Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (5) : 367-376    https://doi.org/10.1007/s11515-011-1132-8
REVIEW
New glimpses of caveolin-1 functions in embryonic development and human diseases
Saijun MO1, Shengli YANG1, Zongbin CUI2(email.png)
1. 1. Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China; 2. 2. Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
 Download: PDF(209 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from BoldItalic to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.

Keywords Caveolin-1      signal transduction      embryonic development      human diseases     
Corresponding Author(s): CUI Zongbin,Email:zbcui@ihb.ac.cn   
Issue Date: 01 October 2011
 Cite this article:   
Saijun MO,Shengli YANG,Zongbin CUI. New glimpses of caveolin-1 functions in embryonic development and human diseases[J]. Front Biol, 2011, 6(5): 367-376.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1132-8
https://academic.hep.com.cn/fib/EN/Y2011/V6/I5/367
Domain locationsNamesKnown functionsReferences
14Tyrosine 14Phosphorylation and caveolae internalizationSun et al., 2007
46-55Polarization domain (PD)Cav-1 polarization and caveolae formationSun et al., 2007
68-75Signature domain (SD)Release Caveolin-1 from endoplasmic reticulumMachleidt, et al., 2000
61-101Oligomerization domain (OD)Oligomerization with himself or Cav-2Sargiacomo et al., 1995; Scherer et al., 1997
82-101Circular dichroism (CD) N-attachment domain (N-MAD) Caveolin Scaffolding domain (CSD)Stabilize CSD helical conformation Attach with membrane Interact with other proteinLe Lan et al., 2006Schlegel and Lisanti, 2000Couet et al., 1997
82-109Nuclear magnetic resonance (NMR)Solution of phosphatidylserineLe Lan et al., 2006
102-134Intramembrane region (IMR)Plasma membrane locationGlenney and Soppet, 1992
135-150C-attachment domain(C-MAD)Attachment with membraneSchlegel and Lisanti, 2000
133, 143, 156CysteinePalmitoylation Interaction with other acylated protein Bind and transport cholesterolDietzen et al., 1995Lee et al., 2001Uittenbogaard and Smart, 2000
Tab.1  Caveolin-1 structure and domain functions
MoleculesInteractSubstrateRegulateSignaling pathwayReference
Growth factor receptors
TGFRDirectlymost of TβRSuppressTGF-βRazani et al., 2001a
DirectlyALK1PromoteTGF-βSantibanez et al., 2008
DirectlyBRIIinhibit (β isoform)BMPNohe et al., 2005
EGFRDirectlyEGFRinhibitEGFCouet et al., 1997
IndirectlyEGFRinhibitEGFR-MAPKHan et al., 2009
DirectlyEGFRpromoteEGFAgelaki et al., 2009
FGFRDirectlySprouty1-4inhibitp42/44 MAPKCabrita et al., 2006
DirectlyIRActiveInsulinNystrom et al., 1999
IRDirectlyIRS-1activeInsulinChen et al., 2008
IGFRDirectlyIGF-IRupregulateIGFRavid et al., 2005
VEGFRDirectlyVEGFR-2no actionVEGFLabrecque et al., 2003
DirectlyVEGFR-2inhibitp42/44 MAPKFang et al., 2007
DirectlyElk-1blockVEGFLiu et al., 1999
PDGFRIndirectlyPDGFRinhibitPDGFTamai et al., 2001
TNFRDirectlyTRAILNegativelyZhao et al., 2009
DirectlyTRAF2ActiveFeng et al., 2001
Growth factors
EGFIndirectlyEGFInhibitp42/44 MAPKZhang et al., 2000
EGFInhibitPI3K/AktPark and Han, 2009
IGFDirectlyIGF-IDeficiency PromotePI3K/AktMatthews et al., 2008
PDGFDirectlyPDGFInhibitPDGFPeterson et al., 2003
TNFDirectlyTNFaNegativeMKK3/p38 MAPKWang et al., 2006
VEGFVEGFStabilizePI3K/AktLi et al., 2009
TGFTGF-β1StabilizePI3K/AktLi et al., 2009
FGFFGF2StabilizePI3K/AktLi et al., 2009
Transcriptional factors
β-cateninDirectlyβ-cateninInhibitWntGalbiati et al., 2000
IndiirectlySurvivinInhibitWntTorres et al., 2006
IndiirectlyCOX-2InhibitWntRodriguez et al., 2009
DirectlyLRP6ActiveWntYamamoto et al., 2006
NF-kBDirectlyTNFaNegativePI3K/PKB and p44/42 MAPKFakhrzadeh et al., 2008
DirectlyActiveNF-kBGarrean et al., 2006
p53DirectlyMdm2Stabilizep53/p21(Waf1/Cip1)Bartholomew et al., 2009
p53InhibitLinge et al., 2007
Indirectlyp53InhibitIGFRavid et al., 2005
DirectlyMEK-1, ERK-2p42/44 MAPKEngelman et al., 1998a
Tab.2  Signaling molecules and pathways regulated by Cav-1
1 Abulrob A, Giuseppin S, Andrade M F, McDermid A, Moreno M, Stanimirovic D (2004). Interactions of EGFR and caveolin-1 in human glioblastoma cells: evidence that tyrosine phosphorylation regulates EGFR association with caveolae. Oncogene , 23(41): 6967–6979
doi: 10.1038/sj.onc.1207911 pmid:15273741
2 Agelaki S, Spiliotaki M, Markomanolaki H, Kallergi G, Mavroudis D, Georgoulias V, Stournaras C (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther , 8(15): 1470–1477
doi: 10.4161/cbt.8.15.8939 pmid:19483462
3 Barakat S, Demeule M, Pilorget A, Régina A, Gingras D, Baggetto L G, Béliveau R (2007). Modulation of p-glycoprotein function by caveolin-1 phosphorylation. J Neurochem , 101(1): 1–8
doi: 10.1111/j.1471-4159.2006.04410.x pmid:17326770
4 Bartholomew J N, Volonte D, Galbiati F (2009). Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res , 69(7): 2878–2886
doi: 10.1158/0008-5472.CAN-08-2857 pmid:19318577
5 Bélanger M M, Gaudreau M, Roussel E, Couet J (2004). Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biol Ther , 3(10): 954–959
doi: 10.4161/cbt.3.10.1112 pmid:15326378
6 Bullejos M, Bowles J, Koopmanl P (2002). Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev Dyn , 225: 95–99
doi: 10.4161/cbt.3.10.1112 pmid:15326378
7 Cabrita M A, J?ggi F, Widjaja S P, Christofori G (2006). A functional interaction between sprouty proteins and caveolin-1. J Biol Chem , 281(39): 29201–29212
doi: 10.1074/jbc.M603921200 pmid:16877379
8 Cai Q C, Jiang Q W, Zhao G M, Guo Q, Cao G W, Chen T (2003). Putative caveolin-binding sites in SARS-CoV proteins. Acta Pharmacol Sin , 24(10): 1051–1059
pmid:14531951
9 Chen J, Capozza F, Wu A, Deangelis T, Sun H, Lisanti M, Baserga R (2008). Regulation of insulin receptor substrate-1 expression levels by caveolin-1. J Cell Physiol , 217(1): 281–289
doi: 10.1002/jcp.21498 pmid:18506777
10 Cohen A W, Park D S, Woodman S E, Williams T M, Chandra M, Shirani J, Pereira de Souza A, Kitsis R N, Russell R G, Weiss L M, Tang B, Jelicks L A, Factor S M, Shtutin V, Tanowitz H B, Lisanti M P (2003). Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol , 284(2): C457–C474
pmid:12388077
11 Cohen A W, Razani B, Schubert W, Williams T M, Wang X B, Iyengar P, Brasaemle D L, Scherer P E, Lisanti M P (2004). Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes , 53(5): 1261–1270
doi: 10.1016/S1050-1738(97)00001-7
12 Couet J, Li S, Okamoto T, Scherer P S, Lisanti M P (1997). Molecular and cellular biology of caveolae: paradoxes and plasticities. Trends Cardiovasc Med , 7(4): 103–110
doi: 10.1016/S1050-1738(97)00001-7
13 Davidson B, Goldberg I, Givant-Horwitz V, Nesland J M, Berner A, Bryne M, Risberg B, Kopolovic J, Kristensen G B, Tropé C G, van de Putte G, Reich R (2002). Caveolin-1 expression in ovarian carcinoma is MDR1 independent. Am J Clin Pathol , 117(2): 225–234 11863219
doi: 10.1309/U40R-1BN4-6KJ3-BDG3
14 Del Galdo F, Sotgia F, de Almeida C J, Jasmin J F, Musick M, Lisanti M P, Jiménez S A (2008). Decreased expression of caveolin 1 in patients with systemic sclerosis: crucial role in the pathogenesis of tissue fibrosis. Arthritis Rheum , 58(9): 2854–2865
doi: 10.1002/art.23791 pmid:18759267
15 Dietzen D J, Hastings W R, Lublin D M (1995). Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem , 270(12): 6838–6842
pmid:7896831
16 Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft F C, Schedl A, Haller H, Kurzchalia T V (2001). Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science , 293(5539): 2449–2452
doi: 10.1126/science.1062688 pmid:11498544
17 Engelman J A, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz D S, Lisanti M P (1998a). Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett , 428(3): 205–211
doi: 10.1016/S0014-5793(98)00470-0 pmid:9654135
18 Engelman J A, Zhang X L, Galbiati F, Lisanti M P (1998b). Chromosomal localization, genomic organization, and developmental expression of the murine caveolin gene family (Cav-1, -2, and -3). Cav-1 and Cav-2 genes map to a known tumor suppressor locus (6-A2/7q31). FEBS Lett , 429(3): 330–336
doi: 10.1016/S0014-5793(98)00619-X pmid:9662443
19 Engelman J A, Zhang X L, Lisanti M P (1999). Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett , 448(2–3): 221–230
doi: 10.1016/S0014-5793(99)00365-8 pmid:10218480
20 Fakhrzadeh L, Laskin J D, Laskin D L (2008). Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-alpha following ozone inhalation. Toxicol Appl Pharmacol , 227(3): 380–389
doi: 10.1016/j.taap.2007.11.012 pmid:18207479
21 Fang K, Fu W, Beardsley A R, Sun X, Lisanti M P, Liu J (2007). Overexpression of caveolin-1 inhibits endothelial cell proliferation by arresting the cell cycle at G0/G1 phase. Cell Cycle , 6(2): 199–204
pmid:17245131
22 Fang P K, Solomon K R, Zhuang L, Qi M, McKee M, Freeman M R, Yelick P C (2006). Caveolin-1α and -1β perform nonredundant roles in early vertebrate development. Am J Pathol , 169(6): 2209–2222
doi: 10.2353/ajpath.2006.060562 pmid:17148682
23 Feng X, Gaeta M L, Madge L A, Yang J H, Bradley J R, Pober J S (2001). Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. J Biol Chem , 276(11): 8341–8349
doi: 10.1074/jbc.M007116200 pmid:11112773
24 Fernández M A, Albor C, Ingelmo-Torres M, Nixon S J, Ferguson C, Kurzchalia T, Tebar F, Enrich C, Parton R G, Pol A (2006). Caveolin-1 is essential for liver regeneration. Science , 313(5793): 1628–1632
doi: 10.1126/science.1130773 pmid:16973879
25 Frank P G, Lisanti M P (2006). Zebrafish as a novel model system to study the function of caveolae and caveolin-1 in organismal biology. Am J Pathol , 169(6): 1910–1912
doi: 10.2353/ajpath.2006.060923 pmid:17148656
26 Frank P G, Lisanti M P (2007). Caveolin-1 and liver regeneration: role in proliferation and lipogenesis. Cell Cycle , 6(2): 115–116
pmid:17314510
27 Fujimoto T, Kogo H, Nomura R, Une T (2000). Isoforms of caveolin-1 and caveolar structure. J Cell Sci , 113(Pt 19): 3509–3517
pmid:10984441
28 Galbiati F, Volonte D, Brown A M, Weinstein D E, Ben-Ze’ev A, Pestell R G, Lisanti M P (2000). Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem , 275(30): 23368–23377
doi: 10.1074/jbc.M002020200 pmid:10816572
29 Galbiati F, Volonté D, Liu J, Capozza F, Frank P G, Zhu L, Pestell R G, Lisanti M P (2001). Caveolin-1 expression negatively regulates cell cycle progression by inducing G(0)/G(1) arrest via a p53/p21(WAF1/Cip1)-dependent mechanism. Mol Biol Cell , 12(8): 2229–2244
pmid:11514613
30 Garrean S, Gao X P, Brovkovych V, Shimizu J, Zhao Y Y, Vogel S M, Malik A B (2006). Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol , 177(7): 4853–4860
pmid:16982927
31 Glenney J R Jr, Soppet D (1992). Sequence and expression of caveolin, a protein component of caveolae plasma membrane domains phosphorylated on tyrosine in Rous sarcoma virus-transformed fibroblasts. Proc Natl Acad Sci U S A , 89(21): 10517–10521
doi: 10.1073/pnas.89.21.10517 pmid:1279683
32 Han F, Gu D, Chen Q, Zhu H (2009). Caveolin-1 acts as a tumor suppressor by down-regulating epidermal growth factor receptor-mitogen-activated protein kinase signaling pathway in pancreatic carcinoma cell lines. Pancreas , 38(7): 766–774
doi: 10.1097/MPA.0b013e3181b2bd11 pmid:19893453
33 Hashimoto M, Takenouchi T, Rockenstein E, Maslia E (2003). Alpha-synuclein up-regulates expression of caveolin-1 and down-regulates extracellular signal-regulated kinase activity in B103 neuroblastoma cells: role in the pathogenesis of Parkinson's disease. J Neurochem , 85(6): 1468–1479
doi: 10.1097/MPA.0b013e3181b2bd11 pmid:19893453
34 Head B P, Insel P A (2007). Do caveolins regulate cells by actions outside of caveolae? Trends Cell Biol , 17(2): 51–57
doi: 10.1016/j.tcb.2006.11.008 pmid:17150359
35 Hernández-Bello R, Bermúdez-Cruz R M, Fonseca-Li?án R, García-Reyna P, Le Guerhier F, Boireau P, Ortega-Pierres G (2008). Identification, molecular characterisation and differential expression of caveolin-1 in Trichinella spiralis maturing oocytes and embryos. Int J Parasitol , 38(2): 191–202
doi: 10.1016/j.ijpara.2007.07.009 pmid:17803998
36 Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today , 33(7): 486–490
pmid:14506991
37 Huang J H, Lu L, Lu H, Chen X, Jiang S, Chen Y H (2007). Identification of the HIV-1 gp41 core-binding motif in the scaffolding domain of caveolin-1. J Biol Chem , 282(9): 6143–6152
doi: 10.1074/jbc.M607701200 pmid:17197700
38 Joshi B, Strugnell S S, Goetz J G, Kojic L D, Cox M E, Griffith O L, Chan S K, Jones S J, Leung S P, Masoudi H, Leung S, Wiseman S M, Nabi I R (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res , 68(20): 8210–8220
doi: 10.1158/0008-5472.CAN-08-0343 pmid:18922892
39 Juhász M, Chen J, Tulassay Z, Malfertheiner P, Ebert M P (2003). Expression of caveolin-1 in gastrointestinal and extraintestinal cancers. J Cancer Res Clin Oncol , 129(9): 493–497 12898235
doi: 10.1007/s00432-003-0468-0
40 Kasper M, Reimann T, Hempel U, Wenzel K W, Bierhaus A, Schuh D, Dimmer V, Haroske G, Müller M (1998). Loss of caveolin expression in type I pneumocytes as an indicator of subcellular alterations during lung fibrogenesis. Histochem Cell Biol , 109(1): 41–48
doi: 10.1007/s004180050200 pmid:9452954
41 Kim H A, Kim K H, Lee R A (2006). Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol , 80(2): 165–170
doi: 10.1210/en.143.5.1726 pmid:11956154
42 Kim Y N, Bertics P J (2002). The endocytosis-linked protein dynamin associates with caveolin-1 and is tyrosine phosphorylated in response to the activation of a noninternalizing epidermal growth factor receptor mutant. Endocrinology , 143(5): 1726–1731
doi: 10.1210/en.143.5.1726 pmid:11956154
43 Kogo H, Aiba T, Fujimoto T (2004). Cell type-specific occurrence of caveolin-1alpha and -1beta in the lung caused by expression of distinct mRNAs. J Biol Chem , 279(24): 25574–25581
doi: 10.1074/jbc.M310807200 pmid:15067006
44 Kogo H, Fujimoto T (2000). Caveolin-1 isoforms are encoded by distinct mRNAs. Identification of mouse caveolin-1 mRNA variants caused by alternative transcription initiation and splicing. FEBS Lett , 465(2–3): 119–123
doi: 10.1016/S0014-5793(99)01730-5 pmid:10631317
45 Labrecque L, Royal I, Surprenant D S, Patterson C, Gingras D, Béliveau R (2003). Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell , 14(1): 334–347
doi: 10.1091/mbc.E02-07-0379 pmid:12529448
46 Lavie Y, Fiucci G, Liscovitch M (1998). Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem , 273(49): 32380–32383
doi: 10.1074/jbc.273.49.32380 pmid:9829965
47 Le Lan C, Neumann J M, Jamin N (2006). Role of the membrane interface on the conformation of the caveolin scaffolding domain: a CD and NMR study. FEBS Lett , 580(22): 5301–5305
doi: 10.1016/j.febslet.2006.08.075 pmid:16979631
48 Lee E K, Lee Y S, Han I O, Park S H (2007). Expression of Caveolin-1 reduces cellular responses to TGF-beta1 through down-regulating the expression of TGF-beta type II receptor gene in NIH3T3 fibroblast cells. Biochem Biophys Res Commun , 359(2): 385–390
doi: 10.1016/j.bbrc.2007.05.121 pmid:17543885
49 Lee H, Volonte D, Galbiati F, Iyengar P, Lublin D M, Bregman D B, Wilson M T, Campos-Gonzalez R, Bouzahzah B, Pestell R G, Scherer P E, Lisanti M P (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol , 14(11): 1750–1775
doi: 10.1210/me.14.11.1750 pmid:11075810
50 Lee H, Woodman S E, Engelman J A, Volonté D, Galbiati F, Kaufman H L, Lublin D M, Lisanti M P (2001). Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). J Biol Chem , 276(37): 35150–35158
doi: 10.1074/jbc.M104530200 pmid:11451957
51 Li L, Ren C, Yang G, Goltsov A A, Tabata K, Thompson T C (2009). Caveolin-1 promotes autoregulatory, Akt-mediated induction of cancer-promoting growth factors in prostate cancer cells. Mol Cancer Res , 7(11): 1781–1791
doi: 10.1158/1541-7786.MCR-09-0255 pmid:19903767
52 Li S, Seitz R, Lisanti M P (1996). Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem , 271(7): 3863–3868
pmid:8632005
53 Lin S, Wang X M, Nadeau P E, Mergia A (2010). HIV infection upregulates caveolin 1 expression to restrict virus production. J Virol , 84(18): 9487–9496
doi: 10.1128/JVI.00763-10 pmid:20610713
54 Linge A, Weinhold K, Bl?sche R, Kasper M, Barth K (2007). Downregulation of caveolin-1 affects bleomycin-induced growth arrest and cellular senescence in A549 cells. Int J Biochem Cell Biol , 39(10): 1964–1974
doi: 10.1016/j.biocel.2007.05.018 pmid:17662641
55 Lisanti M P, Scherer P E, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu Y H, Cook R F, Sargiacomo M (1994). Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol , 126(1): 111–126
doi: 10.1083/jcb.126.1.111 pmid:7517942
56 Liu J, Razani B, Tang S, Terman B I, Ware J A, Lisanti M P (1999). Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. J Biol Chem , 274(22): 15781–15785
doi: 10.1074/jbc.274.22.15781 pmid:10336480
57 Liu P, Rudick M, Anderson R G (2002). Multiple functions of caveolin-1. J Biol Chem , 277(44): 41295–41298
doi: 10.1074/jbc.R200020200 pmid:12189159
58 Llano M, Kelly T, Vanegas M, Peretz M, Peterson T E, Simari R D, Poeschla E M (2002). Blockade of human immunodeficiency virus type 1 expression by caveolin-1. J Virol , 76(18): 9152–9164
doi: 10.1128/JVI.76.18.9152-9164.2002 pmid:12186899
59 Machleidt T, Li W P, Liu P, Anderson R G (2000). Multiple domains in caveolin-1 control its intracellular traffic. J Cell Biol , 148(1): 17–28
doi: 10.1083/jcb.148.1.17 pmid:10629215
60 Macovei A, Radulescu C, Lazar C, Petrescu S, Durantel D, Dwek R A, Zitzmann N, Nichita N B (2010). Hepatitis B virus requires intact caveolin-1 function for productive infection in HepaRG cells. J Virol , 84(1): 243–253
doi: 10.1128/JVI.01207-09 pmid:19846513
61 Matthews L C, Taggart M J, Westwood M (2008). Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology , 149(10): 5199–5208
doi: 10.1210/en.2007-1211 pmid:18583416
62 Mayoral R, Fernández-Martínez A, Roy R, Boscá L, Martín-Sanz P (2007). Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic cells. Hepatology , 46(3): 813–822
doi: 10.1002/hep.21746 pmid:17654701
63 Mir K D, Parr R D, Schroeder F, Ball J M (2007). Rotavirus NSP4 interacts with both the amino- and carboxyl-termini of caveolin-1. Virus Res , 126(1–2): 106–115
doi: 10.1016/j.virusres.2007.02.004 pmid:17379346
64 Mo S, Wang L, Li Q, Li J, Li Y, Thannickal V J, Cui Z (2010). Caveolin-1 regulates dorsoventral patterning through direct interaction with beta-catenin in zebrafish. Dev Biol , 344(1): 210–223
doi: 10.1016/j.ydbio.2010.04.033 pmid:20452340
65 Nixon S J, Carter A, Wegner J, Ferguson C, Floetenmeyer M, Riches J, Key B, Westerfield M, Parton R G (2007). Caveolin-1 is required for lateral line neuromast and notochord development. J Cell Sci , 120(Pt 13): 2151–2161
doi: 10.1242/jcs.003830 pmid:17550965
66 Nohe A, Keating E, Underhill T M, Knaus P, Petersen N O (2005). Dynamics and interaction of caveolin-1 isoforms with BMP-receptors. J Cell Sci , 118(Pt 3): 643–650
doi: 10.1242/jcs.01402 pmid:15657086
67 Nystrom F H, Chen H, Cong L N, Li Y, Quon M J (1999). Caveolin-1 interacts with the insulin receptor and can differentially modulate insulin signaling in transfected Cos-7 cells and rat adipose cells. Mol Endocrinol , 13(12): 2013–2024
doi: 10.1210/me.13.12.2013 pmid:10598578
68 Ono K, Iwanaga Y, Hirayama M, Kawamura T, Sowa N, Hasegawa K (2004). Contribution of caveolin-1 alpha and Akt to TNF-alpha-induced cell death. Am J Physiol Lung Cell Mol Physiol , 287(1): L201–L209
doi: 10.1152/ajplung.00293.2003 pmid:15020298
69 Padhan K, Tanwar C, Hussain A, Hui P Y, Lee M Y, Cheung C Y, Peiris J S, Jameel S (2007). Severe acute respiratory syndrome coronavirus Orf3a protein interacts with caveolin. J Gen Virol , 88(Pt 11): 3067–3077
doi: 10.1099/vir.0.82856-0 pmid:17947532
70 Park J H, Han H J (2009). Caveolin-1 plays important role in EGF-induced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol , 297(4): C935–C944
doi: 10.1152/ajpcell.00121.2009 pmid:19625610
71 Peng F, Zhang B, Wu D, Ingram A J, Gao B, Krepinsky J C (2008). TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol , 295(1): F153–F164
doi: 10.1152/ajprenal.00419.2007 pmid:18434385
72 Peterson T E, Guicciardi M E, Gulati R, Kleppe L S, Mueske C S, Mookadam M, Sowa G, Gores G J, Sessa W C, Simari R D (2003). Caveolin-1 can regulate vascular smooth muscle cell fate by switching platelet-derived growth factor signaling from a proliferative to an apoptotic pathway. Arterioscler Thromb Vasc Biol , 23(9): 1521–1527
doi: 10.1161/01.ATV.0000081743.35125.05 pmid:12816877
73 Ravid D, Leser G P, Lamb R A (2010). A role for caveolin 1 in assembly and budding of the paramyxovirus parainfluenza virus 5. J Virol , 84(19): 9749–9759
doi: 10.1128/JVI.01079-10 pmid:20631121
74 Ravid D, Maor S, Werner H, Liscovitch M (2005). Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene , 24(8): 1338–1347
doi: 10.1038/sj.onc.1208337 pmid:15592498
75 Razani B, Altschuler Y, Zhu L, Pestell R G, Mostov K E, Lisanti M P (2000). Caveolin-1 expression is down-regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry , 39(45): 13916–13924
doi: 10.1021/bi001489b pmid:11076533
76 Razani B, Engelman J A, Wang X B, Schubert W, Zhang X L, Marks C B, Macaluso F, Russell R G, Li M, Pestell R G, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ G J, Edelmann W, Lisanti M P (2001b). Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem , 276(41): 38121–38138
pmid:11457855
77 Razani B, Park D S, Miyanaga Y, Ghatpande A, Cohen J, Wang X B, Scherer P E, Evans T, Lisanti M P (2002). Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis. Biochemistry , 41(25): 7914–7924
doi: 10.1021/bi020043n pmid:12069580
78 Razani B, Zhang X L, Bitzer M, von Gersdorff G, B?ttinger E P, Lisanti M P (2001a). Caveolin-1 regulates transforming growth factor (TGF)-beta/SMAD signaling through an interaction with the TGF-beta type I receptor. J Biol Chem , 276(9): 6727–6738
doi: 10.1074/jbc.M008340200 pmid:11102446
79 Rodriguez D A, Tapia J C, Fernandez J G, Torres V A, Mu?oz N, Galleguillos D, Leyton L, Quest A F (2009). Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell , 20(8): 2297–2310
doi: 10.1091/mbc.E08-09-0939 pmid:19244345
80 Rothberg K G, Heuser J E, Donzell W C, Ying Y S, Glenney J R, Anderson R G (1992). Caveolin, a protein component of caveolae membrane coats. Cell , 68(4): 673–682
doi: 10.1016/0092-8674(92)90143-Z pmid:1739974
81 Santibanez J F, Blanco F J, Garrido-Martin E M, Sanz-Rodriguez F, del Pozo M A, Bernabeu C (2008). Caveolin-1 interacts and cooperates with the transforming growth factor-beta type I receptor ALK1 in endothelial caveolae. Cardiovasc Res , 77(4): 791–799
doi: 10.1093/cvr/cvm097 pmid:18065769
82 Sargiacomo M, Scherer P E, Tang Z, Kübler E, Song K S, Sanders M C, Lisanti M P (1995). Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA , 92(20): 9407–9411
doi: 10.1073/pnas.92.20.9407 pmid:7568142
83 Sawada S, Ishikawa C, Tanji H, Nakachi S, Senba M, Okudaira T, Uchihara J N, Taira N, Ohshiro K, Yamada Y, Tanaka Y, Uezato H, Ohshima K, Sasai K, Burgering B M, Duc Dodon M, Fujii M, Sunakawa H, Mori N (2010). Overexpression of caveolin-1 in adult T-cell leukemia. Blood , 115(11): 2220–2230
doi: 10.1182/blood-2009-08-240044 pmid:20061557
84 Scheel J, Srinivasan J, Honnert U, Henske A, Kurzchalia T V (1999). Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nat Cell Biol , 1(2): 127–129
doi: 10.1038/10100 pmid:10559886
85 Scherer P E, Lewis R Y, Volonte D, Engelman J A, Galbiati F, Couet J, Kohtz D S, van Donselaar E, Peters P, Lisanti M P (1997). Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem , 272(46): 29337–29346
doi: 10.1074/jbc.272.46.29337 pmid:9361015
86 Scherer P E, Tang Z, Chun M, Sargiacomo M, Lodish H F, Lisanti M P (1995). Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem , 270(27): 16395–16401
pmid:7608210
87 Schwencke C, Braun-Dullaeus R C, Wunderlich C, Strasser R H (2006). Caveolae and caveolin in transmembrane signaling: Implications for human disease. Cardiovasc Res , 70(1): 42–49
pmid:7608210
88 Schlegel A, Lisanti M P (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem , 275(28): 21605–21617
doi: 10.1074/jbc.M002558200 pmid:10801850
89 Schubert W, Sotgia F, Cohen A W, Capozza F, Bonuccelli G, Bruno C, Minetti C, Bonilla E, Dimauro S, Lisanti M P (2007). Caveolin-1(-/-)- and caveolin-2(-/-)-deficient mice both display numerous skeletal muscle abnormalities, with tubular aggregate formation. Am J Pathol , 170(1): 316–333
doi: 10.2353/ajpath.2007.060687 pmid:17200204
90 Sedding D G, Braun-Dullaeus R C (2006). Caveolin-1: dual role for proliferation of vascular smooth muscle cells. Trends Cardiovasc Med , 16(2): 50–55
doi: 10.1016/j.tcm.2005.11.007 pmid:16473762
91 Smith J L, Campos S K, Ozbun M A (2007). Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol , 81(18): 9922–9931
doi: 10.1128/JVI.00988-07 pmid:17626097
92 Sun L, Hemg?rd G V, Susanto S A, Wirth M (2010). Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture. Virol J , 7(1): 108
doi: 10.1186/1743-422X-7-108 pmid:20504340
93 Sun X H, Flynn D C, Castranova V, Millecchia L L, Beardsley A R, Liu J (2007). Identification of a novel domain at the N terminus of caveolin-1 that controls rear polarization of the protein and caveolae formation. J Biol Chem , 282(10): 7232–7241
doi: 10.1074/jbc.M607396200 pmid:17213184
94 Tamai O, Oka N, Kikuchi T, Koda Y, Soejima M, Wada Y, Fujisawa M, Tamaki K, Kawachi H, Shimizu F, Kimura H, Imaizumi T, Okuda S (2001). Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int , 59(2): 471–480
doi: 10.1046/j.1523-1755.2001.059002471.x pmid:11168929
95 Tang Z, Okamoto T, Boontrakulpoontawee P, Katada T, Otsuka A J, Lisanti M P (1997). Identification, sequence, and expression of an invertebrate caveolin gene family from the nematode Caenorhabditis elegans. Implications for the molecular evolution of mammalian caveolin genes. J Biol Chem , 272(4): 2437–2445
doi: 10.1074/jbc.272.4.2437 pmid:8999956
96 Torres V A, Tapia J C, Rodríguez D A, Párraga M, Lisboa P, Montoya M, Leyton L, Quest A F (2006). Caveolin-1 controls cell proliferation and cell death by suppressing expression of the inhibitor of apoptosis protein survivin. J Cell Sci , 119(Pt 9): 1812–1823
doi: 10.1242/jcs.02894 pmid:16608879
97 Tourkina E, Richard M, G??z P, Bonner M, Pannu J, Harley R, Bernatchez P N, Sessa W C, Silver R M, Hoffman S (2008). Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol , 294(5): L843–L861
doi: 10.1152/ajplung.00295.2007 pmid:18203815
98 Uittenbogaard A, Smart E J (2000). Palmitoylation of caveolin-1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae. J Biol Chem , 275(33): 25595–25599
doi: 10.1074/jbc.M003401200 pmid:10833523
99 Wang C, Mei Y, Li L, Mo D, Li J, Zhang H, Tian X, Chen Y (2008). Molecular characterization and expression analysis of caveolin-1 in pig tissues. Sci China C Life Sci , 51(7): 655–661
doi: 10.1007/s11427-008-0082-0 pmid:18622749
100 Wang L, Mo S, Li J, Li Q, Cui Z (2010a). Preliminary study on functions of zebrafish Caveolin-1. Acta Hydrobiologica Sinica , 34(4): 1083–1090
101 Wang X M, Kim H P, Song R, Choi A M (2006). Caveolin-1 confers antiinflammatory effects in murine macrophages via the MKK3/p38 MAPK pathway. Am J Respir Cell Mol Biol , 34(4): 434–442
doi: 10.1165/rcmb.2005-0376OC pmid:16357362
102 Wang X M, Nadeau P E, Lo Y T, Mergia A (2010b). Caveolin-1 modulates HIV-1 envelope-induced bystander apoptosis through gp41. J Virol , 84(13): 6515–6526
doi: 10.1128/JVI.02722-09 pmid:20392844
103 Williams T M, Lisanti M P (2004). The Caveolin genes: from cell biology to medicine. Ann Med , 36(8): 584–595
doi: 10.1080/07853890410018899 pmid:15768830
104 Williams T M, Lisanti M P (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol , 288(3): C494–C506
doi: 10.1152/ajpcell.00458.2004 pmid:15692148
105 Yamada E (1955). The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol , 1(5): 445–458
doi: 10.1083/jcb.1.5.445 pmid:13263332
106 Yamaguchi Y, Yasuoka H, Stolz D B, Feghali-Bostwick C A (2010). Decreased caveolin-1 levels contribute to fibrosis and deposition of extracellular IGFBP-5. J Cell Mol Med ,
doi: 10.1111/j.1582-4934.2010.01063.x pmid:20345844
107 Yamamoto H, Komekado H, Kikuchi A (2006). Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of beta-catenin. Dev Cell , 11(2): 213–223
doi: 10.1016/j.devcel.2006.07.003 pmid:16890161
108 Zaas D W, Swan Z, Brown B J, Wright J R, Abraham S N (2009). The expanding roles of caveolin proteins in microbial pathogenesis. Commun Integr Biol , 2(6): 535–537
doi: 10.4161/cib.2.6.9259 pmid:20195460
109 Zhang B, Peng F, Wu D, Ingram A J, Gao B, Krepinsky J C (2007). Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal , 19(8): 1690–1700
doi: 10.1016/j.cellsig.2007.03.005 pmid:17446044
110 Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov K E, Pestell R G, Lisanti M P (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem , 275(27): 20717–20725
doi: 10.1074/jbc.M909895199 pmid:10748172
111 Zhao X, Liu Y, Ma Q, Wang X, Jin H, Mehrpour M, Chen Q (2009). Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun , 378(1): 21–26
pmid:18992712
112 Zhu H, Cai C, Chen J (2004). Suppression of P-glycoprotein gene expression in Hs578T/Dox by the overexpression of caveolin-1. FEBS Lett , 576(3): 369–374
doi: 10.1016/j.febslet.2004.09.041 pmid:15498565
[1] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[2] Chaohong LIU, Margaret K. FALLEN, Heather MILLER, Arpita UPADHYAYA, Wenxia SONG. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor[J]. Front Biol, 2013, 8(5): 475-485.
[3] Yonggang ZHANG, Wenhui HU. NFκB signaling regulates embryonic and adult neurogenesis[J]. Front Biol, 2012, 7(4): 277-291.
[4] Yasemin G. ISGOR, Belgin S. ISGOR. Kinases and glutathione transferases: selective and sensitive targeting[J]. Front Biol, 2011, 6(2): 156-169.
[5] Wenjing ZHANG, Qilai HUANG, Zi-Chun HUA. Oridonin: A promising anticancer drug from China[J]. Front Biol, 2010, 5(6): 540-545.
[6] Fang-Fang WANG, Li WANG, Wei QIAN. Two-component signal transduction systems and regulation of virulence factors in Xanthomonas: a perspective[J]. Front Biol, 2010, 5(6): 495-506.
[7] Yinghui HUANG, Xiaoxue QIU, Ji-Long CHEN. Identification of cancer stem cells: from leukemia to solid cancers[J]. Front Biol, 2010, 5(5): 407-416.
[8] Jinbiao MA, Ying HUANG, . Post-transcriptional regulation of miRNA biogenesis and functions[J]. Front. Biol., 2010, 5(1): 32-40.
[9] YU Guanghui, CHEN Yan. The language of GABA in pollen tube growth and guidance[J]. Front. Biol., 2008, 3(4): 439-442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed