Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (4) : 434-443    https://doi.org/10.1007/s11515-013-1262-2
REVIEW
Neural plasticity in high-level visual cortex underlying object perceptual learning
Taiyong BI1(), Fang FANG1,2,3
1. Department of Psychology and Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China; 2. Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; 3. PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
 Download: PDF(555 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With intensive training, human can achieve impressive behavioral improvement on various perceptual tasks. This phenomenon, termed perceptual learning, has long been considered as a hallmark of the plasticity of sensory neural system. Not surprisingly, high-level vision, such as object perception, can also be improved by perceptual learning. Here we review recent psychophysical, electrophysiological, and neuroimaging studies investigating the effects of training on object selective cortex, such as monkey inferior temporal cortex and human lateral occipital area. Evidences show that learning leads to an increase in object selectivity at the single neuron level and/or the neuronal population level. These findings indicate that high-level visual cortex in humans is highly plastic and visual experience can strongly shape neural functions of these areas. At the end of the review, we discuss several important future directions in this area.

Keywords plasticity      object perceptual learning      neural mechanism      inferior temporal cortex      lateral occipital     
Corresponding Author(s): BI Taiyong,Email:bitaiyong@pku.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Taiyong BI,Fang FANG. Neural plasticity in high-level visual cortex underlying object perceptual learning[J]. Front Biol, 2013, 8(4): 434-443.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1262-2
https://academic.hep.com.cn/fib/EN/Y2013/V8/I4/434
Fig.1  Learning of object identification: specificity and transfer. (A) Two examples of the stimuli used for training. Objects were presented for a short period and followed by a mask. Subjects were instructed to namethe object. (B) The threshold exposure time of objects decreased gradually with training. Learning was specific to the trained objects and could persist up to 20 days after training. (C) Learning transferred nearly completely to the same objects with a different size.
Fig.2  Face view perceptual learning. First column denotes the stimuli for training. Subjects were asked to discriminate two side views of a stimulus around a 30° view angle. The second column denotes the stimuli for testing the transfer of the learned view discrimination ability to untrained stimuli. The test stimuli were different from the trained stimuli in size (A), part (B), identity (C), visual field (D), configural information (E), and face information (F).View discrimination performances at seven view angles (one was the trained view, others were the untrained views) were tested before and after training. The third column denotes the learning curve of each stimulus in the first column. The discrimination threshold decreased gradually along an eight-day training course for all the stimuli. The fourth column denotes the percent improvement of view discrimination performance on the test stimuli in the second column. The learning effects in A–D transferred to the test stimuli in a view specific manner. However, the learning effects of inverted face and non-face objects (E and F) could not transfer to the upright face stimuli.
Fig.3  Neural selectivity changes with categorization learning. (A) Stimuli and categories. The stimulus set consisted of line drawings of faces with four varying features: eye height, eye separation, nose length and mouth height. (B) Two-dimensional representation of the stimulus space. Monkeys were trained to categorize faces to two categories based on two of the four varying features. Dark line denotes the category boundary. Black stars represent the stimuli of the first category and red ovals represent the stimuli of the second category. Each number indicates the position of one corresponding stimulus from panel A. (C) Example of a neuron showing feature selectivity. Black traces indicate the responses of the neuron to the best feature value; gray traces indicate responses to the worst feature value. s.i. denotes the selectivity index. For each feature, one s.i. could be computed for each neuron. (D) Plots of the average selectivity index of each neuron for the diagnostic versus the non-diagnostic features. Each point represents one neuron. Red circles represent neurons with statistically significant selectivity for diagnostic features only. Blue circles represent neurons with statistically significant selectivity for both diagnostic and non-diagnostic features. Black triangles represent neurons with no significant selectivity. Insert diagram shows the distribution (numbers of neurons) of the selectivity index for the diagnostic features after subtraction of the selectivity index for the non-diagnostic features.
Fig.4  Example of an fMRI adaptation experiment and the learning effect on fMRI adaptation. (A) An illustration of the sequence of object images presented during an fMRI adaptation experiment. 32 pictures were sequentially presented in a repeating cycle. The number of different objects in each cycle is given on the left, ranging from 1 (the same object picture presented repeatedly) to 32 (32 different images). (B) Relative LOC signal of each repetition condition compared to the maximal activation (condition 32) as a function of number of different pictures in the cycle. Note the fMRI signal decreased monotonically as the repetition frequency increased. (C) The stimuli and result of an fMRI study on car categorization training. Subjects were trained to categorize morphed cars into two categories. Before and after training, subjects were scanned while viewing three kinds of stimuli. In condition M0, stimuli in a trial are always two identical cars which are one of the two prototypes. In condition M3, stimuli are two morphed car which are different from each other for 33% of each prototype. and refer to within the same category and between different categories respectively. Before training, LO responses in three conditions were similar, indicating no difference on the neural representation of different cars. However, after training, the response for different cars was significantly higher than that for identical car, revealing a release from adaptation after training.
1 Andrews T J, Ewbank M P (2004). Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. Neuroimage , 23(3): 905-913
doi: 10.1016/j.neuroimage.2004.07.060 pmid:15528090
2 Anstis S (2010). Stuart Anstis. Curr Biol , 20(18): R795-R796
doi: 10.1016/j.cub.2010.07.003 pmid:20886684
3 Baker C I, Behrmann M, Olson C R (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nat Neurosci , 5(11): 1210-1216
doi: 10.1038/nn960 pmid:12379864
4 Baker C I, Liu J, Wald L L, Kwong K K, Benner T, Kanwisher N (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc Natl Acad Sci USA , 104(21): 9087-9092
doi: 10.1073/pnas.0703300104 pmid:17502592
5 Ball K, Sekuler R (1987). Direction-specific improvement in motion discrimination. Vision Res , 27(6): 953-965
doi: 10.1016/0042-6989(87)90011-3 pmid:3660656
6 Bao M, Yang L, Rios C, He B, Engel S A (2010). Perceptual learning increases the strength of the earliest signals in visual cortex. J Neurosci , 30(45): 15080-15084
doi: 10.1523/JNEUROSCI.5703-09.2010 pmid:21068313
7 Bentin S, Allison T, Puce A, Perez E, McCarthy G (1996). Electrophysiological studies of face perception in humans. J Cogn Neurosci , 8(6): 551-565
doi: 10.1162/jocn.1996.8.6.551 pmid:20740065
8 Bi T, Chen N, Weng Q, He D, Fang F (2010). Learning to discriminate face views. J Neurophysiol , 104(6): 3305-3311
doi: 10.1152/jn.00286.2010 pmid:20631223
9 Blakemore C, Campbell F W (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol , 203(1): 237-260
pmid:5821879
10 Cox D D, DiCarlo J J (2008). Does learned shape selectivity in inferior temporal cortex automatically generalize across retinal position? J Neurosci , 28(40): 10045-10055
doi: 10.1523/JNEUROSCI.2142-08.2008 pmid:18829962
11 De Baene W, Ons B, Wagemans J, Vogels R (2008). Effects of category learning on the stimulus selectivity of macaque inferior temporal neurons. Learn Mem , 15(9): 717-727
doi: 10.1101/lm.1040508 pmid:18772261
12 De Souza W C, Eifuku S, Tamura R, Nishijo H, Ono T (2005). Differential characteristics of face neuron responses within the anterior superior temporal sulcus of macaques. J Neurophysiol , 94(2): 1252-1266
doi: 10.1152/jn.00949.2004 pmid:15857968
13 Desimone R, Albright T D, Gross C G, Bruce C (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. J Neurosci , 4(8): 2051-2062
pmid:6470767
14 Dosher B A, Lu Z L (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc Natl Acad Sci USA , 95(23): 13988-13993
doi: 10.1073/pnas.95.23.13988 pmid:9811913
15 Dosher B A, Lu Z L (2005). Perceptual learning in clear displays optimizes perceptual expertise: learning the limiting process. Proc Natl Acad Sci USA , 102(14): 5286-5290
doi: 10.1073/pnas.0500492102 pmid:15795377
16 Engvig A, Fjell A M, Westlye L T, Moberget T, Sundseth O, Larsen V A, Walhovd K B (2010). Effects of memory training on cortical thickness in the elderly. Neuroimage , 52(4): 1667-1676
doi: 10.1016/j.neuroimage.2010.05.041 pmid:20580844
17 Fang F, Murray S O, He S (2007). Duration-dependent FMRI adaptation and distributed viewer-centered face representation in human visual cortex. Cereb Cortex , 17(6): 1402-1411
doi: 10.1093/cercor/bhl053 pmid:16905593
18 Fang F, Murray S O, Kersten D, He S (2005). Orientation-tuned FMRI adaptation in human visual cortex. J Neurophysiol , 94(6): 4188-4195
doi: 10.1152/jn.00378.2005 pmid:16120668
19 Folstein J R, Palmeri T J, Gauthier I (2012). Category learning increases discriminability of relevant object dimensions in visual cortex. Cereb Cortex
pmid:22490547
20 Freedman D J, Riesenhuber M, Poggio T, Miller E K (2006). Experience-dependent sharpening of visual shape selectivity in inferior temporal cortex. Cereb Cortex , 16(11): 1631-1644
doi: 10.1093/cercor/bhj100 pmid:16400159
21 Furmanski C S, Engel S A (2000). Perceptual learning in object recognition: object specificity and size invariance. Vision Res , 40(5): 473-484
doi: 10.1016/S0042-6989(99)00134-0 pmid:10820606
22 Furmanski C S, Schluppeck D, Engel S A (2004). Learning strengthens the response of primary visual cortex to simple patterns. Curr Biol , 14(7): 573-578
doi: 10.1016/j.cub.2004.03.032 pmid:15062097
23 Gauthier I, Skudlarski P, Gore J C, Anderson A W (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat Neurosci , 3(2): 191-197
doi: 10.1038/72140 pmid:10649576
24 Gauthier I, Tarr M J (1997). Becoming a “Greeble” expert: exploring mechanisms for face recognition. Vision Res , 37(12): 1673-1682
doi: 10.1016/S0042-6989(96)00286-6 pmid:9231232
25 Gilbert C D, Sigman M, Crist R E (2001). The neural basis of perceptual learning. Neuron , 31(5): 681-697
doi: 10.1016/S0896-6273(01)00424-X pmid:11567610
26 Gillebert C R, Op de Beeck H P, Panis S, Wagemans J (2009). Subordinate categorization enhances the neural selectivity in human object-selective cortex for fine shape differences. J Cogn Neurosci , 21(6): 1054-1064
doi: 10.1162/jocn.2009.21089 pmid:18752400
27 Gold J, Bennett P J, Sekuler A B (1999). Signal but not noise changes with perceptual learning. Nature , 402(6758): 176-178
doi: 10.1038/46027 pmid:10647007
28 Goldstone R L, Lippa Y, Shiffrin R M (2001). Altering object representations through category learning. Cognition , 78(1): 27-43
doi: 10.1016/S0010-0277(00)00099-8 pmid:11062321
29 Grill-Spector K, Henson R, Martin A (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci , 10(1): 14-23
doi: 10.1016/j.tics.2005.11.006 pmid:16321563
30 Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron , 24(1): 187-203
doi: 10.1016/S0896-6273(00)80832-6 pmid:10677037
31 Grill-Spector K, Kushnir T, Hendler T, Malach R (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci , 3(8): 837-843
doi: 10.1038/77754 pmid:10903579
32 Grill-Spector K, Malach R (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol (Amst) , 107(1-3): 293-321
doi: 10.1016/S0001-6918(01)00019-1 pmid:11388140
33 Gross C G (1992). Representation of visual stimuli in inferior temporal cortex. Philos Trans R Soc Lond Ser B-Biol Sci , 335: 3-10
34 Harley E M, Pope W B, Villablanca J P, Mumford J, Suh R, Mazziotta J C, Enzmann D, Engel S A (2009). Engagement of fusiform cortex and disengagement of lateral occipital cortex in the acquisition of radiological expertise. Cereb Cortex , 19(11): 2746-2754
doi: 10.1093/cercor/bhp051 pmid:19321653
35 Hubel D H, Wiesel T N (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol , 206(2): 419-436
pmid:5498493
36 Hussain Z, Sekuler A B, Bennett P J (2008). Robust perceptual learning of faces in the absence of sleep. Vision Res , 48(28): 2785-2792
doi: 10.1016/j.visres.2008.09.003 pmid:18817803
37 Jeffreys D A (1996). Evoked potential studies of face and object processing. Vis Cogn , 3(1): 1-38
doi: 10.1080/713756729
38 Jiang X, Bradley E, Rini R A, Zeffiro T, Vanmeter J, Riesenhuber M (2007). Categorization training results in shape- and category-selective human neural plasticity. Neuron , 53(6): 891-903
doi: 10.1016/j.neuron.2007.02.015 pmid:17359923
39 Kaas J H, Krubitzer L A, Chino Y M, Langston A L, Polley E H, Blair N (1990). Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science , 248(4952): 229-231
doi: 2326637" target="_blank">10.1126/science. pmid:2326637 pmid:2326637
40 Kahnt T, Grueschow M, Speck O, Haynes J D (2011). Perceptual learning and decision-making in human medial frontal cortex. Neuron , 70(3): 549-559
doi: 10.1016/j.neuron.2011.02.054 pmid:21555079
41 Karni A, Sagi D (1993). The time course of learning a visual skill. Nature , 365(6443): 250-252
doi: 10.1038/365250a0 pmid:8371779
42 Law C T, Gold J I (2008). Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area. Nat Neurosci , 11(4): 505-513
doi: 10.1038/nn2070 pmid:18327253
43 Ma L S, Wang B Q, Narayana S, Hazeltine E, Chen X Y, Robin D A, Fox P T, Xiong J H (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Res , 1318: 64-76
doi: 10.1016/j.brainres.2009.12.073 pmid:20051230
44 Mollon J D, Danilova M V (1996). Three remarks on perceptual learning. Spat Vis , 10(1): 51-58
doi: 10.1163/156856896X00051 pmid:8817771
45 Moore C D, Cohen M X, Ranganath C (2006). Neural mechanisms of expert skills in visual working memory. J Neurosci , 26(43): 11187-11196
doi: 10.1523/JNEUROSCI.1873-06.2006 pmid:17065458
46 Mukai I, Kim D, Fukunaga M, Japee S, Marrett S, Ungerleider L G (2007). Activations in visual and attention-related areas predict and correlate with the degree of perceptual learning. J Neurosci , 27(42): 11401-11411
doi: 10.1523/JNEUROSCI.3002-07.2007 pmid:17942734
47 Op de Beeck H, Wagemans J, Vogels R (2003). The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. J Exp Psychol Gen , 132(4): 491-511
doi: 10.1037/0096-3445.132.4.491 pmid:14640844
48 Op de Beeck H P, Wagemans J, Vogels R (2007). Effects of perceptual learning in visual backward masking on the responses of macaque inferior temporal neurons. Neuroscience , 145(2): 775-789
doi: 10.1016/j.neuroscience.2006.12.058 pmid:17293053
49 Peissig J J, Singer J, Kawasaki K, Sheinberg D L (2007). Effects of long-term object familiarity on event-related potentials in the monkey. Cereb Cortex , 17(6): 1323-1334
doi: 10.1093/cercor/bhl043 pmid:16894024
50 Perrett D I, Smith P A J, Potter D D, Mistlin A J, Head A S, Milner A D, Jeeves M A(1985). Visual cells in the temporal cortex sensitive to face view and gaze direction. P Roy Soc B-Biol Sci , 223: 293-317
51 Rainer G, Lee H, Logothetis N K (2004). The effects of learning on the function of monkey extrastriate visual cortex. PLoS Biol , 2(2): 275-283
doi: 10.1371/journal.pbio.0020044
52 Rossion B, Gauthier I, Goffaux V, Tarr M J, Crommelinck M (2002). Expertise training with novel objects leads to left-lateralized facelike electrophysiological responses. Psychol Sci , 13(3): 250-257
doi: 10.1111/1467-9280.00446 pmid:12009046
53 Sakai K, Miyashita Y (1994). Neuronal tuning to learned complex forms in vision. Neuroreport , 5(7): 829-832
doi: 10.1097/00001756-199403000-00023 pmid:8018859
54 Scholz J, Klein M C, Behrens T E J, Johansen-Berg H (2009). Training induces changes in white-matter architecture. Nat Neurosci , 12(11): 1370-1371
doi: 10.1038/nn.2412 pmid:19820707
55 Schoups A, Vogels R, Qian N, Orban G (2001). Practising orientation identification improves orientation coding in V1 neurons. Nature , 412(6846): 549-553
doi: 10.1038/35087601 pmid:11484056
56 Schoups A A, Vogels R, Orban G A (1995). Human perceptual learning in identifying the oblique orientation: retinotopy, orientation specificity and monocularity. J Physiol , 483(Pt 3): 797-810
pmid:7776259
57 Schwartz S, Maquet P, Frith C (2002). Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA , 99(26): 17137-17142
doi: 10.1073/pnas.242414599 pmid:12446842
58 Scott L S, Tanaka J W, Sheinberg D L, Curran T (2008). The role of category learning in the acquisition and retention of perceptual expertise: a behavioral and neurophysiological study. Brain Res , 1210: 204-215
doi: 10.1016/j.brainres.2008.02.054 pmid:18417106
59 Sigala N, Logothetis N K (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature , 415(6869): 318-320
doi: 10.1038/415318a pmid:11797008
60 Sigman M, Gilbert C D (2000). Learning to find a shape. Nat Neurosci , 3(3): 264-269
doi: 10.1038/72979 pmid:10700259
61 Sigman M, Pan H, Yang Y H, Stern E, Silbersweig D, Gilbert C D (2005). Top-down reorganization of activity in the visual pathway after learning a shape identification task. Neuron , 46(5): 823-835
doi: 10.1016/j.neuron.2005.05.014 pmid:15924867
62 Song Y Y, Hu S Y, Li X T, Li W, Liu J (2010). The role of top-down task context in learning to perceive objects. J Neurosci , 30(29): 9869-9876
doi: 10.1523/JNEUROSCI.0140-10.2010 pmid:20660269
63 Su J Z, Chen C, He D J, Fang F (2012). Effects of face view discrimination learning on N170 latency and amplitude. Vision Res , 61: 125-131
doi: 10.1016/j.visres.2011.08.024 pmid:21911001
64 van der Linden M, Murre J M J, van Turennout M (2008). Birds of a feather flock together: experience-driven formation of visual object categories in human ventral temporal cortex. PLoS ONE , 3(12): e3995
doi: 10.1371/journal.pone.0003995 pmid:19107187
65 Woloszyn L, Sheinberg D L (2012). Effects of long-term visual experience on responses of distinct classes of single units in inferior temporal cortex. Neuron , 74(1): 193-205
doi: 10.1016/j.neuron.2012.01.032 pmid:22500640
66 Wong Y K, Folstein J R, Gauthier I (2012). The nature of experience determines object representations in the visual system. J Exp Psychol Gen , 141(4): 682-698
doi: 10.1037/a0027822 pmid:22468668
67 Xiao L Q, Zhang J Y, Wang R, Klein S A, Levi D M, Yu C (2008). Complete transfer of perceptual learning across retinal locations enabled by double training. Curr Biol , 18(24): 1922-1926
doi: 10.1016/j.cub.2008.10.030 pmid:19062277
68 Xu Y D (2005). Revisiting the role of the fusiform face area in visual expertise. Cereb Cortex , 15(8): 1234-1242
doi: 10.1093/cercor/bhi006 pmid:15677350
69 Yotsumoto Y, Watanabe T, Sasaki Y (2008). Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron , 57(6): 827-833
doi: 10.1016/j.neuron.2008.02.034 pmid:18367084
70 Yu C, Klein S A, Levi D M (2004). Perceptual learning in contrast discrimination and the (minimal) role of context. J Vis , 4(3): 169-182
doi: 10.1167/4.3.4 pmid:15086307
71 Zatorre R J, Fields R D, Johansen-Berg H (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci , 15(4): 528-536
doi: 10.1038/nn.3045 pmid:22426254
[1] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[2] Rachel Babij,Natalia De Marco Garcia. Neuronal activity controls the development of interneurons in the somatosensory cortex[J]. Front. Biol., 2016, 11(6): 459-470.
[3] Richard König,Bruno Benedetti,Peter Rotheneichner,Anna O′ Sullivan,Christina Kreutzer,Maria Belles,Juan Nacher,Thomas M. Weiger,Ludwig Aigner,Sébastien Couillard-Després. Distribution and fate of DCX/PSA-NCAM expressing cells in the adult mammalian cortex: A local reservoir for adult cortical neuroplasticity?[J]. Front. Biol., 2016, 11(3): 193-213.
[4] Huixian MEI, Qicai CHEN, . Neural modulation in inferior colliculus and central auditory plasticity[J]. Front. Biol., 2010, 5(2): 123-127.
[5] TAO Jianping, SONG Lixia, WANG Yongjian, ZHANG Weiyin. Response of clonal plasticity of to different canopy conditions of subalpine coniferous forest[J]. Front. Biol., 2008, 3(4): 463-469.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed