Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (6) : 524-531    https://doi.org/10.1007/s11515-010-0670-9
REVIEW
Advances in genomic study of cortical projection neurons
Chunsheng QU, Jieguang CHEN()
Key Laboratory of Visual Science, National Ministry of Health, and School of Optometry and Ophthalmology, Wenzhou Medical College, Zhejiang 325027, China.
 Download: PDF(273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The mammalian neocortex gives rise to perception and initiates voluntary motor responses. The cortical laminae are comprised of six distinct cellular layers of local circuit neurons and projection neurons. To explore molecular identities of the distinct cortical projection neurons, discovery-orientated genomic approaches have been adopted. Microarray analysis of dissected cortical tissues has been applied to identify cortical layer markers. Early neuronal cells were sorted by FACS from GFP-labeled embryonic brains for gene expression profiling. Laser capture microdissection of retrograde-labeled projection neurons, when coupled with optimal RNA amplification technology, has become a valuable strategy for neuronal isolation and gene expression analysis in differentiated neurons. RNA sequencing technology is promising not only for the determination of gene expression, but also for discovery of posttranscriptional modifications of the complex neural system. There is no doubt that advances in genomic studies are opening up novel research avenues for our understanding of the cortical neuronal functions.

Keywords expression profiling      pyramidal neurons      RNA amplification      cortex      retrograde labeling     
Corresponding Author(s): CHEN Jieguang,Email:jiesbooks@gmail.com   
Issue Date: 01 December 2010
 Cite this article:   
Chunsheng QU,Jieguang CHEN. Advances in genomic study of cortical projection neurons[J]. Front Biol, 2010, 5(6): 524-531.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0670-9
https://academic.hep.com.cn/fib/EN/Y2010/V5/I6/524
Fig.1  Selected genes with layer specific expression in neocortex of rodents. Dark and light shadows represent the strong and weak expression, respectively. Genes are selected from the article () and visually verified by using Allen Brain Atlas (http://mouse.brain-map.org/).
Fig.1  Selected genes with layer specific expression in neocortex of rodents. Dark and light shadows represent the strong and weak expression, respectively. Genes are selected from the article () and visually verified by using Allen Brain Atlas (http://mouse.brain-map.org/).
Fig.2  Retrograde labeling of cortical projection neurons. Corticospinal projection neurons were labeled by Red Retrobeads injected at the pyramidal decussation. Corticocortical neurons in left cortex were marked by Green Retrobeads injected in the right hemisphere. The labeled neurons were isolated by FACS (), or by LCM (JG Chen, unpublished results).
Fig.2  Retrograde labeling of cortical projection neurons. Corticospinal projection neurons were labeled by Red Retrobeads injected at the pyramidal decussation. Corticocortical neurons in left cortex were marked by Green Retrobeads injected in the right hemisphere. The labeled neurons were isolated by FACS (), or by LCM (JG Chen, unpublished results).
1 Arlotta P, Molyneaux B J, Chen J, Inoue J, Kominami R, Macklis J D (2005). Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo.Neuron , 45(2): 207–221
doi: 10.1016/j.neuron.2004.12.036 pmid:15664173
2 Bertone P, Gerstein M, Snyder M (2005). Applications of DNA tiling arrays to experimental genome annotation and regulatory pathway discovery.Chromosome Res , 13(3): 259–274
doi: 10.1007/s10577-005-2165-0 pmid:15868420
3 B?hm C, Newrzella D, Sorgenfrei O (2005). Laser microdissection in CNS research.Drug Discov Today , 10(17): 1167–1174
doi: 10.1016/S1359-6446(05)03555-5 pmid:16182209
4 Bunney W E, Bunney B G, Vawter M P, Tomita H, Li J, Evans S J, Choudary P V, Myers R M, Jones E G, Watson S J, Akil H (2003). Microarray technology: a review of new strategies to discover candidate vulnerability genes in psychiatric disorders.Am J Psychiatry , 160(4): 657–666
doi: 10.1176/appi.ajp.160.4.657 pmid:12668351
5 Cahoy J D, Emery B, Kaushal A, Foo L C, Zamanian J L, Christopherson K S, Xing Y, Lubischer J L, Krieg P A, Krupenko S A, Thompson W J, Barres B A (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function.J Neurosci , 28(1): 264–278
doi: 10.1523/JNEUROSCI.4178-07.2008 pmid:18171944
6 Chen J G, Rasin M R, Kwan K Y, Sestan N (2005). Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex.Proc Natl Acad Sci USA , 102(49): 17792–17797
doi: 10.1073/pnas.0509032102 pmid:16314561
7 Chow N, Cox C, Callahan L M, Weimer J M, Guo L, Coleman P D (1998). Expression profiles of multiple genes in single neurons of Alzheimer’s disease.Proc Natl Acad Sci USA , 95(16): 9620–9625
doi: 10.1073/pnas.95.16.9620 pmid:9689130
8 Clément-Ziza M, Gentien D, Lyonnet S, Thiery J P, Besmond C, Decraene C (2009). Evaluation of methods for amplification of picogram amounts of total RNA for whole genome expression profiling.BMC Genomics , 10(1): 246
doi: 10.1186/1471-2164-10-246 pmid:19470167
9 Colosimo M E, Brown A, Mukhopadhyay S, Gabel C, Lanjuin A E, Samuel A D, Sengupta P (2004). Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types.Curr Biol , 14(24): 2245–2251
doi: 10.1016/j.cub.2004.12.030 pmid:15620651
10 Cui D, Dougherty K J, Machacek D W, Sawchuk M, Hochman S, Baro D J (2005). Divergence between motoneurons: gene expression profiling provides a molecular characterization of functionally discrete somatic and autonomic motoneurons.Physiol Genomics , 24(3): 276–289
doi: 10.1152/physiolgenomics.00109.2005 pmid:16317082
11 Eberwine J (2001). Single-cell molecular biology.Nat Neurosci , 4(Suppl): 1155–1156
doi: 10.1038/nn1101-1155 pmid:11687821
12 Eberwine J, Yeh H, Miyashiro K, Cao Y, Nair S, Finnell R, Zettel M, Coleman P (1992). Analysis of gene expression in single live neurons.Proc Natl Acad Sci USA , 89(7): 3010–3014
doi: 10.1073/pnas.89.7.3010 pmid:1557406
13 Emmert-Buck M R, Bonner R F, Smith P D, Chuaqui R F, Zhuang Z, Goldstein S R, Weiss R A, Liotta L A (1996). Laser capture microdissection.Science , 274(5289): 998–1001
doi: 10.1126/science.274.5289.998 pmid:8875945
14 Espina V, Wulfkuhle J D, Calvert V S, VanMeter A, Zhou W, Coukos G, Geho D H, Petricoin E F 3rd, Liotta L A (2006). Laser-capture microdissection.Nat Protoc , 1(2): 586–603
doi: 10.1038/nprot.2006.85 pmid:17406286
15 Evans S J, Choudary P V, Vawter M P, Li J, Meador-Woodruff J H, Lopez J F, Burke S M, Thompson R C, Myers R M, Jones E G, Bunney W E, Watson S J, Akil H (2003). DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles.Neurobiol Dis , 14(2): 240–250
doi: 10.1016/S0969-9961(03)00126-8 pmid:14572446
16 Fox R M, Von Stetina S E, Barlow S J, Shaffer C, Olszewski K L, Moore J H, Dupuy D, Vidal M, Miller D M 3rd (2005). A gene expression fingerprint of C. elegans embryonic motor neurons.BMC Genomics , 6(1): 42
doi: 10.1186/1471-2164-6-42 pmid:15780142
17 Geschwind D H, Levitt P (2007). Autism spectrum disorders: developmental disconnection syndromes.Curr Opin Neurobiol , 17(1): 103–111
doi: 10.1016/j.conb.2007.01.009 pmid:17275283
18 Ginsberg S D, Che S, Counts S E, Mufson E J (2006). Shift in the ratio of three-repeat tau and four-repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer’s disease.J Neurochem , 96(5): 1401–1408
doi: 10.1111/j.1471-4159.2005.03641.x pmid:16478530
19 Ginsberg S D, Hemby S E, Lee V M, Eberwine J H, Trojanowski J Q (2000). Expression profile of transcripts in Alzheimer’s disease tangle-bearing CA1 neurons.Ann Neurol , 48(1): 77–87
doi: 10.1002/1531-8249(200007)48:1<77::AID-ANA12>3.0.CO;2-A pmid:10894219
20 Gong S, Zheng C, Doughty M L, Losos K, Didkovsky N, Schambra U B, Nowak N J, Joyner A, Leblanc G, Hatten M E, Heintz N (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.Nature , 425(6961): 917–925
doi: 10.1038/nature02033 pmid:14586460
21 Gray P A, Fu H, Luo P, Zhao Q, Yu J, Ferrari A, Tenzen T, Yuk D I, Tsung E F, Cai Z, Alberta J A, Cheng L P, Liu Y, Stenman J M, Valerius M T, Billings N, Kim H A, Greenberg M E, McMahon A P, Rowitch D H, Stiles C D, Ma Q (2004). Mouse brain organization revealed through direct genome-scale TF expression analysis.Science , 306(5705): 2255–2257
doi: 10.1126/science.1104935 pmid:15618518
22 Greenberg S A (2001). DNA microarray gene expression analysis technology and its application to neurological disorders.Neurology , 57(5): 755–761
pmid:11575306
23 Harel N Y, Strittmatter S M (2006). Can regenerating axons recapitulate developmental guidance during recovery from spinal cord injury?Nat Rev Neurosci , 7(8): 603–616
doi: 10.1038/nrn1957 pmid:16858389
24 Heintz N (2000). Analysis of mammalian central nervous system gene expression and function using bacterial artificial chromosome-mediated transgenesis.Hum Mol Genet , 9(6): 937–943
doi: 10.1093/hmg/9.6.937 pmid:10767317
25 Hoerder-Suabedissen A, Wang W Z, Lee S, Davies K E, Goffinet A M, Raki? S, Parnavelas J, Reim K, Nicoli? M, Paulsen O, Molnár Z (2009). Novel markers reveal subpopulations of subplate neurons in the murine cerebral cortex.Cereb Cortex , 19(8): 1738–1750
doi: 10.1093/cercor/bhn195 pmid:19008461
26 Jiang Y M, Yamamoto M, Kobayashi Y, Yoshihara T, Liang Y, Terao S, Takeuchi H, Ishigaki S, Katsuno M, Adachi H, Niwa J, Tanaka F, Doyu M, Yoshida M, Hashizume Y, Sobue G (2005). Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis.Ann Neurol , 57(2): 236–251
doi: 10.1002/ana.20379 pmid:15668976
27 Johnson M B, Kawasawa Y I, Mason C E, Krsnik Z, Coppola G, Bogdanovi? D, Geschwind D H, Mane S M, State M W, Sestan N (2009). Functional and evolutionary insights into human brain development through global transcriptome analysis.Neuron , 62(4): 494–509
doi: 10.1016/j.neuron.2009.03.027 pmid:19477152
28 Kamme F, Salunga R, Yu J, Tran D T, Zhu J, Luo L, Bittner A, Guo H Q, Miller N, Wan J, Erlander M (2003). Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity.J Neurosci , 23(9): 3607–3615
pmid:12736331
29 Khaitovich P, Muetzel B, She X, Lachmann M, Hellmann I, Dietzsch J, Steigele S, Do H H, Weiss G, Enard W, Heissig F, Arendt T, Nieselt-Struwe K, Eichler E E, P??bo S (2004). Regional patterns of gene expression in human and chimpanzee brains.Genome Res , 14(8): 1462–1473
doi: 10.1101/gr.2538704 pmid:15289471
30 Kurn N, Chen P, Heath J D, Kopf-Sill A, Stephens K M, Wang S (2005). Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications.Clin Chem , 51(10): 1973–1981
doi: 10.1373/clinchem.2005.053694 pmid:16123149
31 Leamey C A, Glendining K A, Kreiman G, Kang N D, Wang K H, Fassler R, Sawatari A, Tonegawa S, Sur M (2007). Differential gene expression between sensory neocortical areas: potential roles for Ten_m3 and Bcl6 in patterning visual and somatosensory pathways.Cereb Cortex , 18(1): 53–66
doi: 10.1093/cercor/bhm031 pmid:17478416
32 Lein E S, Hawrylycz M J, Ao N, Ayres M, Bensinger A, Bernard A, Boe A F, Boguski M S, Brockway K S, Byrnes E J, Chen L, Chen L, Chen T M, Chin M C, Chong J, Crook B E, Czaplinska A, Dang C N, Datta S, Dee N R, Desaki A L, Desta T, Diep E, Dolbeare T A, Donelan M J, Dong H W, Dougherty J G, Duncan B J, Ebbert A J, Eichele G, Estin L K, Faber C, Facer B A, Fields R, Fischer S R, Fliss T P, Frensley C, Gates S N, Glattfelder K J, Halverson K R, Hart M R, Hohmann J G, Howell M P, Jeung D P, Johnson R A, Karr P T, Kawal R, Kidney J M, Knapik R H, Kuan C L, Lake J H, Laramee A R, Larsen K D, Lau C, Lemon T A, Liang A J, Liu Y, Luong L T, Michaels J, Morgan J J, Morgan R J, Mortrud M T, Mosqueda N F, Ng L L, Ng R, Orta G J, Overly C C, Pak T H, Parry S E, Pathak S D, Pearson O C, Puchalski R B, Riley Z L, Rockett H R, Rowland S A, Royall J J, Ruiz M J, Sarno N R, Schaffnit K, Shapovalova N V, Sivisay T, Slaughterbeck C R, Smith S C, Smith K A, Smith B I, Sodt A J, Stewart N N, Stumpf K R, Sunkin S M, Sutram M, Tam A, Teemer C D, Thaller C, Thompson C L, Varnam L R, Visel A, Whitlock R M, Wohnoutka P E, Wolkey C K, Wong V Y, Wood M, Yaylaoglu M B, Young R C, Youngstrom B L, Yuan X F, Zhang B, Zwingman T A, Jones A R (2007). Genome-wide atlas of gene expression in the adult mouse brain.Nature , 445(7124): 168–176
doi: 10.1038/nature05453 pmid:17151600
33 Liang W S, Dunckley T, Beach T G, Grover A, Mastroeni D, Ramsey K, Caselli R J, Kukull W A, McKeel D, Morris J C, Hulette C M, Schmechel D, Reiman E M, Rogers J, Stephan D A (2008). Altered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data set.Physiol Genomics , 33(2): 240–256
doi: 10.1152/physiolgenomics.00242.2007 pmid:18270320
34 Lobo M K, Karsten S L, Gray M, Geschwind D H, Yang X W (2006). FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains.Nat Neurosci , 9(3): 443–452
doi: 10.1038/nn1654 pmid:16491081
35 Lombardino A J, Hertel M, Li X C, Haripal B, Martin-Harris L, Pariser E, Nottebohm F (2006). Expression profiling of intermingled long-range projection neurons harvested by laser capture microdissection.J Neurosci Methods , 157(2): 195–207
doi: 10.1016/j.jneumeth.2006.04.026 pmid:16750569
36 Low L K, Cheng H J (2006). Axon pruning: an essential step underlying the developmental plasticity of neuronal connections.Philos Trans R Soc Lond B Biol Sci , 361(1473): 1531–1544
doi: 10.1098/rstb.2006.1883 pmid:16939973
37 Luo L, Salunga R C, Guo H, Bittner A, Joy K C, Galindo J E, Xiao H, Rogers K E, Wan J S, Jackson M R, Erlander M G (1999). Gene expression profiles of laser-captured adjacent neuronal subtypes.Nat Med , 5(1): 117–122
doi: 10.1038/4806 pmid:9883850
38 Magdaleno S, Jensen P, Brumwell C L, Seal A, Lehman K, Asbury A, Cheung T, Cornelius T, Batten D M, Eden C, Norland S M, Rice D S, Dosooye N, Shakya S, Mehta P, Curran T (2006). BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system.PLoS Biol , 4(4): e86
doi: 10.1371/journal.pbio.0040086 pmid:16602821
39 Marguerat S, B?hler J (2010). RNA-seq: from technology to biology.Cell Mol Life Sci , 67(4): 569–579
doi: 10.1007/s00018-009-0180-6 pmid:19859660
40 Mirnics K, Korade Z, Arion D, Lazarov O, Unger T, Macioce M, Sabatini M, Terrano D, Douglass K C, Schor N F, Sisodia S S (2005). Presenilin-1-dependent transcriptome changes.J Neurosci , 25(6): 1571–1578
doi: 10.1523/JNEUROSCI.4145-04.2005 pmid:15703411
41 Mirnics K, Middleton F A, Marquez A, Lewis D A, Levitt P (2000). Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.Neuron , 28(1): 53–67
doi: 10.1016/S0896-6273(00)00085-4 pmid:11086983
42 Molyneaux B J, Arlotta P, Hirata T, Hibi M, Macklis J D (2005). Fezl is required for the birth and specification of corticospinal motor neurons.Neuron , 47(6): 817–831
doi: 10.1016/j.neuron.2005.08.030 pmid:16157277
43 Molyneaux B J, Arlotta P, Menezes J R L, Macklis J D (2007). Neuronal subtype specification in the cerebral cortex.Nat Rev Neurosci , 8(6): 427–437
doi: 10.1038/nrn2151 pmid:17514196
44 Mufson E J, Counts S E, Ginsberg S D (2002). Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer’s disease.Neurochem Res , 27(10): 1035–1048
doi: 10.1023/A:1020952704398 pmid:12462403
45 O’Leary D D, Chou S J, Sahara S (2007). Area patterning of the mammalian cortex.Neuron , 56(2): 252–269
doi: 10.1016/j.neuron.2007.10.010 pmid:17964244
46 O’Leary D D, Koester S E (1993). Development of projection neuron types, axon pathways, and patterned connections of the mammalian cortex.Neuron , 10(6): 991–1006
doi: 10.1016/0896-6273(93)90049-W pmid:8318235
47 Pietersen C Y, Lim M P, Woo T U (2009). Obtaining high quality RNA from single cell populations in human postmortem brain tissue.J Vis Exp , 30(30): 1444
pmid:19684564
48 Polleux F, Ince-Dunn G, Ghosh A (2007). Transcriptional regulation of vertebrate axon guidance and synapse formation.Nat Rev Neurosci , 8(5): 331–340
doi: 10.1038/nrn2118 pmid:17453014
49 Rossner M J, Hirrlinger J, Wichert S P, Boehm C, Newrzella D, Hiemisch H, Eisenhardt G, Stuenkel C, von Ahsen O, Nave K A (2006). Global transcriptome analysis of genetically identified neurons in the adult cortex.J Neurosci , 26(39): 9956–9966
doi: 10.1523/JNEUROSCI.0468-06.2006 pmid:17005859
50 Roy N S, Benraiss A, Wang S, Fraser R A, Goodman R, Couldwell W T, Nedergaard M, Kawaguchi A, Okano H, Goldman S A (2000). Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone.J Neurosci Res , 59(3): 321–331
doi: 10.1002/(SICI)1097-4547(20000201)59:3<321::AID-JNR5>3.0.CO;2-9 pmid:10679767
51 Rudnicki M, Eder S, Schratzberger G, Mayer B, Meyer T W, Tonko M, Mayer G (2004). Reliability of t7-based mRNA linear amplification validated by gene expression analysis of human kidney cells using cDNA microarrays.Nephron, Exp Nephrol , 97(3): e86–e95
doi: 10.1159/000078642 pmid:15292679
52 Sandberg R, Yasuda R, Pankratz D G, Carter T A, Del Rio J A, Wodicka L, Mayford M, Lockhart D J, Barlow C (2000). Regional and strain-specific gene expression mapping in the adult mouse brain.Proc Natl Acad Sci USA , 97(20): 11038–11043
doi: 10.1073/pnas.97.20.11038 pmid:11005875
53 Schulze A, Downward J (2000). Analysis of gene expression by microarrays: cell biologist’s gold mine or minefield?J Cell Sci , 113(Pt 23): 4151–4156
pmid:11069760
54 Sugino K, Hempel C M, Miller M N, Hattox A M, Shapiro P, Wu C, Huang Z J, Nelson S B (2006). Molecular taxonomy of major neuronal classes in the adult mouse forebrain.Nat Neurosci , 9(1): 99–107
doi: 10.1038/nn1618 pmid:16369481
55 Tudor M, Akbarian S, Chen R Z, Jaenisch R (2002). Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain.Proc Natl Acad Sci USA , 99(24): 15536–15541
doi: 10.1073/pnas.242566899 pmid:12432090
56 van Gelder R N, von Zastrow M E, Yool A, Dement W C, Barchas J D, Eberwine J H (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA.Proc Natl Acad Sci USA , 87(5): 1663–1667
doi: 10.1073/pnas.87.5.1663 pmid:1689846
57 Vercelli A, Repici M, Garbossa D, Grimaldi A (2000). Recent techniques for tracing pathways in the central nervous system of developing and adult mammals.Brain Res Bull , 51(1): 11–28
doi: 10.1016/S0361-9230(99)00229-4 pmid:10654576
58 Vernes S C, Newbury D F, Abrahams B S, Winchester L, Nicod J, Groszer M, Alarcón M, Oliver P L, Davies K E, Geschwind D H, Monaco A P, Fisher S E (2008). A functional genetic link between distinct developmental language disorders.N Engl J Med , 359(22): 2337–2345
doi: 10.1056/NEJMoa0802828 pmid:18987363
59 Visel A, Thaller C, Eichele G (2004). GenePaint.org: an atlas of gene expression patterns in the mouse embryo.Nucleic Acids Res , 32(90001 Database issue): 552 D–556 D
doi: 10.1093/nar/gkh029 pmid:14681479
60 Watakabe A, Sugai T, Nakaya N, Wakabayashi K, Takahashi H, Yamamori T, Nawa H (2001). Similarity and variation in gene expression among human cerebral cortical subregions revealed by DNA macroarrays: technical consideration of RNA expression profiling from postmortem samples.Brain Res Mol Brain Res , 88(1-2): 74–82
doi: 10.1016/S0169-328X(01)00019-5 pmid:11295233
61 Watson J D, Wang S, Von Stetina S E, Spencer W C, Levy S, Dexheimer P J, Kurn N, Heath J D, Miller D M 3rd (2008). Complementary RNA amplification methods enhance microarray identification of transcripts expressed in the C. elegans nervous system.BMC Genomics , 9(1): 84
doi: 10.1186/1471-2164-9-84 pmid:18284693
62 Wilhelm J, Muyal J P, Best J, Kwapiszewska G, Stein M M, Seeger W, Bohle R M, Fink L (2006). Systematic comparison of the T7-IVT and SMART-based RNA preamplification techniques for DNA microarray experiments.Clin Chem , 52(6): 1161–1167
doi: 10.1373/clinchem.2005.062406 pmid:16627562
63 Wurmbach E, González-Maeso J, Yuen T, Ebersole B J, Mastaitis J W, Mobbs C V, Sealfon S C (2002). Validated genomic approach to study differentially expressed genes in complex tissues.Neurochem Res , 27(10): 1027–1033
doi: 10.1023/A:1020900720328 pmid:12462402
64 Yamamori T, Rockland K S (2006). Neocortical areas, layers, connections, and gene expression.Neurosci Res , 55(1): 11–27
doi: 10.1016/j.neures.2006.02.006 pmid:16546282
65 Yao F, Yu F, Gong L, Taube D, Rao D D, MacKenzie R G (2005). Microarray analysis of fluoro-gold labeled rat dopamine neurons harvested by laser capture microdissection.J Neurosci Methods , 143(2): 95–106
doi: 10.1016/j.jneumeth.2004.09.023 pmid:15814141
66 Yeo G W, Xu X, Liang T Y, Muotri A R, Carson C T, Coufal N G, Gage F H (2007). Alternative splicing events identified in human embryonic stem cells and neural progenitors.PLOS Comput Biol , 3(10): 1951–1967
doi: 10.1371/journal.pcbi.0030196 pmid:17967047
67 Zapala M A, Hovatta I, Ellison J A, Wodicka L, Del Rio J A, Tennant R, Tynan W, Broide R S, Helton R, Stoveken B S, Winrow C, Lockhart D J, Reilly J F, Young W G, Bloom F E, Lockhart D J, Barlow C (2005). Adult mouse brain gene expression patterns bear an embryologic imprint.Proc Natl Acad Sci USA , 102(29): 10357–10362
doi: 10.1073/pnas.0503357102 pmid:16002470
68 Zhu H, Yang Y, Gao J, Tao H, Qu C, Qu J, Chen J (2010). Area dependent expression of ZNF312 in human fetal cerebral cortex.Neurosci Res , 68(1): 73–76
doi: 10.1016/j.neures.2010.05.007 pmid:20570630
[1] Gregory W. Kirschen, Hanxiao Liu, Tracy Lang, Xuelin Liang, Shaoyu Ge, Qiaojie Xiong. The radial organization of neuronal primary cilia is acutely disrupted by seizure and ischemic brain injury[J]. Front. Biol., 2017, 12(2): 124-138.
[2] Richard König,Bruno Benedetti,Peter Rotheneichner,Anna O′ Sullivan,Christina Kreutzer,Maria Belles,Juan Nacher,Thomas M. Weiger,Ludwig Aigner,Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
[3] Taiyong BI, Fang FANG. Neural plasticity in high-level visual cortex underlying object perceptual learning[J]. Front Biol, 2013, 8(4): 434-443.
[4] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed