|
|
Neural plasticity in high-level visual cortex underlying object perceptual learning |
Taiyong BI1( ), Fang FANG1,2,3 |
1. Department of Psychology and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; 2. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; 3. PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China |
|
|
Abstract With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.
|
Keywords
plasticity
object perceptual learning
neural mechanism
inferior temporal cortex
lateral occipital
|
Corresponding Author(s):
BI Taiyong,Email:bitaiyong@pku.edu.cn
|
Issue Date: 01 August 2013
|
|
1 |
Andrews T J, Ewbank M P (2004). Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage , 23(3): 905-913 doi: 10.1016/j.neuroimage.2004.07.060 pmid:15528090
|
2 |
Anstis S (2010). Stuart Anstis. Curr Biol , 20(18): R795-R796 doi: 10.1016/j.cub.2010.07.003 pmid:20886684
|
3 |
Baker C I, Behrmann M, Olson C R (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci , 5(11): 1210-1216 doi: 10.1038/nn960 pmid:12379864
|
4 |
Baker C I, Liu J, Wald L L, Kwong K K, Benner T, Kanwisher N (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci USA , 104(21): 9087-9092 doi: 10.1073/pnas.0703300104 pmid:17502592
|
5 |
Ball K, Sekuler R (1987). Direction-specific improvement in motion discrimination. Vision Res , 27(6): 953-965 doi: 10.1016/0042-6989(87)90011-3 pmid:3660656
|
6 |
Bao M, Yang L, Rios C, He B, Engel S A (2010). Perceptual learning increases the strength of the earliest signals in visual cortex. J Neurosci , 30(45): 15080-15084 doi: 10.1523/JNEUROSCI.5703-09.2010 pmid:21068313
|
7 |
Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996). Electrophysiological studies of face perception in humans. J Cogn Neurosci , 8(6): 551-565 doi: 10.1162/jocn.1996.8.6.551 pmid:20740065
|
8 |
Bi T, Chen N, Weng Q, He D, Fang F (2010). Learning to discriminate face views. J Neurophysiol , 104(6): 3305-3311 doi: 10.1152/jn.00286.2010 pmid:20631223
|
9 |
Blakemore C, Campbell F W (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol , 203(1): 237-260 pmid:5821879
|
10 |
Cox D D, DiCarlo J J (2008). Does learned shape selectivity in inferior temporal cortex automatically generalize across retinal position? J Neurosci , 28(40): 10045-10055 doi: 10.1523/JNEUROSCI.2142-08.2008 pmid:18829962
|
11 |
De Baene W, Ons B, Wagemans J, Vogels R (2008). Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem , 15(9): 717-727 doi: 10.1101/lm.1040508 pmid:18772261
|
12 |
De Souza W C, Eifuku S, Tamura R, Nishijo H, Ono T (2005). Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. J Neurophysiol , 94(2): 1252-1266 doi: 10.1152/jn.00949.2004 pmid:15857968
|
13 |
Desimone R, Albright T D, Gross C G, Bruce C (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci , 4(8): 2051-2062 pmid:6470767
|
14 |
Dosher B A, Lu Z L (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc Natl Acad Sci USA , 95(23): 13988-13993 doi: 10.1073/pnas.95.23.13988 pmid:9811913
|
15 |
Dosher B A, Lu Z L (2005). Perceptual learning in clear displays optimizes perceptual expertise: learning the limiting process. Proc Natl Acad Sci USA , 102(14): 5286-5290 doi: 10.1073/pnas.0500492102 pmid:15795377
|
16 |
Engvig A, Fjell A M, Westlye L T, Moberget T, Sundseth O, Larsen V A, Walhovd K B (2010). Effects of memory training on cortical thickness in the elderly. Neuroimage , 52(4): 1667-1676 doi: 10.1016/j.neuroimage.2010.05.041 pmid:20580844
|
17 |
Fang F, Murray S O, He S (2007). Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. Cereb Cortex , 17(6): 1402-1411 doi: 10.1093/cercor/bhl053 pmid:16905593
|
18 |
Fang F, Murray S O, Kersten D, He S (2005). Orientation-tuned FMRI adaptation in human visual cortex. J Neurophysiol , 94(6): 4188-4195 doi: 10.1152/jn.00378.2005 pmid:16120668
|
19 |
Folstein J R, Palmeri T J, Gauthier I (2012). Category learning increases discriminability of relevant object dimensions in visual cortex. Cereb Cortex pmid:22490547
|
20 |
Freedman D J, Riesenhuber M, Poggio T, Miller E K (2006). Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex , 16(11): 1631-1644 doi: 10.1093/cercor/bhj100 pmid:16400159
|
21 |
Furmanski C S, Engel S A (2000). Perceptual learning in object recognition: object specificity and size invariance. Vision Res , 40(5): 473-484 doi: 10.1016/S0042-6989(99)00134-0 pmid:10820606
|
22 |
Furmanski C S, Schluppeck D, Engel S A (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol , 14(7): 573-578 doi: 10.1016/j.cub.2004.03.032 pmid:15062097
|
23 |
Gauthier I, Skudlarski P, Gore J C, Anderson A W (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci , 3(2): 191-197 doi: 10.1038/72140 pmid:10649576
|
24 |
Gauthier I, Tarr M J (1997). Becoming a “Greeble” expert: exploring mechanisms for face recognition. Vision Res , 37(12): 1673-1682 doi: 10.1016/S0042-6989(96)00286-6 pmid:9231232
|
25 |
Gilbert C D, Sigman M, Crist R E (2001). The neural basis of perceptual learning. Neuron , 31(5): 681-697 doi: 10.1016/S0896-6273(01)00424-X pmid:11567610
|
26 |
Gillebert C R, Op de Beeck H P, Panis S, Wagemans J (2009). Subordinate categorization enhances the neural selectivity in human object-selective cortex for fine shape differences. J Cogn Neurosci , 21(6): 1054-1064 doi: 10.1162/jocn.2009.21089 pmid:18752400
|
27 |
Gold J, Bennett P J, Sekuler A B (1999). Signal but not noise changes with perceptual learning. Nature , 402(6758): 176-178 doi: 10.1038/46027 pmid:10647007
|
28 |
Goldstone R L, Lippa Y, Shiffrin R M (2001). Altering object representations through category learning. Cognition , 78(1): 27-43 doi: 10.1016/S0010-0277(00)00099-8 pmid:11062321
|
29 |
Grill-Spector K, Henson R, Martin A (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci , 10(1): 14-23 doi: 10.1016/j.tics.2005.11.006 pmid:16321563
|
30 |
Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron , 24(1): 187-203 doi: 10.1016/S0896-6273(00)80832-6 pmid:10677037
|
31 |
Grill-Spector K, Kushnir T, Hendler T, Malach R (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci , 3(8): 837-843 doi: 10.1038/77754 pmid:10903579
|
32 |
Grill-Spector K, Malach R (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) , 107(1-3): 293-321 doi: 10.1016/S0001-6918(01)00019-1 pmid:11388140
|
33 |
Gross C G (1992). Representation of visual stimuli in inferior temporal cortex. Philos Trans R Soc Lond Ser B-Biol Sci , 335: 3-10
|
34 |
Harley E M, Pope W B, Villablanca J P, Mumford J, Suh R, Mazziotta J C, Enzmann D, Engel S A (2009). Engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise. Cereb Cortex , 19(11): 2746-2754 doi: 10.1093/cercor/bhp051 pmid:19321653
|
35 |
Hubel D H, Wiesel T N (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol , 206(2): 419-436 pmid:5498493
|
36 |
Hussain Z, Sekuler A B, Bennett P J (2008). Robust perceptual learning of faces in the absence of sleep. Vision Res , 48(28): 2785-2792 doi: 10.1016/j.visres.2008.09.003 pmid:18817803
|
37 |
Jeffreys D A (1996). Evoked potential studies of face and object processing. Vis Cogn , 3(1): 1-38 doi: 10.1080/713756729
|
38 |
Jiang X, Bradley E, Rini R A, Zeffiro T, Vanmeter J, Riesenhuber M (2007). Categorization training results in shape- and category-selective human neural plasticity. Neuron , 53(6): 891-903 doi: 10.1016/j.neuron.2007.02.015 pmid:17359923
|
39 |
Kaas J H, Krubitzer L A, Chino Y M, Langston A L, Polley E H, Blair N (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science , 248(4952): 229-231 doi: 2326637" target="_blank">10.1126/science. pmid:2326637 pmid:2326637
|
40 |
Kahnt T, Grueschow M, Speck O, Haynes J D (2011). Perceptual learning and decision-making in human medial frontal cortex. Neuron , 70(3): 549-559 doi: 10.1016/j.neuron.2011.02.054 pmid:21555079
|
41 |
Karni A, Sagi D (1993). The time course of learning a visual skill. Nature , 365(6443): 250-252 doi: 10.1038/365250a0 pmid:8371779
|
42 |
Law C T, Gold J I (2008). Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci , 11(4): 505-513 doi: 10.1038/nn2070 pmid:18327253
|
43 |
Ma L S, Wang B Q, Narayana S, Hazeltine E, Chen X Y, Robin D A, Fox P T, Xiong J H (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Res , 1318: 64-76 doi: 10.1016/j.brainres.2009.12.073 pmid:20051230
|
44 |
Mollon J D, Danilova M V (1996). Three remarks on perceptual learning. Spat Vis , 10(1): 51-58 doi: 10.1163/156856896X00051 pmid:8817771
|
45 |
Moore C D, Cohen M X, Ranganath C (2006). Neural mechanisms of expert skills in visual working memory. J Neurosci , 26(43): 11187-11196 doi: 10.1523/JNEUROSCI.1873-06.2006 pmid:17065458
|
46 |
Mukai I, Kim D, Fukunaga M, Japee S, Marrett S, Ungerleider L G (2007). Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J Neurosci , 27(42): 11401-11411 doi: 10.1523/JNEUROSCI.3002-07.2007 pmid:17942734
|
47 |
Op de Beeck H, Wagemans J, Vogels R (2003). The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. J Exp Psychol Gen , 132(4): 491-511 doi: 10.1037/0096-3445.132.4.491 pmid:14640844
|
48 |
Op de Beeck H P, Wagemans J, Vogels R (2007). Effects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons. Neuroscience , 145(2): 775-789 doi: 10.1016/j.neuroscience.2006.12.058 pmid:17293053
|
49 |
Peissig J J, Singer J, Kawasaki K, Sheinberg D L (2007). Effects of long-term object familiarity on event-related potentials in the monkey. Cereb Cortex , 17(6): 1323-1334 doi: 10.1093/cercor/bhl043 pmid:16894024
|
50 |
Perrett D I, Smith P A J, Potter D D, Mistlin A J, Head A S, Milner A D, Jeeves M A(1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. P Roy Soc B-Biol Sci , 223: 293-317
|
51 |
Rainer G, Lee H, Logothetis N K (2004). The effects of learning on the function of monkey extrastriate visual cortex. PLoS Biol , 2(2): 275-283 doi: 10.1371/journal.pbio.0020044
|
52 |
Rossion B, Gauthier I, Goffaux V, Tarr M J, Crommelinck M (2002). Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses. Psychol Sci , 13(3): 250-257 doi: 10.1111/1467-9280.00446 pmid:12009046
|
53 |
Sakai K, Miyashita Y (1994). Neuronal tuning to learned complex forms in vision. Neuroreport , 5(7): 829-832 doi: 10.1097/00001756-199403000-00023 pmid:8018859
|
54 |
Scholz J, Klein M C, Behrens T E J, Johansen-Berg H (2009). Training induces changes in white-matter architecture. Nat Neurosci , 12(11): 1370-1371 doi: 10.1038/nn.2412 pmid:19820707
|
55 |
Schoups A, Vogels R, Qian N, Orban G (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature , 412(6846): 549-553 doi: 10.1038/35087601 pmid:11484056
|
56 |
Schoups A A, Vogels R, Orban G A (1995). Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol , 483(Pt 3): 797-810 pmid:7776259
|
57 |
Schwartz S, Maquet P, Frith C (2002). Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA , 99(26): 17137-17142 doi: 10.1073/pnas.242414599 pmid:12446842
|
58 |
Scott L S, Tanaka J W, Sheinberg D L, Curran T (2008). The role of category learning in the acquisition and retention of perceptual expertise: a behavioral and neurophysiological study. Brain Res , 1210: 204-215 doi: 10.1016/j.brainres.2008.02.054 pmid:18417106
|
59 |
Sigala N, Logothetis N K (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature , 415(6869): 318-320 doi: 10.1038/415318a pmid:11797008
|
60 |
Sigman M, Gilbert C D (2000). Learning to find a shape. Nat Neurosci , 3(3): 264-269 doi: 10.1038/72979 pmid:10700259
|
61 |
Sigman M, Pan H, Yang Y H, Stern E, Silbersweig D, Gilbert C D (2005). Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron , 46(5): 823-835 doi: 10.1016/j.neuron.2005.05.014 pmid:15924867
|
62 |
Song Y Y, Hu S Y, Li X T, Li W, Liu J (2010). The role of top-down task context in learning to perceive objects. J Neurosci , 30(29): 9869-9876 doi: 10.1523/JNEUROSCI.0140-10.2010 pmid:20660269
|
63 |
Su J Z, Chen C, He D J, Fang F (2012). Effects of face view discrimination learning on N170 latency and amplitude. Vision Res , 61: 125-131 doi: 10.1016/j.visres.2011.08.024 pmid:21911001
|
64 |
van der Linden M, Murre J M J, van Turennout M (2008). Birds of a feather flock together: experience-driven formation of visual object categories in human ventral temporal cortex. PLoS ONE , 3(12): e3995 doi: 10.1371/journal.pone.0003995 pmid:19107187
|
65 |
Woloszyn L, Sheinberg D L (2012). Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron , 74(1): 193-205 doi: 10.1016/j.neuron.2012.01.032 pmid:22500640
|
66 |
Wong Y K, Folstein J R, Gauthier I (2012). The nature of experience determines object representations in the visual system. J Exp Psychol Gen , 141(4): 682-698 doi: 10.1037/a0027822 pmid:22468668
|
67 |
Xiao L Q, Zhang J Y, Wang R, Klein S A, Levi D M, Yu C (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Curr Biol , 18(24): 1922-1926 doi: 10.1016/j.cub.2008.10.030 pmid:19062277
|
68 |
Xu Y D (2005). Revisiting the role of the fusiform face area in visual expertise. Cereb Cortex , 15(8): 1234-1242 doi: 10.1093/cercor/bhi006 pmid:15677350
|
69 |
Yotsumoto Y, Watanabe T, Sasaki Y (2008). Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron , 57(6): 827-833 doi: 10.1016/j.neuron.2008.02.034 pmid:18367084
|
70 |
Yu C, Klein S A, Levi D M (2004). Perceptual learning in contrast discrimination and the (minimal) role of context. J Vis , 4(3): 169-182 doi: 10.1167/4.3.4 pmid:15086307
|
71 |
Zatorre R J, Fields R D, Johansen-Berg H (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci , 15(4): 528-536 doi: 10.1038/nn.3045 pmid:22426254
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|