Jen P H-S, Wu M (1993). Directional sensitivity of inferior collicular neurons of the bigbrown bat, Eptesicus fuscus, to sounds delivered from selected horizontal and vertical angles. Chin J Physiol, 36(1): 7–18
Jen P H-S, Wu M, Pinheiro A D (1991). Directional sensitivity of bat inferior collicular neurons determined under normaland monaurally plugged ear conditions. Chin J Physiol, 34 (4): 371–386
Jen P H-S, Zhang J P (1999). Corticofugal regulation of excitatory and inhibitory frequency tuningcurves of bat inferior collicular neurons. Brain Res, 842: 184–188

doi: 10.1016/S0006-8993(99)01786-2
Jen P H-S, Zhang W P, Sun X D, Zhang S Q (1993). Responses of superior collicular neurons of the bigbrown bat, Eptesicus fuscus, to stationary and moving sounds. Chin J Physiology, 36(4): 233–243
Jen P H-S, Zhou X M (1999). Temporally patterned pulse trains affect duration tuning characteristicsof bat inferior collicular neurons. J Comp Physiol, 185: 471–478

doi: 10.1007/s003590050408
Jen P H-S, Zhou X M, Wu C H (2001). Temporally patterned pulse trains affect frequency tuning and intensity coding of inferiorcollicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol, 187: 605–616

doi: 10.1007/s003590100233
Jen P H-S, Zhou X M, Zhang J P, Chen Q C, Sun X D (2002). Brief and short-term corticofugal modulation of acoustic signal processingin the bat midbrain. Hearing Res, 168: 196–207

doi: 10.1016/S0378-5955(02)00358-1
Jen P H-S, Zhou X M (2003). Corticofugal modulation of amplitude domain processing in the midbrainof the big brown bat, Eptesicus fuscus. Hearing Res, 184: 91–106

doi: 10.1016/S0378-5955(03)00237-5
Jurine L (1798). Extrait des experiences de Jurinesur les chauves-souris qu’on a prive(es) de la vue. J de Physique, 46: 145–148
Kamada T, Jen P H-S (1990). Auditory spatial sensitivity of cerebellar neurons ofthe big brown bat, Eptesicus fuscus. Brain Res, 528: 123–129

doi: 10.1016/0006-8993(90)90203-N
Kamada T, Wu M, Jen P H-S (1992). Auditory response properties and spatial response areas of single neurons in the pontinenuclei of the big brown bat, Eptesicus fuscus. Brain Res, 575: 187–198

doi: 10.1016/0006-8993(92)90079-O
Kaplan H M (1970). Anatomy and physiology of speech(2nd ed). New York: McGraw-Hill Book Company, 3–10
Kawamura K (1975). The pontine projection from the inferiorcollieulus in the cat: an experimental anatomical study. Brain Res, 95: 309–322

doi: 10.1016/0006-8993(75)90109-2
Lawrence B D, Simmons J A (1982). Echolocation in bats: The external ear and perceptionof the vertical position of targets. Science (USA), 218: 481–483
Lu L, Jen P H-S, Zheng Q Y (1997). GABAergic disinhibition changes the recovery cycle of bat inferior collicular neurons. J Comp Physiol, 181: 331–341

doi: 10.1007/s003590050119
Lu Y, Jen P H-S, Wu M (1998). GABAergic disinhibition affects responses of bat inferior collicular neurons to temporally patterned sound pulses. J Neurophysiol, 79: 2303–2315
Martin J H (1989). Neuroanatomy. New York: Elsevier
Masters W M, Moffat A J, Simmons J A (1985). Sonar tracking of horizontally moving targets by the big brown bat Eptesicus fuscus. Science (USA), 228(4705): 1331–1333
Maxim H (1912). The sixth sense of the bat. Sir Hiram’s contention. The possible preventionof sea collision. Sci Amer, 7: 148–150
McCarty J K, Jen P H-S (1983). Bats reject clutter interference for moving targetsmore successfully than for stationary ones. J Comp Physiol, 152: 447–454

doi: 10.1007/BF00606434
Moriyama T, Hou T-Z, Wu M, Jen P H-S (1994). Responses of inferior collicular neurons of the FM bat, Eptesicus fuscus, to pulse trains with variedpulse amplitudes. Hearing Res, 79: 105–114

doi: 10.1016/0378-5955(94)90132-5
Mihailoff G A, Burne R A, Azizi S A, Norell G, Woodward D J (1981). The pontocerebellar system in the rat: an HRP study. II. Hemispheral components. J Compo Neurol, 197: 559–577

doi: 10.1002/cne.901970403
Narins P M, Capranica R R (1980). Neural adaptation for processing the two-note call ofthe Puerto Rican treefrog, Eleutherodactylus coqui. Brain Behav Evol, 17: 48–66

doi: 10.1159/000121790
Neuweiler G (1990). Auditory adaptations for prey capturein echolocating bats. Physiol Rev, 70 (3): 615–641
Neuweiler G (2003). Evolutionary aspects of bat echolocation. J Comp Physiol, 189: 245–256
Novick A, Griffin D R (1961). Laryngeal mechanisms in bats for the production of orientationsounds. J Exp Zool, 148: 125–145

doi: 10.1002/jez.1401480203
Novick A (1971). Echolocation in bats: Some aspectsof pulse design. Am Sci, 59: 198–209
Olsen J F, Suga N (1991). Combination-sensitive neurons in the medial geniculate body of themustached bat: encoding target range information. J Neurophysiol, 65: 1275–1296
O’Neill W E (1987). The processing of temporal information in the auditory system of echolocating bats. In: Fenton M B, Racey P, Rayner J M V, eds. Recent Advances in the Study of Bats. London: Cambridge University Press, 171–199
O’Neill W E, Suga N (1982). Encoding of target range and its representation in theauditory cortex of the mustached bat. J Neurosci, 2: 17–31
Perez-Gonzalez D, Malmierca M S, Moore J M, Hernandez O, Covey E (2006). Duration selective neurons in the inferior colliculus of the rat:topographic distribution and relation of duration sensitivity to otherresponse properties. J Neurophysiol, 95: 823–836

doi: 10.1152/jn.00741.2005
Pinheiro A D, Wu M, Jen P H-S (1991). Encoding repetition rate and duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol, 169: 69–85

doi: 10.1007/BF00198174
Pierce G W, Griffin D R (1938). Experimental determination of supersonic notes emittedby bats. J Mammal, 19: 454–455

doi: 10.2307/1374231
Pollak G, Henson O W Jr (1973). Specialized functional aspects of the middlecar muscles in the bat, Chilonycteris parnellii parnellii. J Comp Physiol, 86: 167–174

doi: 10.1007/BF00697604
Poon P W F, Sun X D, Kamada T, Jen P H-S (1990). Frequency and space representation in the inferior colliculusof the FM bat, Eptesicus fuscus. Exp Brain Res, 79: 83–91

doi: 10.1007/BF00228875
Popper A N, Fay R R, eds (1995). Hearing by bats. New York: Springer
Revel J P (1962). The sarcoplasmic reticulum of thebat cricothyroid muscle. J Cell Biol, 12: 571–588

doi: 10.1083/jcb.12.3.571
Rollinat R, Trouessart E (1900). Sur le sens de la direction chez les chiropteres. Paris: Comptes rendus Soc de Biol, 604–607
Roverud R C (1989). A gating mechanism for sound patternrecognition is correlated with the temporal structure of echolocationsound in the rufous horseshoe bat. J Comp Physiol, 166: 243–249

doi: 10.1007/BF00193468
Roverud R C, Grinnell A D (1985). Discrimination performance and echolocation signal integrationrequirements for target detection and distance discrimination in theCF/FM bat, Noctilio albiventris. J Comp Physiol, 156: 447–456

doi: 10.1007/BF00613969
Saldaña E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferiorcolliculus mimics the topography of intracollicular projections. J Comp Neurol, 371: 15–40

doi: 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
Schlegel P A, Jen P H-S, Singh S (1988). Auditory spatial sensitivity of inferior collicular neurons of echolocating bats. Brain Res, 456: 127–138

doi: 10.1016/0006-8993(88)90354-X
Schnitzler H-U, Grinnell A D (1977). Directional sensitivity of echolocation in the horseshoebat Rhinolophus ferrumequinum I. Directionality of sound emission. J Comp Physiol, 116: 51–61

doi: 10.1007/BF00605516
Schnitzler H-U, Henson O W (1980). Performance of airborne animal sonar systems. I. Microchiroptera. In: Busnel R-G, Fish J F, eds. Animal sonar systems. New York: Plenum Press, 109–182
Schuller G, Suga N (1976). Laryngeal mechanisms for the emission of the CF-FM sounds in theDoppler-shift compensating bat. Rhinolophus ferrum equinum. J Comp Physiol, 107: 253–262

doi: 10.1007/BF00656736
Shannon R V, Zeng F G, Kamath V, Wygonski J, Ekelid M (1995). Speech recognition with primary temporal cues. Science (USA), 270: 303–304
Shen J X, Chen Q C, Jen P H-S (1997). Binaural and frequency representation in the primary auditory cortex of the big brown bat, Eptesicus fuscus. J Comp Physiol, 181: 591–597

doi: 10.1007/s003590050142
Shimozawa T, Suga N, Hendler P, Schuetze S (1974). Directional sensitivity of echolocation systems in batsproducing frequency-modulated signals. J Exp Biol, 60: 53–59
Shimozawa T, Sun X D, Jen P H-S (1984). Auditory space representation in the superior colliculus of the big brown bat, Eptesicus fuscus. Brain Res, 311: 289–296

doi: 10.1016/0006-8993(84)90091-X
Simmons J A, Fenton M B, O’Farrell M J (1979). Echolocation and pursuit of prey by bats. Science (USA), 203: 16–21
Snider R S, Stowell A (1944). Receiving areas of the tactile, auditory and visualsystems in the cerebellum. J Neurophysiol, 7: 331–358
Sprague J M, Meikle T H Jr (1965). The role of the superior colliculus in visuallyguided behavior. Exp Neurol, 11: 115–146

doi: 10.1016/0014-4886(65)90026-9
Stein B E, Goldberg S J, Clamann H P (1976). The control of eye movement by the superior colliculus in the alert cat. Brain Res, 118: 469–474

doi: 10.1016/0006-8993(76)90314-0
Suga N, Gao E, Zhang Y, Ma X, Olsen J F (2000). The corticofugal system for hearing: recent progress. Proc Natl Acad Sci (USA), 97: 11807–11814

doi: 10.1073/pnas.97.22.11807
Suga N, Jen P H-S (1975). Peripheral control of acoustic signals in the auditorysystem of echolocating bats. J Exp Biol, 62: 277–311
Suga N, Jen P H-S (1976). Disproportionate tonotopic representation for processing“CF-FM” sonar signals in the mustache bat auditory cortex. Science (USA), 194: 542–544
Suga N, Jen P H-S (1977). Further studies on the peripheral auditory system ofthe “CF-FM” bats specialized for fine frequency analysis of Doppler-shiftedechoes. J Exp Biol, 69: 207–232
Suga N, Schlegel P (1972). Neural attenuation of responses to emitted sounds inecholocating bat. Science (USA), 177: 82–84
Suga N, Shimozawa T (1974). Site of neural attenuation of responses to self-vocalizedsounds in echolocating bat. Science (USA), 183: 1211–1213
Suga N, Simmons J A, Jen P H-S (1975). Peripheral specializations for fine analysis of Doppler-shifted echoes in theauditory system of the “CF-FM” bat, Pteronotus parnellii. J Exp Biol, 63: 161–192
Suga N, Simmons J A, Shimozawa T (1974). Neurophysiological studies on echolocation system in awake bats producing CF-FM orientationsounds. J Exp Biol, 61: 379–399
Sullivan W E (1982a). Neural representation of targetdistance in the auditory cortex of the echolocating bat, Myotis lucifugus. J Neurophysiol, 48: 1011–1032
Sullivan W E (1982b). Possible neural mechanisms of targetdistance coding in auditory systems of the echolocating bat, Myotis lucifugus. J Neurophysiol, 48: 1033–1047
Sun X D, Chen Q C, Jen P H-S (1996). Corticofugal control of central auditory sensitivity. Neurosci Lett, 212: 131–134

doi: 10.1016/0304-3940(96)12788-9
Sun X D, Jen P H-S (1987). Pinna position affects the auditory space representationin the inferior colliculus of the FM bat, Eptesicus fuscus. Hearing Res, 27(3): 207–219

doi: 10.1016/0378-5955(87)90002-5
Sun X D, Jen P H-S, Kamada T (1983a). Neurons in the superior colliculus of echolocating bats respond to ultrasonic signals. Brain Res, 275: 148–152

doi: 10.1016/0006-8993(83)90427-4
Sun X D, Jen P H-S, Kamada T (1983b). Mapping of the auditory area in the cerebellar vermis and hemispheres of the mustache bat, Pteronotus parnellii parnellii. Brain Res, 271: 162–165

doi: 10.1016/0006-8993(83)91378-1
Sun X D, Jen P H-S, Sun D X, Zhang S F (1989). Corticofugal influences in the responses of bat inferiorcollicular neurons to sound stimulation. Brain Res, 495: 1–8

doi: 10.1016/0006-8993(89)91212-2
Sun X D, Jen P H-S, Zhang W P (1987a). Auditory spatial response areas of single neurons and space representation in the cerebellumof echolocating bats. Brain Res, 414: 323–329

doi: 10.1016/0006-8993(87)90012-6
Sun X D, Li H, Huang H (1987b). Effect of the pinna orientation on obstacle avoidance scores in echolocating bats. Acta Theriologic Sinica, 7: 8–12
Surlykke A, Moss C F (2000). Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am, 108: 2419–2429

doi: 10.1121/1.1315295
Suthers R A, Fattu J M (1973). Mechanisms of sound production by echolocating bats. Am Zool, 13: 1215–1226
Teng H, Jen P H-S (1990a). Frequency representation and auditory physiologicalproperties of neurons in the pontine nuclei of the big brown bat, Eptesicus fuscus, Abstr. Assoc Res Otolaryngol, 275
Teng H, Jen P H-S (1990b). Auditory directional sensitivity of single neurons inthe pontine nuclei of the FM bat, Eptesicus fuscus. Abstr Soc Neurosci, 718
van Bergeijk W A (1962). Variation on a themeof Bekesy: a model of binaural interaction. J Acoust Soc Am, 34: 1431–1437

doi: 10.1121/1.1918364
Wang X, Luo F, Wu F J, Chen, Q C, Jen P H-S (2008). The recovery cycle of bat duration-selective collicular neurons varies with huntingphase. NeuroReport, 19: 861–865

doi: 10.1097/WNR.0b013e3282ffb574
Wang X, Luo F, Wu F J, Jen P H-S, Chen Q C (2010). The recovery cycle of neurons in the inferior colliculus of the FM bat determinedwith varied pulse-echo duration and amplitude. Chin J Physiol (in press).
Watt C B, Mihailoff G A (1983). The cerebellopontine system in the rat. I. Autoradiographicstudies. J Compo Neurol, 215: 312–330

doi: 10.1002/cne.902150307
Webster F A, Brazier O B (1965). Experimental studies on target detection, evaluationand interception by echolocating bats. T.D.R.No. AMRL-TR-65-172, Aerospaece Medical Division, U.S.A.F. SystemsCommand
Wever E G, Vernon J A (1961). The protective mechanism of the bat’s ear. AnnOtol Rhinol Laryngol, 70: 1–13
Wieder R K, Jen P H-S (1979). Monaural and binaural avoidance of stationary and movingobstacles by Myotis lucifugus and Eptesicus fuscus. Abst 10th North Am Bat Res Symp. 34
Wiesendanger R, Wiesendanger M (1982a). The corticopontine system in the rat. J. Mapping ofthe corticopontine neurons. J Comp Neurol, 208: 215–226

doi: 10.1002/cne.902080302
Wiesendanger R, Wiesendanger M (1982b). The corticopontine system in the rat. II. The projectionspattern. J Comp Neurol, 208: 227–228

doi: 10.1002/cne.902080303
Winer J A (2006). Decoding the auditory corticofugalsystems. Hearing Res, 212: 1–8

doi: 10.1016/j.heares.2005.06.014
Wotton J M, Haresign T, Ferragamo MJ, Simmons J A (1996). Sound source elevation and external ear cues influence the discrimination of spectral notches by the bigbrown bat, Eptesicus fuscus. J Acoust Soc Am, 100(3): 1764–1776

doi: 10.1121/1.416073
Wu M, Jen P H-S (1995a). Directional sensitivity of inferior collicular neuronsof the big brown bat, Eptesicus fuscus, determined with temporally varied sound pulses. Le Rhinolophe, 11: 75–81
Wu M, Jen P H-S (1995b). Responses of pontine neurons of the big brown bat, Eptesicus fuscus, to temporally patternedsound pulses. Hearing Res, 85: 155–168

doi: 10.1016/0378-5955(95)00042-3
Wu M, Jen P H-S (1996). Temporally patterned sound pulses affect directionalsensitivity of inferior collicular neurons of the big brown bat, Eptesicus fuscus. J Comp Physiol, 179: 385–393

doi: 10.1007/BF00194992
Wu M, Jen P H-S (1998). The recovery properties of neurons in the inferior colliculus,auditory cortex and the pontine nuclei of the big brown bat, Eptesicus fuscus. Chin J Physiol, 41(1): 1–8
Wu C H, Jen P H-S (2006a). The role of GABAergic inhibition in shaping durationselectivity of bat inferior collicular neurons determined with temporallypatterned sound trains. Hearing Res, 215: 56–66

doi: 10.1016/j.heares.2006.03.001
Wu C H, Jen P H-S (2006b). GABA-mediated echo duration selectivity of inferiorcollicular neurons of Eptesicus fuscus, determined with single pulses and pulse-echo pairs. J Comp Physiol, 192: 985–1002

doi: 10.1007/s00359-006-0133-6
Wu C H, Jen P H-S (2007). Neurons in the inferior colliculus of the big brownbat show maximal amplitude sensitivity at the best duration. Chin J Physiol, 50(5): 258–268
Wu C H, Jen P H-S (2008a). Auditory frequency selectivity is better for expectedthan for unexpected sound duration. NeuroReport, 19(1): 127–131

doi: 10.1097/WNR.0b013e3282f3b11c
Wu C H, Jen P H-S (2008b). Bat inferior collicular neurons have the greatest frequencyselectivity when determined with best-duration pulses. Neurosci Lett, 438: 362–367

doi: 10.1016/j.neulet.2008.04.069
Wu C H, Jen P H-S (2008c). Echo frequency selectivity of duration-tuned inferiorcollicular neurons of the big brown bat, Eptesicus fuscus, determined with pulse-echo pairs. Neuroscience, 156: 1028–1038

doi: 10.1016/j.neuroscience.2008.08.039
Wu C H, Jen P H-S (2009). Echo amplitude selectivity of the bat is better forexpected than for unexpected echo duration. NeuroReport, 20 (13): 1183–1187

doi: 10.1097/WNR.0b013e32832f0805
Wu M, Hou E T-T, Jen P H-S (1996). Responses of bat inferior collicular and auditory cortical neurons to pulsatile amplitudemodulated sound pulses. Chin J Physiol, 39(3): 1–7
Wurtz R H, Goldberg M E (1971). Superior colliculus cell responses related to eye movementsin awake monkeys. Science (USA), 17: 82–84
Yan J, Suga N (1996). Corticofugal modulation of time-domain processing of biosonar informationin bats. Science (USA), 273: 1100–1103
Zhang J P, Jen P H-S, Sun X D (2000). Direction-dependent corticofugal modulation of frequency tuning curves of inferior collicularneurons in the big brown bat, Eptesicus fuscus. J Comp Physiol, 186: 913–922

doi: 10.1007/s003590000142
Zhang S Q, Sun X D, Jen P H-S (1987). Anatomical study of neural projections to the superior colliculus of the big brownbat, Eptesicus fuscus. Brain Res, 416: 375–380

doi: 10.1016/0006-8993(87)90922-X
Zhang W P, Jen P H-S (1984). Preference of a revolving target to a stationary oneby the big brown bat, Eptesicus fuscus. Proc Nation Sci Coun (China), 8(3): 222–228
Zhang Y F, Suga N (2000). Modulation of responses and frequency tuning of thalamic and collicularneurons by cortical activation in mustached bats. J Neurophysiol, 84: 325–333
Zhang Y F, Suga N, Yan J (1997). Corticofugal modulation of frequency processing in bat auditory system. Nature (London), 387: 900–903

doi: 10.1038/43180
Zhou X M, Jen P H-S (2000a). Neural inhibition sharpens auditory spatial sensitivityof bat inferior collicular neurons. J Comp Physiol, 186: 389–398

doi: 10.1007/s003590050438
Zhou X M, Jen P H-S (2000b). Corticofugal inhibition compresses all types of rateintensity functions of inferior collicular neurons in the big brownbat. Brain Res, 881: 62–68

doi: 10.1016/S0006-8993(00)02805-5
Zhou X M, Jen P H-S (2000c). Brief-and short-term corticofugal modulation of subcorticalauditory responses in the big brown bat. J Neurophysiol, 84: 3083–3087
Zhou X M, Jen P H-S (2001). The effect of sound intensity on duration tuning characteristicsof bat inferior collicular neurons. J Comp Physiol, 187: 63–73

doi: 10.1007/s003590000179
Zhou X M, Jen P H-S (2002a). The effect of sound duration on rate-intensity functionsof inferior collicular neurons of the big brown bat, Eptesicus fuscus. Hearing Res, 166: 124–135

doi: 10.1016/S0378-5955(02)00306-4
Zhou X M, Jen P H-S (2002b). The role of GABAergic inhibition in shaping directionalselectivity of bat inferior collicular neurons determined with temporallypatterned pulse trains. J Comp Physiol, 188: 815–826

doi: 10.1007/s00359-002-0367-x
Zhou X M, Jen P H-S (2004). Azimuth-dependent recovery cycle affects directionalselectivity of bat inferior collicular neurons determined with soundpulses within a pulse train. Brain Res, 1019: 281–288

doi: 10.1016/j.brainres.2004.06.004
Zhou X M., Jen P H-S (2005). Corticofugal modulation of directional sensitivity inthe midbrain of the big brown bat, Eptesicus fuscus. Hearing Res, 203: 201–215

doi: 10.1016/j.heares.2004.12.008
Zhou X M, Jen P H-S (2006). Duration selectivity of bat inferior collicular neuronsimproves with increasing repetition rate. Chin J Physiol, 49 (1): 46–55
Zhou X M, Jen P H (2007). Multi-parametric corticofugal modulation of sub-cortical auditoryselectivity in the midbrain of bats. J Neurophysiol, 98: 2509–2516

doi: 10.1152/jn.00613.2007
[1] Martha Hvoslef-Eide,Charlotte A. Oomen. Adult neurogenesis and pattern separation in rodents: A critical evaluation of data, tasks and interpretation[J]. Front. Biol., 2016, 11(3): 168-181.
[2] Stacy Nguy,Maria Victoria Tejada-Simon. Phenotype analysis and rescue on female FVB.129-Fmr1 knockout mice[J]. Front. Biol., 2016, 11(1): 43-52.
[3] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[4] Aaron MCGEE,Guohui LI,Zhongming LU,Shenfeng QIU. Convergent synaptic and circuit substrates underlying autism genetic risks[J]. Front. Biol., 2014, 9(2): 137-150.
[5] Amir ABDOLI. Toxoplasma, testosterone, and behavior manipulation: the role of parasite strain, host variations, and intensity of infection[J]. Front. Biol., 2014, 9(2): 151-160.
[6] Dengke K. MA, Niels RINGSTAD. The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Front Biol, 2012, 7(3): 246-253.
[7] Awoyemi A. AWOFALA. Application of microarray technology in Drosophila ethanol behavioral research[J]. Front Biol, 2012, 7(1): 65-72.
[8] SUN Yanfeng, LI Suping, LI Juyong, WU Yuefeng, LI Jianping. Time budget and activity rhythm of wild Great Bustard in winter[J]. Front. Biol., 2006, 1(4): 443-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed