Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (1) : 73-82    https://doi.org/10.1007/s11515-011-1160-4
REVIEW
Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?
Aparna SHERLEKAR, Richa RIKHY()
Indian Institute of Science, Education and Research, Biology, 301, Central Tower, Sai Trinity Bldg, Pashan, Pune 411021, India
 Download: PDF(453 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

During embryo development in many metazoan animals, the first differentiated cell type to form is an epithelial cell. This epithelial layer is modified by developmental cues of body axes formation to give rise to various tissues. The cells that arise are mesenchymal in nature and are a source of other tissue types. This epithelial to mesenchymal transition is used for tissue type formation and also seen in diseases such as cancer. Here we discuss recent findings on the cellular architecture formation in the Drosophila embryo and how it affects the developmental program of body axes formation. In particular these studies suggest the presence of compartments around each nucleus in a common syncytium. Despite the absence of plasma membrane boundaries, each nucleus not only has its own endoplasmic reticulum and Golgi complex but also its own compartmentalized plasma membrane domain above it. This architecture is potentially essential for morphogen gradient restriction in the syncytial Drosophila embryo. We discuss various properties of the dorso-ventral and the antero-posterior morphogen gradients in the Drosophila syncytium, which are likely to depend on the syncytial architecture of the embryo.

Keywords morphogen gradient      Drosophila      syncytium      embryo      cellular architecture     
Corresponding Author(s): RIKHY Richa,Email:richa@iiserpune.ac.in   
Issue Date: 01 February 2012
 Cite this article:   
Aparna SHERLEKAR,Richa RIKHY. Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?[J]. Front Biol, 2012, 7(1): 73-82.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1160-4
https://academic.hep.com.cn/fib/EN/Y2012/V7/I1/73
Fig.1  The cellular architecture in the syncytial embryo during interphase of the nuclear cycles 11-13. The centrosomes are present apically. These form microtubules in the vertical direction. The endoplasmic reticulum and the Golgi complex are partitioned to each nucleus and show compartmentalization of diffusion around each nucleus. The actin cytoskeleton is present as caps beneath apical plasma membrane, which is rich in microvilli. The lateral plasma membrane, which surrounds each nucleus only partially during interphase of the syncytial cycle, contains specific transmembrane proteins such as Tl, junctional proteins such as Cadherin and Patj, cytoskeletal-remodeling proteins such as Anillin and Peanut and endocytosis proteins such as Dynamin and Clathrin (not drawn to scale).
Fig.2  Bicoid (Bcd) gradient in the syncytium. The mRNA and the Bcd protein form a gradient across the syncytial nuclei in the anterior (A). The Staufen protein is required for anchoring the mRNA at the anterior of the embryo. The Bcd protein is formed from translation of the mRNA and enters the nucleus where it activates specific downstream gene expression responsible for determining the anterior end of the embryo (B) (not drawn to scale).
Fig.3  MAP kinase (MAPK) gradient in the syncytium. The MAPK gradient is formed on the anterior and the posterior by the activation of the Torso (Tor) receptor (A). The Tor receptor gets activated by processing of the Tor-like ligand in the perivitelline space. The Tor receptor is present all over the plasma membrane and is endocytosed and degraded in lysosomes after activation (B) (not drawn to scale).
Fig.4  Dorsal (Dl) gradient in the syncytium. The Dl gradient in the syncytium is formed in response to activation of Toll (Tl) receptor by Sp?ztle (Spz) (A). The Tl receptor is activated by cleaved Spz locally formed in the perivitelline space on the ventral side. The activated Tl receptor is endocytosed and has been shown to signal from Rab5 positive early endosomes (B) (not drawn to scale).
1 Acloque H, Adams M S, Fishwick K, Bronner-fraser M, Nieto M A (2009). Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest , 119(6): 1438-1449
2 Afshar K, Stuart B, Wasserman S A (2000). Functional analysis of the Drosophila diaphanous FH protein in early embryonic development. Development , 127: 1887-1897
3 Arnot C J, Gay N J, Gangloff M (2010). Molecular mechanism that induces activation of Sp?tzle, the ligand for the Drosophila Toll receptor. J Biol Chem , 285(25): 19502-19509
doi: 10.1074/jbc.M109.098186
4 Baker J, Theurkauf W E, Schubiger G (1993). Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo. J Cell Biol , 122(1): 113-121
doi: 10.1083/jcb.122.1.113
5 Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C (1988). The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J , 7: 1749-1756
6 Bownes M (1975). A photographic study of development in the living embryo of Drosophila melanogaster. J Embryol Exp Morphol , 33: 789-801
7 Coppey M, Berezhkovskii A M, Kim Y, Boettiger A N, Shvartsman S Y (2007). Modeling the bicoid gradient: diffusion and reversible nuclear trapping of a stable protein. Dev Biol , 312(2): 623-630
doi: 10.1016/j.ydbio.2007.09.058
8 Coppey M, Boettiger A N, Berezhkovskii A M, Shvartsman S Y (2008). Nuclear trapping shapes the terminal gradient in the Drosophila embryo. Curr Biol , 18(12): 915-919
9 de Las Heras J M, Martinho R G, Lehmann R, Casanova J (2009). A functional antagonism between the pgc germline repressor and torso in the development of somatic cells. EMBO Rep , 10(9): 1059-1065
doi: 10.1038/embor.2009.128
10 DeLotto R, DeLotto Y, Steward R, Lippincott-Schwartz J (2007). Nucleocytoplasmic shuttling mediates the dynamic maintenance of nuclear Dorsal levels during Drosophila embryogenesis. Development , 134(23): 4233-4241
doi: 10.1242/dev.010934
11 Deng J, Wang W, Lu L J, Ma J (2010). A two-dimensional simulation model of the Bicoid Gradient in Drosophila. system, PLoS ONE, 5(4): e10275
12 Dil?o R, Muraro D (2010). mRNA diffusion explains protein gradients in Drosophila early development. J Theor Biol , 264(3): 847-853
doi: 10.1016/j.jtbi.2010.03.012
13 Dornan S, Jackson A P, Gay N J (1997). Alpha-adaptin, a marker for endocytosis, is expressed in complex patterns during Drosophila development. Mol Biol Cell , 8: 1391-1403
14 Driever W, Nüsslein-Volhard C (1988a). A gradient of bicoid protein in Drosophila embryos. Cell , 54(1): 83-93
doi: 10.1016/0092-8674(88)90182-1
15 Driever W, Nüsslein-Volhard C (1988b). The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell , 54(1): 95-104
doi: 10.1016/0092-8674(88)90183-3
16 Field C M (2005). Characterization of anillin mutants reveals essential roles in septin localization and plasma membrane integrity. Development , 132(12): 2849-2860
doi: 10.1242/dev.01843
17 Field C M, Alberts B M (1995). Anillin, a contractile ring protein that cycles from the nucleus to the cell cortex. J Cell Biol , 131(1): 165-178
doi: 10.1083/jcb.131.1.165
18 Foe V E, Alberts B M (1983). Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci , 61: 31-70
19 Freeman M, Nüsslein-Volhard C, Glover D M (1986). The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell , 46(3): 457-468
doi: 10.1016/0092-8674(86)90666-5
20 Frescas D, Mavrakis M, Lorenz H, Delotto R, Lippincott-Schwartz J (2006). The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei. J Cell Biol , 173(2): 219-230
doi: 10.1083/jcb.200601156
21 Gangloff M, Murali A, Xiong J, Arnot C J, Weber A N, Sandercock A M, Robinson C V, Sarisky R, Holzenburg A, Kao C, Gay N J (2008). Structural insight into the mechanism of activation of the Toll receptor by the dimeric ligand Sp?tzle. J Biol Chem , 283(21): 14629-14635
doi: 10.1074/jbc.M800112200
22 Gillespie S K, Wasserman S A (1994). Dorsal, a Drosophila Rel-like protein, is phosphorylated upon activation of the transmembrane protein Toll. Mol Cell Biol , 14: 3559-3568
23 Gregor T, Tank D W, Wieschaus E F, Bialek W (2007). Probing the limits to positional information. Cell , 130(1): 153-164
24 Grimm O, Coppey M, Wieschaus E (2010). Modelling the Bicoid gradient. Development , 137(14): 2253-2264
doi: 10.1242/dev.032409
25 Grimm O, Wieschaus E (2010). The Bicoid gradient is shaped independently of nuclei INTRODUCTION. Development , 2862(17): 2857-2862
doi: 10.1242/dev.052589
26 Grosshans J, Wenzl C, Herz H M, Bartoszewski S, Schnorrer F, Vogt N, Schwarz H, Müller H A (2005). RhoGEF2 and the formin Dia control the formation of the furrow canal by directed actin assembly during Drosophila cellularisation. Development , 132(5): 1009-1020
doi: 10.1242/dev.01669
27 Hu Q, Milenkovic L, Jin H, Scott M P, Nachury M V, Spiliotis E T, Nelson W J (2010). A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science , 329(5990): 436-439
doi: 10.1126/science.1191054
28 Huang A M, Rusch J, Levine M (1997). An anteroposterior Dorsal gradient in the Drosophila embryo. Genes Dev , 11(15): 1963-1973
doi: 10.1101/gad.11.15.1963
29 Huang H R, Chen Z J, Kunes S, Chang G D, Maniatis T (2010). Endocytic pathway is required for Drosophila Toll innate immune signaling. Proc Natl Acad Sci U S A , 107(18): 8322-8327
30 Kanodia J S, Rikhy R, Kim Y, Lund V K, DeLotto R, Lippincott-Schwartz J, Shvartsman S Y (2009). Dynamics of the Dorsal morphogen gradient. Proc Natl Acad Sci USA , 106(51): 21707-21712
doi: 10.1073/pnas.0912395106
31 Karr T L, Alberts B M (1986). Organization of the cytoskeleton in early Drosophila embryos. J Cell Biol , 102(4): 1494-1509
doi: 10.1083/jcb.102.4.1494
32 Kavousanakis M E, Kanodia J S, Kim Y, Kevrekidis I G, Shvartsman S Y (2010). A compartmental model for the bicoid gradient. Dev Biol , 345(1): 12-17
doi: 10.1016/j.ydbio.2010.05.491
33 Keith F J, Gay N J (1990). The Drosophila membrane receptor Toll promote cellular adhesion function to. EMBO J , 9: 4299-4306
34 Kim S K, Shindo A, Park T J, Oh E C, Ghosh S, Gray R S, Lewis R A, Johnson C A, Attie-Bittach T, Katsanis N, Wallingford J B (2010). Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science , 329(5997): 1337-1340
doi: 10.1126/science.1191184
35 Kim Y, Coppey M, Grossman R, Ajuria L, Jiménez G, Paroush Z, Shvartsman S Y (2010). MAPK substrate competition integrates patterning signals in the Drosophila embryo. Curr Biol , 20(5): 446-451
doi: 10.1016/j.cub.2010.01.019
36 Kim Y K, Furic L, Desgroseillers L, Maquat L E, York N (2005). Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell , 120(2): 195-208
37 Lecuit T (2004). Junctions and vesicular trafficking during Drosophila cellularization. J Cell Sci , 117(16): 3427-3433
doi: 10.1242/jcs.01312.
38 Lecuit T, Samanta R, Wieschaus E (2002). slam encodes a developmental regulator of polarized membrane growth during cleavage of the Drosophila embryo. Dev Cell , 2(4): 425-436
doi: 10.1016/S1534-5807(02)00141-7
39 Lipshitz H D (2009). Follow the mRNA: a new model for Bicoid gradient formation. Nat Rev Mol Cell Biol , 10: 509-512
40 Lloyd T E, Atkinson R, Wu M N, Zhou Y, Pennetta G, Bellen H J (2002). Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell , 108(2): 261-269
doi: 10.1016/S0092-8674(02)00611-6
41 L?hr U, Chung H R, Beller M, J?ckle H (2009). Antagonistic action of Bicoid and the repressor Capicua determines the spatial limits of Drosophila head gene expression domains. Proc Natl Acad Sci USA , 106(51): 21695-21700
doi: 10.1073/pnas.0910225106
42 Lund V K, DeLotto Y, DeLotto R (2010). Endocytosis is required for Toll signaling and shaping of the Dorsal/NF-κB morphogen gradient during Drosophila embryogenesis. Proc Natl Acad Sci USA , 107(42): 18028-18033
doi: 10.1073/pnas.1009157107
43 Mavrakis M, Rikhy R, Lippincott-Schwartz J (2009). Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev Cell , 16(1): 93-104
doi: 10.1016/j.devcel.2008.11.003
44 Minden J S, Agard D (1989). Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical microscopy of living embryos. J Cell Biol , 109(2): 505-516
doi: 10.1083/jcb.109.2.505
45 Moussian B, Roth S (2005). Dorsoventral axis formation in the Drosophila embryo-shaping and transducing a morphogen gradient. Curr Biol , 15: 887-899
46 Papatsenko D (2005). Quantitative analysis of binding motifs mediating diverse spatial readouts of the Dorsal gradient in the Drosophila embryo. Proc Natl Acad Sci USA , 102(14): 4966-4971
doi: 10.1073/pnas.0409414102
47 Postner M A, Wieschaus E F (1994). The nullo protein is a component of the actin-myosin network that mediates cellularization in Drosophila melanogaster embryos. J Cell Sci , 107 (Pt 7): 1863-1873
48 Raff J W, Glover D M (1989). Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell , 57(4): 611-619
doi: 10.1016/0092-8674(89)90130-X
49 Ratnaparkhi G S, Jia S, Courey A J (2006). Uncoupling dorsal-mediated activation from dorsal-mediated repression in the Drosophila embryo. Development , 4414(22): 4409-4414
doi: 10.1242/dev.02643
50 Riggs B, Rothwell W, Mische S, Hickson G R X, Matheson J, Hays T S, Gould G W (2003). Actin cytoskeleton remodeling during early Drosophila furrow formation requires recycling endosomal components Nuclear-fallout and Rab11. J Cell Biol , 163(1): 143-154
doi: 10.1083/jcb.200305115
51 Roth S, Lynch J A (2009). Symmetry breaking during Drosophila oogenesis. Cold Spring Harb Perspect Biol , 1(2): a001891
doi: 10.1101/cshperspect.a001891
52 Royou A, Sullivan W (2002). Cortical recruitment of nonmuscle myosin II in early syncytial Drosophila embryos: its role in nuclear axial expansion and its regulation by Cdc2 activity. J Cell Biol , 158(1): 127-137
doi: 10.1083/jcb.200203148
53 Rusch J, Levine M (1994). Regulation of the dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev , 8(11): 1247-1257
doi: 10.1101/gad.8.11.1247
54 Silverman-Gavrila R V, Hales K G, Wilde A (2008). Anillin-mediated targeting of peanut to pseudocleavage furrows is regulated by the GTPase Ran. Mol Biol Cell , 19(9): 3735-3744
doi: 10.1091/mbc.E08-01-0049
55 Simpson L, Wieschaus E (1990). Zygotic activity of the nullo locus is required to stabilize the actin-myosin network during cellularization in Drosophila. Development , 110: 851-863
56 Sisson J C, Field C, Ventura R, Royou A, Sullivan W (2000). Lava lamp, a novel peripheral Golgi protein, is required for Drosophila melanogaster cellularization. J Cell Biol , 151(4): 905-918
doi: 10.1083/jcb.151.4.905
57 Sokac A M, Wieschaus E (2008). Local actin-dependent endocytosis is zygotically controlled to initiate Drosophila cellularization. Dev Cell , 14(5): 775-786
doi: 10.1016/j.devcel.2008.02.014
58 Sonnenblick B P (1948). Synchronous mitoses in Drosophila, their intensely rapid rate, and the sudden appearance of the nucleolus. Genetics , 33: 125
59 Spirov A, Fahmy K, Schneider M, Frei E, Noll M, Baumgartner S (2009). Formation of the bicoid morphogen gradient: an mRNA gradient dictates the protein gradient. Development , 614(4): 605-614
doi: 10.1242/dev.031195
60 Sprenger F, Stevens L M, Nüsslein-Volhard C (1989). The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature , 338(6215): 478-483
doi: 10.1038/338478a0
61 Stevenson V, Hudson A, Cooley L, Theurkauf W E (2002). Arp2/3-dependent pseudocleavage furrow assembly in syncytial Drosophila embryos. Curr Biol , 12: 705-711
62 Takizawa P A, DeRisi J L, Wilhelm J E, Vale R D (2000). Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science , 290(5490): 341-344
doi: 10.1126/science.290.5490.341
63 Tipping M, Kim Y, Kyriakakis P, Tong M, Shvartsman S Y, Veraksa A (2010). b-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development. EMBO J , 29(19): 3222-3235
doi: 10.1038/emboj.2010.202
64 Turner F R, Mahowald A P (1977). Scanning electron microscopy of Drosophila melanogaster embryogenesis. II. Gastrulation and segmentation. Dev Biol , 57(2): 403-416
doi: 10.1016/0012-1606(77)90225-1
65 Ventura G, Furriols M, Martín N, Barbosa V, Casanova J (2010). closca, a new gene required for both Torso RTK activation and vitelline membrane integrity. Germline proteins contribute to Drosophila eggshell composition. Dev Biol , 344(1): 224-232
doi: 10.1016/j.ydbio.2010.05.002
66 von Dassow G, Schubiger G (1994). How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo. J Cell Biol , 127(6): 1637-1653
doi: 10.1083/jcb.127.6.1637
67 Weber A N R, Gangloff M, Moncrieffe M C, Hyvert Y, Imler J L, Gay N J (2007). Role of the Spatzle Pro-domain in the generation of an active toll receptor ligand. J Biol Chem , 282(18): 13522-13531
doi: 10.1074/jbc.M700068200
68 Weil T T, Forrest K M, Gavis E R (2006). Localization of bicoid mRNA in late oocytes is maintained by continual active transport. Dev Cell , 11(2): 251-262
doi: 10.1016/j.devcel.2006.06.006
69 Weil T T, Parton R, Davis I, Gavis E R (2008). Report changes in bicoid mRNA anchoring highlight conserved mechanisms during the oocyte-to-embryo transition. Curr Biol , 18(14): 1055-1061
doi: 10.1016/j.cub.2008.06.046
[1] Diana GUALLAR,Jianlong WANG. RNA-binding proteins in pluripotency, differentiation, and reprogramming[J]. Front. Biol., 2014, 9(5): 389-409.
[2] Brandoch D. COOK. Modeling murine yolk sac hematopoiesis with embryonic stem cell culture systems[J]. Front. Biol., 2014, 9(5): 339-346.
[3] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[4] Jiaqing WANG, Lin HOU, Zhenfeng HE, Daizong Li, Lijuan JIANG. Bioinformatic analysis of embryo development related small heat shock protein Hsp26 in Artemia species[J]. Front Biol, 2012, 7(4): 350-358.
[5] Yonggang ZHANG, Wenhui HU. NFκB signaling regulates embryonic and adult neurogenesis[J]. Front Biol, 2012, 7(4): 277-291.
[6] Dengke K. MA, Niels RINGSTAD. The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Front Biol, 2012, 7(3): 246-253.
[7] Awoyemi A. AWOFALA. Application of microarray technology in Drosophila ethanol behavioral research[J]. Front Biol, 2012, 7(1): 65-72.
[8] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
[9] Awoyemi A. AWOFALA. Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system[J]. Front Biol, 2011, 6(5): 414-421.
[10] Saijun MO, Shengli YANG, Zongbin CUI. New glimpses of caveolin-1 functions in embryonic development and human diseases[J]. Front Biol, 2011, 6(5): 367-376.
[11] Peng ZHAO, Dong-Qiao SHI, Wei-Cai YANG. Patterning the embryo in higher plants: Emerging pathways and challenges[J]. Front Biol, 2011, 06(01): 3-11.
[12] Chao YANG, Jia-Fei XI, Xiao-Yan XIE, Wen YUE, Ruo-Yong WANG, Qiong WU, Li-Juan HE, Xue NAN, Yan-Hua LI, Xue-Tao PEI. Prostaglandin E2 promotes hematopoietic development from human embryonic stem cells[J]. Front Biol, 2010, 5(5): 445-454.
[13] Weiqiang LI, Jie QIN, Xinyu LI, Li ZHANG, Chang LIU, Fei CHEN, Zifei WANG, Lirong ZHANG, Xiuming ZHANG, Bruce T. LAHN, Andy Peng XIANG. A versatile tool for tracking the differentiation of human embryonic stem cells[J]. Front Biol, 2010, 5(5): 455-463.
[14] Wei YANG, Qi ZHOU, Xiu-Jie WANG, . Regulation beyond genome sequences: DNA and histone methylation in embryonic stem cells[J]. Front. Biol., 2010, 5(1): 41-47.
[15] YUE Hua, YANG Falong, TANG Cheng, LI Dingfei, FU Anjing, MA Li. shRNA-triggered RNAi inhibits expression of NDV NP gene in chicken embryo fibroblast[J]. Front. Biol., 2008, 3(4): 433-438.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed