Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (1) : 41-47    https://doi.org/10.1007/s11515-010-0006-9
Research articles
Regulation beyond genome sequences: DNA and histone methylation in embryonic stem cells
Wei YANG1,Qi ZHOU2,Xiu-Jie WANG3,
1.State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of the Chinese Academy of Sciences, Beijing 100101, China; 2.State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; 3.State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;
 Download: PDF(209 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Embryonic stem (ES) cells distinct themselves from other cell type populations by their pluripotent ability. The unique features of ES cells are controlled by both genetic and epigenetic factors. Studies have shown that the methylation status of DNA and histones in ES cells is quite different from that of differentiated cells and somatic stem cells. Herein, we summarized recent advances in DNA and histone methylation studies of mammalian ES cells. The methylation status of several key pluripotent regulatory genes is also discussed.
Keywords Embryonic stem (ES) cells      epigenetic      DNA methylation      histone methylation      
Issue Date: 01 February 2010
 Cite this article:   
Wei YANG,Qi ZHOU,Xiu-Jie WANG. Regulation beyond genome sequences: DNA and histone methylation in embryonic stem cells[J]. Front. Biol., 2010, 5(1): 41-47.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0006-9
https://academic.hep.com.cn/fib/EN/Y2010/V5/I1/41
Avilion A A, Nicolis S K, Pevny L H, Perez L, Vivian N, Lovell-Badge R (2003). Multipotent cell lineages in early mouse developmentdepend on SOX2 function. Genes Dev, 17(1): 126―140

doi: 10.1101/gad.224503
Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations inthe human genome. Cell, 129(4): 823―837

doi: 10.1016/j.cell.2007.05.009
Benevolenskaya E V (2007). Histone H3K4 demethylases are essential in developmentand differentiation. Biochem Cell Biol, 85(4): 435―443

doi: 10.1139/O07-057
Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K (2006). A bivalentchromatin structure marks key developmental genes in embryonic stemcells. Cell, 125(2): 315―326

doi: 10.1016/j.cell.2006.02.041
Bibikova M, Chudin E, Wu B, Zhou L, Garcia E W, Liu Y, Shin S, Plaia T W, Auerbach J M, Arking D (2006). Humanembryonic stem cells have a unique epigenetic signature. Genome Res, 16(9): 1075―1083

doi: 10.1101/gr.5319906
Bibikova M, Laurent L C, Ren B, Loring J F, Fan J B (2008). Unraveling epigeneticregulation in embryonic stem cells. CellStem Cell, 2(2): 123―134

doi: 10.1016/j.stem.2008.01.005
Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6―21

doi: 10.1101/gad.947102
Brambrink T, Foreman R, Welstead G G, Lengner C J, Wernig M, Suh H, Jaenisch R (2008). Sequential expression of pluripotency markers duringdirect reprogramming of mouse somatic cells. Cell Stem Cell, 2(2): 151―159

doi: 10.1016/j.stem.2008.01.004
Callinan P A, Feinberg A P (2006). The emergingscience of epigenomics. Hum Mol Genet 15Spec No, 1: R95―R101
Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003). Functional expression cloning of Nanog, a pluripotency sustainingfactor in embryonic stem cells. Cell, 113(5): 643―655

doi: 10.1016/S0092-8674(03)00392-1
Chin M H, Mason M J, Xie W, Volinia S, Singer M, Peterson C, Ambartsumyan G, Aimiuwu O, Richter L, Zhang J (2009). Induced pluripotent stem cells and embryonic stem cells are distinguishedby gene expression signatures. Cell StemCell, 5(1): 111―123

doi: 10.1016/j.stem.2009.06.008
Dodge J E, Ramsahoye B H, Wo Z G, Okano M, Li E (2002). De novo methylationof MMLV provirus in embryonic stem cells: CpG versus non-CpG methylation. Gene, 289(1-2): 41―48

doi: 10.1016/S0378-1119(02)00469-9
Fouse S D, Shen Y, Pellegrini M, Cole S, Meissner A, Van Neste L, Jaenisch R, Fan G (2008). Promoter CpG methylation contributesto ES cell gene regulation in parallel with Oct4/Nanog, PcG complex,and histone H3 K4/K27 trimethylation. CellStem Cell, 2(2): 160―169

doi: 10.1016/j.stem.2007.12.011
Fraga M F, Esteller M (2002). DNA methylation:a profile of methods and applications. Biotechniques, 33(3): 632, 634, 636―649
Goldberg A D, Allis C D, Bernstein E (2007). Epigenetics: a landscape takes shape. Cell, 128(4): 635―638

doi: 10.1016/j.cell.2007.02.006
Haines T R, Rodenhiser D I, Ainsworth P J (2001). Allele-specific non-CpG methylationof the Nf1 gene during early mouse development. Dev Biol, 240(2): 585―598

doi: 10.1006/dbio.2001.0504
Hochedlinger K, Plath K (2009). Epigeneticreprogramming and induced pluripotency. Development, 136(4): 509―523

doi: 10.1242/dev.020867
Ikegami K, Iwatani M, Suzuki M, Tachibana M, Shinkai Y, Tanaka S, Greally J M, Yagi S, Hattori N, Shiota K (2007). Genome-wide and locus-specific DNA hypomethylation in G9a deficientmouse embryonic stem cells. Genes Cells, 12(1): 1―11

doi: 10.1111/j.1365-2443.2006.01029.x
Jackson J P, Lindroth A M, Cao X, Jacobsen S E (2002). Control of CpNpG DNA methylation by the KRYPTONITE histoneH3 methyltransferase. Nature, 416(6880): 556―560

doi: 10.1038/nature731
Jeffares D C, Poole A M, Penny D (1998). Relics from the RNA world. J Mol Evol, 46(1): 18―36

doi: 10.1007/PL00006280
Jenuwein T, Allis C D (2001). Translatingthe histone code. Science, 293(5532): 1074―1080

doi: 10.1126/science.1063127
Jones P A, Baylin S B (2002). The fundamentalrole of epigenetic events in cancer. NatRev Genet, 3(6): 415―428
Keller G (2005). Embryonic stem cell differentiation: emergence of anew era in biology and medicine. GenesDev, 19(10): 1129―1155

doi: 10.1101/gad.1303605
Khulan B, Thompson R F, Ye K, Fazzari M J, Suzuki M, Stasiek E, Figueroa M E, Glass J L, Chen Q, Montagna C (2006). Comparative isoschizomer profiling of cytosine methylation:the HELP assay. Genome Res, 16(8): 1046―1055

doi: 10.1101/gr.5273806
Koch C M, Andrews R M, Flicek P, Dillon S C, Kara z U, Clelland G K, Wilcox S, Beare D M, Fowler J C, Couttet P (2007). The landscapeof histone modifications across 1% of the human genome in five humancell lines. Genome Res, 17(6): 691―707

doi: 10.1101/gr.5704207
Lachner M, Jenuwein T (2002). The manyfaces of histone lysine methylation. CurrOpin Cell Biol, 14(3): 286―298

doi: 10.1016/S0955-0674(02)00335-6
Latham T, Gilbert N, Ramsahoye B (2008). DNA methylation in mouse embryonicstem cells and development. Cell TissueRes, 331(1): 31―55

doi: 10.1007/s00441-007-0537-9
Lehnertz B, Ueda Y, Derijck Aaha, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters A (2003). Suv39h-mediatedhistone H3 lysine 9 methylation directs DNA methylation to major satelliterepeats at pericentric heterochromatin. Curr Biol, 13(14): 1192―1200

doi: 10.1016/S0960-9822(03)00432-9
Li E (2002). Chromatin modification and epigenetic reprogrammingin mammalian development. Nat Rev Genet, 3(9): 662―673

doi: 10.1038/nrg887
Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q M (2009). Human DNA methylomes at base resolution show widespread epigenomicdifferences. Nature, 462: 315―322

doi: 10.1038/nature08514
Luger K, Mader A W, Richmond R K, Sargent D F, Richmond T J (1997). Crystalstructure of the nucleosome core particle at 2.8 A resolution. Nature, 389(6648): 251―260

doi: 10.1038/38444
Meissner A, Mikkelsen T S, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein B E, Nusbaum C, Jaffe D B (2008). Genome-scale DNA methylation maps of pluripotent and differentiatedcells. Nature, 454(7205): 766―770
Meshorer E, Misteli T (2006). Chromatinin pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol, 7(7): 540―546

doi: 10.1038/nrm1938
Mikkelsen T S, Ku M, Jaffe D B, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T K, Koche R P (2007). Genome-wide maps of chromatin state in pluripotent and lineage-committedcells. Nature, 448(7153): 553―560

doi: 10.1038/nature06008
Narlikar G J, Fan H Y, Kingston R E (2002). Cooperation between complexes thatregulate chromatin structure and transcription. Cell, 108(4): 475―487

doi: 10.1016/S0092-8674(02)00654-2
Ng S S, Yue W W, Oppermann U, Klose R J (2009). Dynamic protein methylation in chromatin biology. Cell Mol Life Sci, 66(3): 407―422

doi: 10.1007/s00018-008-8303-z
Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I (1998). Formation of pluripotent stem cellsin the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3): 379―391

doi: 10.1016/S0092-8674(00)81769-9
Niwa H, Miyazaki J, Smith A G (2000). Quantitative expression of Oct-3/4defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 24(4): 372―376

doi: 10.1038/74199
Ooi S K, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin S P, Allis C D(2007). DNMT3Lconnects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature448(7154): 714―717

doi: 10.1038/nature05987
Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir G A, Stewart R, Thomson J A (2007). Whole-genome analysis of histone H3 lysine 4 and lysine27 methylation in human embryonic stem cells. Cell Stem Cell, 1(3): 299―312

doi: 10.1016/j.stem.2007.08.003
Roth S Y, Denu J M, Allis C D (2001). Histone acetyltransferases. Annu Rev Biochem, 70: 81―120

doi: 10.1146/annurev.biochem.70.1.81
Shi Y, Do J T, Desponts C, Hahm H S, Schöler H R, Ding S (2008). A combined chemical and genetic approachfor the generation of induced pluripotent stem cells. Cell Stem Cell, 2(6): 525―528

doi: 10.1016/j.stem.2008.05.011
Shiota K, Kogo Y, Ohgane J, Imamura T, Urano A, Nishino K, Tanaka S, Hattori N (2002). Epigenetic marks byDNA methylation specific to stem, germ and somatic cells in mice. Genes Cells, 7(9): 961―969

doi: 10.1046/j.1365-2443.2002.00574.x
Silva J, Smith A (2008). Capturingpluripotency. Cell, 132(4): 532―536

doi: 10.1016/j.cell.2008.02.006
Smith A G (2001). Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol, 17: 435―462

doi: 10.1146/annurev.cellbio.17.1.435
Steger D J, Lefterova M I, Ying L, Stonestrom A J, Schupp M, Zhuo D, Vakoc A L, Kim J E, Chen J, Lazar M A (2008). DOT1L/KMT4recruitment and H3K79 methylation are ubiquitously coupled with genetranscription in mammalian cells. Mol CellBiol, 28(8): 2825―2839

doi: 10.1128/MCB.02076-07
Strahl B D, Allis C D (2000). The languageof covalent histone modifications. Nature, 403(6765): 41―45

doi: 10.1038/47412
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007). Inductionof pluripotent stem cells from adult human fibroblasts by definedfactors. Cell, 131(5): 861―872

doi: 10.1016/j.cell.2007.11.019
Takahashi K, Yamanaka S (2006). Inductionof pluripotent stem cells from mouse embryonic and adult fibroblastcultures by defined factors. Cell, 126(4): 663―676

doi: 10.1016/j.cell.2006.07.024
Tamaru H, Selker E U (2001). A histoneH3 methyltransferase controls DNA methylation in Neurospora crassa. Nature, 414(6861): 277―283

doi: 10.1038/35104508
Torres-Padilla M E, Parfitt D E, Kouzarides T, Zernicka-Goetz M (2007). Histone arginine methylation regulates pluripotencyin the early mouse embryo. Nature, 445(7124): 214―218

doi: 10.1038/nature05458
Tucker K L (2001). Methylated cytosine and the brain: a new base for neuroscience. Neuron, 30(3): 649―652

doi: 10.1016/S0896-6273(01)00325-7
Weber M, Davies J J, Wittig D, Oakeley E J, Haase M, Lam W L, Schubeler D (2005). Chromosome-wide and promoter-specific analyses identifysites of differential DNA methylation in normal and transformed humancells. Nat Genet, 37(8): 853―862

doi: 10.1038/ng1598
Wu C, Morris J R (2001). Genes,genetics, and epigenetics: a correspondence. Science, 293(5532): 1103―1105

doi: 10.1126/science.293.5532.1103
Yeo S, Jeong S, Kim J, Han J S, Han Y M, Kang Y K (2007). Characterization of DNA methylation change in stem cellmarker genes during differentiation of human embryonic stem cells. Biochem Biophys Res Commun, 359(3): 536―542

doi: 10.1016/j.bbrc.2007.05.120
Zhao X, Ruan Y, Wei C L (2008). Tackling the epigenome in the pluripotentstem cells. J Genet Genomics, 35(7): 403―412

doi: 10.1016/S1673-8527(08)60058-2
Zhao X D, Han X, Chew J L, Liu J, Chiu K P, Choo A, Orlov Y L, Sung W K, Shahab A, Kuznetsov V A (2007). Whole-genomemapping of histone H3 Lys4 and 27 trimethylations reveals distinctgenomic compartments in human embryonic stem cells. Cell Stem Cell, 1(3): 286―298

doi: 10.1016/j.stem.2007.08.004
[1] Ji-Song Guan, Hong Xie, San-Xiong Liu. Epigenetic regulators sculpt the plastic brain[J]. Front. Biol., 2017, 12(5): 317-332.
[2] Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?[J]. Front. Biol., 2017, 12(3): 183-191.
[3] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[4] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[5] Ying-Tao Zhao,Maria Fasolino,Zhaolan Zhou. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Front. Biol., 2016, 11(4): 311-322.
[6] Anita E. Autry,Megumi Adachi,Lisa M. Monteggia. Dynamic methylation driven by neuronal activity in hippocampal neurons impacts complex behavior[J]. Front. Biol., 2015, 10(5): 439-447.
[7] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[8] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[9] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[10] Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN. Single-cell genomics: An overview[J]. Front Biol, 2013, 8(6): 569-576.
[11] Yiwei LIN, Binhua P. ZHOU. Histone mimics: digging down under[J]. Front Biol, 2013, 8(2): 228-233.
[12] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
[13] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[14] Feng C. ZHOU. DNA methylation program during development[J]. Front Biol, 2012, 7(6): 485-494.
[15] Weihua QIAO, Liumin FAN. Epigenetics, a mode for plants to respond to abiotic stresses[J]. Front Biol, 2011, 6(6): 477-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed