Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (3) : 246-253    https://doi.org/10.1007/s11515-012-1219-x
REVIEW
The neurobiology of sensing respiratory gases for the control of animal behavior
Dengke K. MA1(), Niels RINGSTAD2()
1. Department of Biology, McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA.; 2. Department of Cell Biology and the Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Langone Medical Center, New York, NY 10016, USA
 Download: PDF(205 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Aerobic metabolism is fundamental for almost all animal life. Cellular consumption of oxygen (O2) and production of carbon dioxide (CO2) signal metabolic states and physiologic stresses. These respiratory gases are also detected as environmental cues that can signal external food quality and the presence of prey, predators and mates. In both contexts, animal nervous systems are endowed with mechanisms for sensing O2/CO2 to trigger appropriate behaviors and maintain homeostasis of internal O2/CO2. Although different animal species show different behavioral responses to O2/CO2, some underlying molecular mechanisms and pathways that function in the detection of respiratory gases are fundamentally similar and evolutionarily conserved. Studies of Caenorhabditis elegans and Drosophila melanogaster have identified roles for cyclic nucleotide signaling and the hypoxia inducible factor (HIF) transcriptional pathway in mediating behavioral responses to respiratory gases. Understanding how simple invertebrate nervous systems detect respiratory gases to control behavior might reveal general principles common to nematodes, insects and vertebrates that function in the molecular sensing of respiratory gases and the neural control of animal behaviors.

Keywords oxygen      carbon dioxide      C. elegans      Drosophila      respiratory gases      animal behaviors     
Corresponding Author(s): MA Dengke K.,Email:dkma@mit.edu; RINGSTAD Niels,Email:niels.ringstad@med.nyu.edu   
Issue Date: 01 June 2012
 Cite this article:   
Dengke K. MA,Niels RINGSTAD. The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Front Biol, 2012, 7(3): 246-253.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1219-x
https://academic.hep.com.cn/fib/EN/Y2012/V7/I3/246
Fig.1  Schematic molecular mechanisms of sensing O or CO levels to direct acute behavioral or homeostatic responses in and vertebrates. In both and , sensing changes in O levels to direct acute behavioral responses is mediated by atypical nucleotide guanylate cyclases (GCs) that can bind O, which regulates the enzymatic activity of GCs to convert GTP to cyclic GMP. In vertebrates, sensing reduction in O levels to direct ventilation responses in the carotid body appears to be mediated by HS, which increases in levels upon hypoxia. There are also acute behaviors that require mechanisms independently of cyclic nucleotides in and it remains unknown whether vertebrates also use GCs to modulate ventilation. Sensing changes in CO levels in both and vertebrates appears to be mainly mediated by GCs and/or adenylate cyclases (ACs); whether it is also the case in remains to be seen. The perception of carbonation in mammals uses pH-sensing mechanisms via carbonic anhydrase (CA)-generated protons. In all animal species examined so far, an evolutionarily conserved transcriptional pathway mediates the homeostatic response to hypoxia. The O-sensing hydroxylase EGLN family proteins is modulated by antagonizing actions of O and HS to inhibit HIF transcription factors, which ultimately direct adaptive responses to hypoxia by the transcriptional regulation of its numerous target genes.
1 Anderson J F, Ultsch G R (1987). Respiratory gas concentrations in the microhabitats of some Florida arthropods. Comp Biochem Physiol Part A Physiol , 88(3): 585-588
doi: 10.1016/0300-9629(87)90086-7
2 Bargmann C I, Hartwieg E, Horvitz H R (1993). Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell , 74(3): 515-527
doi: 10.1016/0092-8674(93)80053-H pmid:8348618
3 Bickler P E, Donohoe P H (2002). Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol , 205(Pt 23): 3579-3586
pmid:12409484
4 Brandt J P, Aziz-Zaman S, Juozaityte V, Martinez-Velazquez L A, Petersen J G, Pocock R, Ringstad N (2012). A single gene target of an ETS-family transcription factor determines neuronal CO2-chemosensitivity. PLoS ONE , (In press)
5 Bretscher A J, Busch K E, de Bono M (2008). A carbon dioxide avoidance behavior is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. Proc Natl Acad Sci USA , 105(23): 8044-8049
doi: 10.1073/pnas.0707607105 pmid:18524954
6 Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W, Ryba N J, Zuker C S (2009). The taste of carbonation. Science , 326(5951): 443-445
doi: 10.1126/science.1174601 pmid:19833970
7 Chang A J, Bargmann C I (2008). Hypoxia and the HIF-1 transcriptional pathway reorganize a neuronal circuit for oxygen-dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci USA , 105(20): 7321-7326
doi: 10.1073/pnas.0802164105 pmid:18477695
8 Ehrismann D, Flashman E, Genn D N, Mathioudakis N, Hewitson K S, Ratcliffe P J, Schofield C J (2007). Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay. Biochem J , 401(1): 227-234
doi: 10.1042/BJ20061151 pmid:16952279
9 Epstein A C, Gleadle J M, McNeill L A, Hewitson K S, O’Rourke J, Mole D R, Mukherji M, Metzen E, Wilson M I, Dhanda A, Tian Y M, Masson N, Hamilton D L, Jaakkola P, Barstead R, Hodgkin J, Maxwell P H, Pugh C W, Schofield C J, Ratcliffe P J (2001). C. elegansEGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell , 107(1): 43-54
doi: 10.1016/S0092-8674(01)00507-4 pmid:11595184
10 Félix M A, Braendle C (2010). The natural history of Caenorhabditis elegans. Curr Biol , 20(22): R965-R969
doi: 10.1016/j.cub.2010.09.050 pmid:21093785
11 Fischler W, Kong P, Marella S, Scott K (2007). The detection of carbonation by the Drosophila gustatory system. Nature , 448(7157): 1054-1057
doi: 10.1038/nature06101 pmid:17728758
12 Gourine A V, Kasymov V, Marina N, Tang F, Figueiredo M F, Lane S, Teschemacher A G, Spyer K M, Deisseroth K, Kasparov S (2010). Astrocytes control breathing through pH-dependent release of ATP. Science , 329(5991): 571-575
doi: 10.1126/science.1190721 pmid:20647426
13 Gourine A V, Llaudet E, Dale N, Spyer K M (2005). ATP is a mediator of chemosensory transduction in the central nervous system. Nature , 436(7047): 108-111
doi: 10.1038/nature03690 pmid:16001070
14 Gray J M, Karow D S, Lu H, Chang A J, Chang J S, Ellis R E, Marletta M A, Bargmann C I (2004). Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature , 430(6997): 317-322
doi: 10.1038/nature02714 pmid:15220933
15 Guerenstein P G, Hildebrand J G (2008). Roles and effects of environmental carbon dioxide in insect life. Annu Rev Entomol , 53(1): 161-178
doi: 10.1146/annurev.ento.53.103106.093402 pmid:17803457
16 Guillermin M L, Castelletto M L, Hallem E A (2011). Differentiation of carbon dioxide-sensing neurons in Caenorhabditis elegans requires the ETS-5 transcription factor. Genetics , 189(4): 1327-1339
doi: 10.1534/genetics.111.133835 pmid:21954162
17 Guo D, Zhang J J, Huang X Y (2009). Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry , 48(20): 4417-4422
doi: 10.1021/bi900441v pmid:19331426
18 Hallem E A, Spencer W C, McWhirter R D, Zeller G, Henz S R, R?tsch G, Miller D M 3rd, Horvitz H R, Sternberg P W, Ringstad N (2011). Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci USA , 108(1): 254-259
doi: 10.1073/pnas.1017354108 pmid:21173231
19 Hallem E A, Sternberg P W (2008). Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc Natl Acad Sci USA , 105(23): 8038-8043
doi: 10.1073/pnas.0707469105 pmid:18524955
20 Hendricks T, Francis N, Fyodorov D, Deneris E S (1999). The ETS domain factor Pet-1 is an early and precise marker of central serotonin neurons and interacts with a conserved element in serotonergic genes. J Neurosci , 19(23): 10348-10356
pmid:10575032
21 Hodges M R, Tattersall G J, Harris M B, McEvoy S D, Richerson D N, Deneris E S, Johnson R L, Chen Z F, Richerson G B (2008). Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. J Neurosci , 28(10): 2495-2505
doi: 10.1523/JNEUROSCI.4729-07.2008 pmid:18322094
22 Hu J, Zhong C, Ding C, Chi Q, Walz A, Mombaerts P, Matsunami H, Luo M (2007). Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science , 317(5840): 953-957
doi: 10.1126/science.1144233 pmid:17702944
23 Huang S H, Rio D C, Marletta M A (2007). Ligand binding and inhibition of an oxygen-sensitive soluble guanylate cyclase, Gyc-88E, from Drosophila. Biochemistry , 46(51): 15115-15122
doi: 10.1021/bi701771r pmid:18044974
24 Jones W D, Cayirlioglu P, Kadow I G, Vosshall L B (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature , 445(7123): 86-90
doi: 10.1038/nature05466 pmid:17167414
25 Kimura H (2010). Hydrogen sulfide: from brain to gut. Antioxid Redox Signal , 12(9): 1111-1123
doi: 10.1089/ars.2009.2919 pmid:19803743
26 Klein D F (1993). False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch Gen Psychiatry , 50(4): 306-317
doi: 10.1001/archpsyc.1993.01820160076009 pmid:8466392
27 Lenton T M T (2003). The Coupled Evolution of Life and Atmospheric Oxygen. Amsterdam: Elsevier Science
28 Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang L H, Rong W (2010). A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal , 12(10): 1179-1189
doi: 10.1089/ars.2009.2926 pmid:19803741
29 Loenarz C, Coleman M L, Boleininger A, Schierwater B, Holland P W, Ratcliffe P J, Schofield C J (2011). The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens. EMBO Rep , 12(1): 63-70
doi: 10.1038/embor.2010.170 pmid:21109780
30 Luo M, Sun L, Hu J (2009). Neural detection of gases—carbon dioxide, oxygen—in vertebrates and invertebrates. Curr Opin Neurobiol , 19(4): 354-361
doi: 10.1016/j.conb.2009.06.010 pmid:19640697
31 Ma D K, Vozdek R, Bhatla N, Horvitz H R (2012). CYSL-1 Interacts with the O2-sensing Hydroxylase EGL-9 to Promote H2S-modulated Hypoxia-induced behavioral plasticity in C. elegans. Neuron , 73(5): 925-940
doi: 10.1016/j.neuron.2011.12.037
32 Maina J N (1998). The Gas Exchangers: Structure, Function, and Evolution of the Respiratory Processes. Berlin: Springer
33 McGrath P T, Rockman M V, Zimmer M, Jang H, Macosko E Z, Kruglyak L, Bargmann C I (2009). Quantitative mapping of a digenic behavioral trait implicates globin variation in C. elegans sensory behaviors. Neuron , 61(5): 692-699
doi: 10.1016/j.neuron.2009.02.012 pmid:19285466
34 Morton D B (2004). Atypical soluble guanylyl cyclases in Drosophila can function as molecular oxygen sensors. J Biol Chem , 279(49): 50651-50653
doi: 10.1074/jbc.C400461200 pmid:15485853
35 Morton D B (2011). Behavioral responses to hypoxia and hyperoxia in Drosophila larvae: molecular and neuronal sensors. Fly (Austin) , 5(2): 119-125
pmid:21150317
36 Olson K R (2011a). Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol , 179(2-3): 103-110
doi: 10.1016/j.resp.2011.09.010 pmid:21968289
37 Olson K R (2011b). The therapeutic potential of hydrogen sulfide: separating hype from hope. Am J Physiol Regul Integr Comp Physiol , 301(20): R297-R312
doi: 10.1152/ajpregu.00045.2011 pmid:21543637
38 Olson K R, Dombkowski R A, Russell M J, Doellman M M, Head S K, Whitfield N L, Madden J A (2006). Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol , 209(Pt 20): 4011-4023
doi: 10.1242/jeb.02480 pmid:17023595
39 Olson K R, Whitfield N L (2010). Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal , 12(10): 1219-1234
doi: 10.1089/ars.2009.2921 pmid:19803742
40 Padilla P A, Nystul T G, Zager R A, Johnson A C, Roth M B (2002). Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. Mol Biol Cell , 13(5): 1473-1483
doi: 10.1091/mbc.01-12-0594 pmid:12006646
41 Papp L A, Klein D F, Gorman J M (1993). Carbon dioxide hypersensitivity, hyperventilation, and panic disorder. Am J Psychiatry , 150(8): 1149-1157
pmid:8392296
42 Peng Y J, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla M M, Kumar G K, Snyder S H, Prabhakar N R (2010). H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA , 107(23): 10719-10724
doi: 10.1073/pnas.1005866107 pmid:20556885
43 Persson A, Gross E, Laurent P, Busch K E, Bretes H, de Bono M (2009). Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature , 458(7241): 1030-1033
doi: 10.1038/nature07820 pmid:19262507
44 Pocock R, Hobert O (2010). Hypoxia activates a latent circuit for processing gustatory information in C. elegans. Nat Neurosci , 13(5): 610-614
doi: 10.1038/nn.2537 pmid:20400959
45 Potter L R (2011). Guanylyl cyclase structure, function and regulation. Cell Signal , 23(12): 1921-1926
doi: 10.1016/j.cellsig.2011.09.001 pmid:21914472
46 Powell-Coffman J A (2010). Hypoxia signaling and resistance in C. elegans. Trends Endocrinol Metab , 21(7): 435-440
doi: 10.1016/j.tem.2010.02.006 pmid:20335046
47 Prabhakar N R (2005). O2 sensing at the mammalian carotid body: why multiple O2 sensors and multiple transmitters? Exp Physiol , 91(1): 17-23
doi: 10.1113/expphysiol.2005.031922 pmid:16239252
48 Quaegebeur A, Carmeliet P (2010). Oxygen sensing: a common crossroad in cancer and neurodegeneration. Curr Top Microbiol Immunol , 345: 71-103
doi: 10.1007/82_2010_83 pmid:20582529
49 Ray R S, Corcoran A E, Brust R D, Kim J C, Richerson G B, Nattie E, Dymecki S M (2011). Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science , 333(6042): 637-642
doi: 10.1126/science.1205295 pmid:21798952
50 Richerson G B (2004). Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci , 5(6): 449-461
doi: 10.1038/nrn1409 pmid:15152195
51 Scott K (2011). Out of thin air: sensory detection of oxygen and carbon dioxide. Neuron , 69(2): 194-202
doi: 10.1016/j.neuron.2010.12.018 pmid:21262460
52 Semenza G L (2011a). Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta , 1813(7): 1263-1268
doi: 10.1016/j.bbamcr.2010.08.006 pmid:20732359
53 Semenza G L (2011b). Oxygen sensing, homeostasis, and disease. N Engl J Med , 365(6): 537-547
doi: 10.1056/NEJMra1011165 pmid:21830968
54 Singh S, Padovani D, Leslie R A, Chiku T, Banerjee R (2009). Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J Biol Chem , 284(33): 22457-22466
doi: 10.1074/jbc.M109.010868 pmid:19531479
55 Spyer K M (2009). To breathe or not to breathe? That is the question. Exp Physiol , 94(1): 1-10
doi: 10.1113/expphysiol.2008.043109 pmid:19042981
56 Suh G S, Wong A M, Hergarden A C, Wang J W, Simon A F, Benzer S, Axel R, Anderson D J (2004). A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature , 431(7010): 854-859
doi: 10.1038/nature02980 pmid:15372051
57 Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009). Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Natl Acad Sci USA , 106(6): 2041-2046
doi: 10.1073/pnas.0812220106 pmid:19181845
58 Teppema L J, Dahan A (2010). The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev , 90(2): 675-754
doi: 10.1152/physrev.00012.2009 pmid:20393196
59 Vermehren-Schmaedick A, Ainsley J A, Johnson W A, Davies S A, Morton D B (2010). Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics , 186(1): 183-196
doi: 10.1534/genetics.110.118166 pmid:20592263
60 Vozdek R, Hnizda A, Krijt J, Kostrouchova M, Kozich V (2012). Novel structural arrangement of nematode cystathionine beta-synthases: characterization of Caenorhabditis elegans CBS-1. Biochem J, Available online 13 Jan 2012
61 Ward J P (2008). Oxygen sensors in context. Biochim Biophys Acta , 1777(1): 1-14
doi: 10.1016/j.bbabio.2007.10.010 pmid:18036551
62 Yu S, Avery L, Baude E, Garbers D L (1997). Guanylyl cyclase expression in specific sensory neurons: a new family of chemosensory receptors. Proc Natl Acad Sci USA , 94(7): 3384-3387
doi: 10.1073/pnas.94.7.3384 pmid:9096403
63 Ziemann A E, Allen J E, Dahdaleh N S, Drebot I I, Coryell M W, Wunsch A M, Lynch C M, Faraci F M, Howard M A 3rd, Welsh M J, Wemmie J A (2009). The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior. Cell , 139(5): 1012-1021
doi: 10.1016/j.cell.2009.10.029 pmid:19945383
64 ZimmerM, GrayJ M, PokalaN, ChangA J, KarowD S, MarlettaM A, HudsonM L, MortonD B, ChronisN, BargmannC I(2009). Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron , 61(6): 865-879
doi: 10.1016/j.neuron.2009.02.013 pmid:19323996
[1] Yu Lu,Biao Yan,Xudong Liu,Yuchao Zhang,Shibi Zeng,Hao Hu,Rong Xiang,Yu Xu,Ying Yu,Xu Yang. Comparative study of oxidative stress induced by sand flower and schistose nanosized layered double hydroxides in N2a cells[J]. Front. Biol., 2015, 10(3): 279-286.
[2] Yongli WANG, Nian QIN, Shan CHEN, Jingyun ZHAO, Xu YANG. Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo[J]. Front Biol, 2013, 8(5): 549-555.
[3] Huanan WEN, Jiaxin ZHONG, Bei SHEN, Tao GAN, Chao FU, Zhihong ZHU, Rui LI, Xu YANG. Comparative study of the cytotoxicity of the nanosized and microsized tellurium powders on HeLa cells[J]. Front Biol, 2013, 8(4): 444-450.
[4] Mahandranauth A. CHETRAM, Cimona V. HINTON. ROS-mediated regulation of CXCR4 in cancer[J]. Front Biol, 2013, 8(3): 273-278.
[5] Aparna SHERLEKAR, Richa RIKHY. Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?[J]. Front Biol, 2012, 7(1): 73-82.
[6] Awoyemi A. AWOFALA. Application of microarray technology in Drosophila ethanol behavioral research[J]. Front Biol, 2012, 7(1): 65-72.
[7] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
[8] Awoyemi A. AWOFALA. Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system[J]. Front Biol, 2011, 6(5): 414-421.
[9] Weiguo DONG, Fang HUANG, Hongwen HE. Melatonin and mitochondria in aging[J]. Front Biol, 2010, 5(6): 532-539.
[10] Min WANG, Zhumei SHI, Jiahao SHA, Dan LIU, Gong-Yu ZHANG, Bing-Hua JIANG, . Inhibition of vascular endothelial growth factor expression by Chinese medicine of Hedyotis diffusa Willd herbal compounds[J]. Front. Biol., 2010, 5(4): 361-368.
[11] Jing WANG, Xuequn LIU, Guanghui YU, . Identification of superoxide dismutase isoenzymes in tobacco pollen[J]. Front. Biol., 2009, 4(4): 442-445.
[12] Junxing YANG, Zhihong YE. Metal accumulation and tolerance in wetland plants[J]. Front Biol Chin, 2009, 4(3): 282-288.
[13] ZHAO Liang, XU Shixiao, ZHAO Xinquan, GU Song, LI Yingnian, TANG Yanhong, DU Mingyuan, YU Guirui. Relations between Carbon Dioxide Fluxes and Environmental Factors of Kobresia humilis Meadows and Potentilla fruticosa Meadows[J]. Front. Biol., 2007, 2(3): 324-332.
[14] Wu Yu, Wang Jihong, Cui Xiuyun, Zhao Peng, Xu Yuefei, Zhao Baochang. Anti-oxidative effect of ribonuclease inhibitor by site-directed mutagenesis and expression in Pichia pastoris[J]. Front. Biol., 2006, 1(2): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed