Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (5) : 414-421    https://doi.org/10.1007/s11515-011-1144-4
RESEARCH ARTICLE
Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system
Awoyemi A. AWOFALA1,2()
1. School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; 2. Department of Biological Sciences, Tai Solarin University of Education, Ijebu-Ode, Ogun State, Nigeria
 Download: PDF(508 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Animals exhibit behavioral differences in their sensitivity to ethanol, a trait that is at least in part due to genetic predispositions. This study has implicated a large neuronal protein involving Highwire, a Drosophila E3 ubiquitin ligase (Hiw, a homolog of Pam, a protein associated with Myc found in humans) in acute sensitivity to ethanol sedation. Flies lacking Hiw were hypersensitive to the sedating effect of ethanol whereas those overexpressing Hiw showed decreased sensitivity to ethanol. Furthermore, RNAi functional knockdown of Hiw in adult neurons or ellipsoid body neurons showed increased sensitivity to ethanol sedation. None of these manipulations of the hiw gene caused changes in the rate of ethanol absorption and/or metabolism. These results suggest a previously unknown role for this highly conserved gene in regulating the behavioral responses to an addictive drug.

Keywords hiw      Drosophila      ethanol sensitivity      neurons      ellipsoid body      ubiquitin ligase     
Corresponding Author(s): AWOFALA Awoyemi A.,Email:a.a.awofala@sussex.ac.uk, a.a.awofala@gmail.com   
Issue Date: 01 October 2011
 Cite this article:   
Awoyemi A. AWOFALA. Drosophila highwire gene modulates acute ethanol sensitivity in the nervous system[J]. Front Biol, 2011, 6(5): 414-421.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1144-4
https://academic.hep.com.cn/fib/EN/Y2011/V6/I5/414
1 Berger K H, Heberlein U, Moore M S (2004). Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res , 28(10): 1469–1480
doi: 10.1097/01.ALC.0000141817.15993.98 pmid:15597078
2 Cheng Y, Endo K, Wu K, Rodan A R, Heberlein U, Davis R L (2001). Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell , 105(6): 757–768
doi: 10.1016/S0092-8674(01)00386-5 pmid:11440718
3 Collins C A, Wairkar Y P, Johnson S L, DiAntonio A (2006). Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron , 51(1): 57–69
doi: 10.1016/j.neuron.2006.05.026 pmid:16815332
4 DiAntonio A, Haghighi A P, Portman S L, Lee J D, Amaranto A M, Goodman C S (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature , 412(6845): 449–452
doi: 10.1038/35086595 pmid:11473321
5 Han S, Witt R M, Santos T M, Polizzano C, Sabatini B L, Ramesh V (2008). Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal , 20(6): 1084–1091
doi: 10.1016/j.cellsig.2008.01.020 pmid:18308511
6 Hiraishi H, Okada M, Ohtsu I, Takagi H (2009). A functional analysis of the yeast ubiquitin ligase Rsp5: the involvement of the ubiquitin-conjugating enzyme Ubc4 and poly-ubiquitination in ethanol-induced down-regulation of targeted proteins. Biosci Biotechnol Biochem , 73(10): 2268–2273
doi: 10.1271/bbb.90363 pmid:19809202
7 McCabe B D, Hom S, Aberle H, Fetter R D, Marques G, Haerry T E, Wan H, O’Connor M B, Goodman C S, Haghighi A P (2004). Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron , 41(6): 891–905
doi: 10.1016/S0896-6273(04)00073-X pmid:15046722
8 Miguel-Hidalgo J J (2009). The role of glial cells in drug abuse. Curr Drug Abuse Rev , 2(1): 76–82
doi: 10.2174/1874473710902010076 pmid:19606280
9 Moore M S, DeZazzo J, Luk A Y, Tully T, Singh C M, Heberlein U (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell , 93(6): 997–1007
doi: 10.1016/S0092-8674(00)81205-2 pmid:9635429
10 Nakata K, Abrams B, Grill B, Goncharov A, Huang X, Chisholm A D, Jin Y (2005). Regulation of a DLK-1 and p38 MAP kinase pathway by the ubiquitin ligase RPM-1 is required for presynaptic development. Cell , 120(3): 407–420
doi: 10.1016/j.cell.2004.12.017 pmid:15707898
11 Pan Y, Zhou Y, Guo C, Gong H, Gong Z, Liu L (2009). Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learn Mem , 16(5): 289–295
doi: 10.1101/lm.1331809 pmid:19389914
12 Pierre S C, H?usler J, Birod K, Geisslinger G, Scholich K (2004). PAM mediates sustained inhibition of cAMP signaling by sphingosine-1-phosphate. EMBO J , 23(15): 3031–3040
doi: 10.1038/sj.emboj.7600321 pmid:15257286
13 Renn S C P, Armstrong J D, Yang M, Wang Z, An X, Kaiser K, Taghert P H (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: organization and development of the central complex. J Neurobiol , 41(2): 189–207
doi: 10.1002/(SICI)1097-4695(19991105)41:2<189::AID-NEU3>3.0.CO;2-Q pmid:10512977
14 Rodan A R, Kiger J A Jr, Heberlein U (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J Neurosci , 22(21): 9490–9501
pmid:12417673
15 Schuckit M A, Gold E O (1988). A simultaneous evaluation of multiple markers of ethanol/placebo challenges in sons of alcoholics and controls. Arch Gen Psychiatry , 45(3): 211–216
pmid:3422553
16 Schuckit M A, Tsuang J W, Anthenelli R M, Tipp J E, Nurnberger J I Jr (1996). Alcohol challenges in young men from alcoholic pedigrees and control families: a report from the COGA project. J Stud Alcohol , 57(4): 368–377
pmid:8776678
17 Sharma P, Asztalos Z, Ayyub C, de Bruyne M, Dornan A J, Gomez-Hernandez A, Keane J, Killeen J, Kramer S, Madhavan M, Roe H, Sherkhane P D, Siddiqi K, Silva E, Carlson J R, Goodwin S F, Heisenberg M, Krishnan K, Kyriacou C P, Partridge L, Riesgo-Escovar J, Rodrigues V, Tully T, O’Kane C J (2005). Isogenic autosomes to be applied in optimal screening for novel mutants with viable phenotypes in Drosophila melanogaster. J Neurogenet , 19(2): 57–85
doi: 10.1080/01677060591007155 pmid:16024440
18 Urizar N L, Yang Z, Edenberg H J, Davis R L (2007). Drosophila homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci , 27(17): 4541–4551
doi: 10.1523/JNEUROSCI.0305-07.2007 pmid:17460067
19 Wan H I, DiAntonio A, Fetter R D, Bergstrom K, Strauss R, Goodman C S (2000). Highwire regulates synaptic growth in Drosophila. Neuron , 26(2): 313–329
doi: 10.1016/S0896-6273(00)81166-6 pmid:10839352
20 Wand G, Levine M, Zweifel L, Schwindinger W, Abel T (2001). The cAMP-protein kinase A signal transduction pathway modulates ethanol consumption and sedative effects of ethanol. J Neurosci , 21: 5297–5303
21 Wen T, Parrish C A, Xu D, Wu Q, Shen P (2005). Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA , 102(6): 2141–2146
doi: 10.1073/pnas.0406814102 pmid:15677721
22 Wolf F W, Heberlein U (2003). Invertebrate models of drug abuse. J Neurobiol , 54(1): 161–178
doi: 10.1002/neu.10166 pmid:12486703
23 Wu C, Wairkar Y P, Collins C A, DiAntonio A (2005). Highwire function at the Drosophila neuromuscular junction: spatial, structural, and temporal requirements. J Neurosci , 25(42): 9557–9566
doi: 10.1523/JNEUROSCI.2532-05.2005 pmid:16237161
24 Wu C L, Xia S, Fu T F, Wang H, Chen Y H, Leong D, Chiang A S, Tully T (2007). Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci , 10(12): 1578–1586
doi: 10.1038/nn2005 pmid:17982450
25 Yamamoto M, Pohli S, Durany N, Ozawa H, Saito T, Boissl K W, Z?chling R, Riederer P, B?ning J, G?tz M E (2001). Increased levels of calcium-sensitive adenylyl cyclase subtypes in the limbic system of alcoholics: evidence for a specific role of cAMP signaling in the human addictive brain. Brain Res , 895(1-2): 233–237
doi: 10.1016/S0006-8993(00)03260-1 pmid:11259782
[1] Adalto PONTES, Yonggang ZHANG, Wenhui HU. Novel functions of GABA signaling in adult neurogenesis[J]. Front Biol, 2013, 8(5): 496-507.
[2] John-Mary VIANNEY, Monica J. MCCULLOUGH, Amy M. GYORKOS, John M. SPITSBERGEN. Exercise-dependent regulation of glial cell line-derived neurotrophic factor (GDNF) expression in skeletal muscle and its importance for the neuromuscular system[J]. Front Biol, 2013, 8(1): 101-108.
[3] Bin XING, Guoying BING. Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease[J]. Front Biol, 2012, 7(5): 404-411.
[4] Dengke K. MA, Niels RINGSTAD. The neurobiology of sensing respiratory gases for the control of animal behavior[J]. Front Biol, 2012, 7(3): 246-253.
[5] Aparna SHERLEKAR, Richa RIKHY. Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation?[J]. Front Biol, 2012, 7(1): 73-82.
[6] Awoyemi A. AWOFALA. Application of microarray technology in Drosophila ethanol behavioral research[J]. Front Biol, 2012, 7(1): 65-72.
[7] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
[8] Sui-Sui DONG, Michael S. Y. HUEN. Roles of histone ubiquitylation in DNA damage signaling[J]. Front Biol, 2011, 6(5): 390-397.
[9] Chunsheng QU, Jieguang CHEN. Advances in genomic study of cortical projection neurons[J]. Front Biol, 2010, 5(6): 524-531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed