|
|
Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system |
Awoyemi A. AWOFALA1,2( ) |
1. School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; 2. Department of Biological Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria |
|
|
Abstract Animals exhibit behavioral differences in their sensitivity to ethanol, a trait that is at least in part due to genetic predispositions. This study has implicated a large neuronal protein involving Highwire, a Drosophila E3 ubiquitin ligase (Hiw, a homolog of Pam, a protein associated with Myc found in humans) in acute sensitivity to ethanol sedation. Flies lacking Hiw were hypersensitive to the sedating effect of ethanol whereas those overexpressing Hiw showed decreased sensitivity to ethanol. Furthermore, RNAi functional knockdown of Hiw in adult neurons or ellipsoid body neurons showed increased sensitivity to ethanol sedation. None of these manipulations of the hiw gene caused changes in the rate of ethanol absorption and/or metabolism. These results suggest a previously unknown role for this highly conserved gene in regulating the behavioral responses to an addictive drug.
|
Keywords
hiw
Drosophila
ethanol sensitivity
neurons
ellipsoid body
ubiquitin ligase
|
Corresponding Author(s):
AWOFALA Awoyemi A.,Email:a.a.awofala@sussex.ac.uk, a.a.awofala@gmail.com
|
Issue Date: 01 October 2011
|
|
1 |
Berger K H, Heberlein U, Moore M S (2004). Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res , 28(10): 1469–1480 doi: 10.1097/01.ALC.0000141817.15993.98 pmid:15597078
|
2 |
Cheng Y, Endo K, Wu K, Rodan A R, Heberlein U, Davis R L (2001). Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell , 105(6): 757–768 doi: 10.1016/S0092-8674(01)00386-5 pmid:11440718
|
3 |
Collins C A, Wairkar Y P, Johnson S L, DiAntonio A (2006). Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron , 51(1): 57–69 doi: 10.1016/j.neuron.2006.05.026 pmid:16815332
|
4 |
DiAntonio A, Haghighi A P, Portman S L, Lee J D, Amaranto A M, Goodman C S (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature , 412(6845): 449–452 doi: 10.1038/35086595 pmid:11473321
|
5 |
Han S, Witt R M, Santos T M, Polizzano C, Sabatini B L, Ramesh V (2008). Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal , 20(6): 1084–1091 doi: 10.1016/j.cellsig.2008.01.020 pmid:18308511
|
6 |
Hiraishi H, Okada M, Ohtsu I, Takagi H (2009). A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins. Biosci Biotechnol Biochem , 73(10): 2268–2273 doi: 10.1271/bbb.90363 pmid:19809202
|
7 |
McCabe B D, Hom S, Aberle H, Fetter R D, Marques G, Haerry T E, Wan H, O’Connor M B, Goodman C S, Haghighi A P (2004). Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron , 41(6): 891–905 doi: 10.1016/S0896-6273(04)00073-X pmid:15046722
|
8 |
Miguel-Hidalgo J J (2009). The role of glial cells in drug abuse. Curr Drug Abuse Rev , 2(1): 76–82 doi: 10.2174/1874473710902010076 pmid:19606280
|
9 |
Moore M S, DeZazzo J, Luk A Y, Tully T, Singh C M, Heberlein U (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell , 93(6): 997–1007 doi: 10.1016/S0092-8674(00)81205-2 pmid:9635429
|
10 |
Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm A D, Jin Y (2005). Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell , 120(3): 407–420 doi: 10.1016/j.cell.2004.12.017 pmid:15707898
|
11 |
Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L (2009). Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem , 16(5): 289–295 doi: 10.1101/lm.1331809 pmid:19389914
|
12 |
Pierre S C, H?usler J, Birod K, Geisslinger G, Scholich K (2004). PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J , 23(15): 3031–3040 doi: 10.1038/sj.emboj.7600321 pmid:15257286
|
13 |
Renn S C P, Armstrong J D, Yang M, Wang Z, An X, Kaiser K, Taghert P H (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol , 41(2): 189–207 doi: 10.1002/(SICI)1097-4695(19991105)41:2<189::AID-NEU3>3.0.CO;2-Q pmid:10512977
|
14 |
Rodan A R, Kiger J A Jr, Heberlein U (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J Neurosci , 22(21): 9490–9501 pmid:12417673
|
15 |
Schuckit M A, Gold E O (1988). A simultaneous evaluation of multiple markers of ethanol/placebo challenges in sons of alcoholics and controls. Arch Gen Psychiatry , 45(3): 211–216 pmid:3422553
|
16 |
Schuckit M A, Tsuang J W, Anthenelli R M, Tipp J E, Nurnberger J I Jr (1996). Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J Stud Alcohol , 57(4): 368–377 pmid:8776678
|
17 |
Sharma P, Asztalos Z, Ayyub C, de Bruyne M, Dornan A J, Gomez-Hernandez A, Keane J, Killeen J, Kramer S, Madhavan M, Roe H, Sherkhane P D, Siddiqi K, Silva E, Carlson J R, Goodwin S F, Heisenberg M, Krishnan K, Kyriacou C P, Partridge L, Riesgo-Escovar J, Rodrigues V, Tully T, O’Kane C J (2005). Isogenic autosomes to be applied in optimal screening for novel mutants with viable phenotypes in Drosophila melanogaster. J Neurogenet , 19(2): 57–85 doi: 10.1080/01677060591007155 pmid:16024440
|
18 |
Urizar N L, Yang Z, Edenberg H J, Davis R L (2007). Drosophila homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci , 27(17): 4541–4551 doi: 10.1523/JNEUROSCI.0305-07.2007 pmid:17460067
|
19 |
Wan H I, DiAntonio A, Fetter R D, Bergstrom K, Strauss R, Goodman C S (2000). Highwire regulates synaptic growth in Drosophila. Neuron , 26(2): 313–329 doi: 10.1016/S0896-6273(00)81166-6 pmid:10839352
|
20 |
Wand G, Levine M, Zweifel L, Schwindinger W, Abel T (2001). The cAMP-protein kinase A signal transduction pathway modulates ethanol consumption and sedative effects of ethanol. J Neurosci , 21: 5297–5303
|
21 |
Wen T, Parrish C A, Xu D, Wu Q, Shen P (2005). Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA , 102(6): 2141–2146 doi: 10.1073/pnas.0406814102 pmid:15677721
|
22 |
Wolf F W, Heberlein U (2003). Invertebrate models of drug abuse. J Neurobiol , 54(1): 161–178 doi: 10.1002/neu.10166 pmid:12486703
|
23 |
Wu C, Wairkar Y P, Collins C A, DiAntonio A (2005). Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J Neurosci , 25(42): 9557–9566 doi: 10.1523/JNEUROSCI.2532-05.2005 pmid:16237161
|
24 |
Wu C L, Xia S, Fu T F, Wang H, Chen Y H, Leong D, Chiang A S, Tully T (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci , 10(12): 1578–1586 doi: 10.1038/nn2005 pmid:17982450
|
25 |
Yamamoto M, Pohli S, Durany N, Ozawa H, Saito T, Boissl K W, Z?chling R, Riederer P, B?ning J, G?tz M E (2001). Increased levels of calcium-sensitive adenylyl cyclase subtypes in the limbic system of alcoholics: evidence for a specific role of cAMP signaling in the human addictive brain. Brain Res , 895(1-2): 233–237 doi: 10.1016/S0006-8993(00)03260-1 pmid:11259782
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|