Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (4) : 289-299    https://doi.org/10.1007/s11515-011-1125-7
REVIEW
Novel computational biology methods and their applications to drug discovery
Sharangdhar S. PHATAK1,2, Hoang T. TRAN2, Shuxing ZHANG2()
1. School of Biomedical Informatics, The University of Texas Health Science Center, 7000 Fannin Street, Houston, TX 77030, USA; 2. The Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
 Download: PDF(334 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Computational biology methods are now firmly entrenched in the drug discovery process. These methods focus on modeling and simulations of biological systems to complement and direct conventional experimental approaches. Two important branches of computational biology include protein homology modeling and the computational biophysics method of molecular dynamics. Protein modeling methods attempt to accurately predict three-dimensional (3D) structures of uncrystallized proteins for subsequent structure-based drug design applications. Molecular dynamics methods aim to elucidate the molecular motions of the static representations of crystallized protein structures. In this review we highlight recent novel methodologies in the field of homology modeling and molecular dynamics. Selected drug discovery applications using these methods conclude the review.

Keywords computational biology      drug discovery      homology modeling      molecular dynamics      structure-based drug design     
Corresponding Author(s): ZHANG Shuxing,Email:shuzhang@mdanderson.org   
Issue Date: 01 August 2011
 Cite this article:   
Sharangdhar S. PHATAK,Hoang T. TRAN,Shuxing ZHANG. Novel computational biology methods and their applications to drug discovery[J]. Front Biol, 2011, 6(4): 289-299.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1125-7
https://academic.hep.com.cn/fib/EN/Y2011/V6/I4/289
Fig.1  A representative workflow for protein modeling methods
Fig.2  Cannabinoid receptor 2 complexed with N-alkyl-isatin acylhydrazone derivative (yellow carbon atoms) identified through protein homology modeling and structure-based library screening. Transmembrane regions are shown as white ribbons. Hydrogen bonds are represented as red dashes.
ApplicationSystemReferences
Structure-function relationshipNicotinamide mononucleotide adenylyltransferase (NMNAT)Brunetti et al., 2010
Fas ligand (FasL) belonging to the tumor necrosis factor (TNF)Obungu et al., 2009
Nucleotide pyrophosphatase/phosphodiesterase (NPP)Duan et al., 2010
Cohesin chromosome maintenance proteinKurkcuoglu and Bates, 2010
E. coli ParE toxinBarbosa et al., 2010
Rationalize protein:ligand interactionsDopamine 3, Cannabinoid 2, 5-HT2A receptorsDiaz et al., 2009a, 2009b; Pecic et al., 2010; Kortagere et al., 2011
Dengue virus NS2B/S3Wichapong et al., 2010
Chemokine receptorsCarter and Tebben, 2009
Tab.1  Examples of applications of protein modeling to drug discovery and development.
Fig.3  An example of using molecular dynamics to generate an ensemble of alternative receptor-ligand structures. Ten structures generated using molecular dynamics of the pleckstrin homology domain of protein kinase B (blue cartoon display) complexed with inositol 1,3,4,5-tetrakisphosphate (wire display) are shown.
ApplicationSystemReferences
Structure-function studyToll-like receptor homologsKubarenko et al., 2007
Alternative ligand posesImmunophilin FKBPFujitani et al., 2005
Alternative ligand posesHIV-1 reverse transcriptaseOkumura et al., 2010
Receptor pocket flexibilitypostsynaptic density-95/Dlg/ZO-1 (PDZ) domainsGerek and Ozkan, 2010
Membrane-bound proteinsVarious (reviews)Lindahl and Sansom, 2008; Khalili-Araghi et al., 2009
Binding free energyImmunophilin FKBPFujitani et al., 2005
Binding pathwaysImatinib and its targeting kinases c-Kit and Abl.Yang et al., 2009
Tab.2  Applications of molecular dynamics to drug discovery and development
Fig.4  The generic strategy of using molecular dynamics simulations to generate alternative docking poses.
1 Allen M P, Tildesley D J (1989). Computer Simulations of Liquids. New York, Oxford University Press
2 Bahar I, Lezon T R, Bakan A, Shrivastava I H (2010). Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. Chem Rev , 110(3): 1463–1497
doi: 10.1021/cr900095e pmid:19785456
3 Baker D, Sali A (2001). Protein structure prediction and structural genomics. Science , 294(5540): 93–96
doi: 10.1126/science.1065659 pmid:11588250
4 Baker N A, Sept D, Joseph S, Holst M J, McCammon J A (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA , 98(18): 10037–10041
doi: 10.1073/pnas.181342398 pmid:11517324
5 Barbosa L C, Garrido S S, Garcia A, Delfino D B, Marchetto R (2010). Function inferences from a molecular structural model of bacterial ParE toxin. Bioinformation , 4(10): 438–440
pmid:20975905
6 Barcellos G B, Pauli I, Caceres R A, Timmers L F, Dias R, de Azevedo W F Jr (2008). Molecular modeling as a tool for drug discovery. Curr Drug Targets , 9(12): 1084–1091
doi: 10.2174/138945008786949388 pmid:19128219
7 Bond P J, Wee C L, Sansom M S (2008). Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer. Biochemistry , 47(43): 11321–11331
doi: 10.1021/bi800642m pmid:18831536
8 Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T (2009). Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc , 4(1): 1–13
doi: 10.1038/nprot.2008.197 pmid:19131951
9 Bradley P, Misura K M, Baker D (2005). Toward high-resolution de novo structure prediction for small proteins. Science , 309(5742): 1868–1871
doi: 10.1126/science.1113801 pmid:16166519
10 Brunetti L, Di Stefano M, Ruggieri S, Cimadamore F, Magni G (2010). Homology modeling and deletion mutants of human nicotinamide mononucleotide adenylyltransferase isozyme 2: new insights on structure and function relationship. Protein Sci , 19(12): 2440–2450
doi: 10.1002/pro.526 pmid:20954240
11 Burley S K, Joachimiak A, Montelione G T, Wilson I A (2008). Contributions to the NIH-NIGMS protein structure initiative from the PSI production centers. Structure , 16(1): 5–11
doi: 10.1016/j.str.2007.12.002 pmid:18184575
12 Butler K V, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski A P (2010). Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc , 132(31): 10842–10846
doi: 10.1021/ja102758v pmid:20614936
13 Bystroff C, Krogh A (2008). Hidden Markov Models for prediction of protein features. Methods Mol Biol , 413: 173–198
doi: 10.1007/978-1-59745-574-9_7 pmid:18075166
14 B-Rao C, Subramanian J, Sharma S D (2009). Managing protein flexibility in docking and its applications. Drug Discov Today , 14(7-8): 394–400
15 Carter P H, Tebben A J (2009). Chapter 12. The use of receptor homology modeling to facilitate the design of selective chemokine receptor antagonists. Methods Enzymol , 461: 249–279
doi: 10.1016/S0076-6879(09)05412-3 pmid:19480923
16 Cavasotto C N, Orry A J, Murgolo N J, Czarniecki M F, Kocsi S A, Hawes B E, O’Neill K A, Hine H, Burton M S, Voigt J H, Abagyan R A, Bayne M L, Monsma F J Jr (2008). Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem , 51(3): 581–588
doi: 10.1021/jm070759m pmid:18198821
17 Cavasotto C N, Phatak S S (2009). Homology modeling in drug discovery: current trends and applications. Drug Discov Today , 14(13-14): 676–683
doi: 10.1016/j.drudis.2009.04.006 pmid:19422931
18 Cherezov V, Abola E, Stevens R C (2010). Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol , 654: 141–168
doi: 10.1007/978-1-60761-762-4_8 pmid:20665265
19 Chopra G, Kalisman N, Levitt M (2010). Consistent refinement of submitted models at CASP using a knowledge-based potential. Proteins , 78(12): 2668–2678
pmid:20589633
20 Colizzi F, Perozzo R, Scapozza L, Recanatini M, Cavalli A (2010). Single-molecule pulling simulations can discern active from inactive enzyme inhibitors. J Am Chem Soc , 132(21): 7361–7371
doi: 10.1021/ja100259r pmid:20462212
21 Cornell W, Nam K (2009). Steroid hormone binding receptors: application of homology modeling, induced fit docking, and molecular dynamics to study structure-function relationships. Curr Top Med Chem , 9(9): 844–853
doi: 10.2174/156802609789207109 pmid:19754398
22 Coumar M S, Chu C Y, Lin C W, Shiao H Y, Ho Y L, Reddy R, Lin W H, Chen C H, Peng Y H, Leou J S, Lien T W, Huang C T, Fang M Y, Wu S H, Wu J S, Chittimalla S K, Song J S, Hsu J T, Wu S Y, Liao C C, Chao Y S, Hsieh H P (2010). Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J Med Chem , 53(13): 4980–4988
doi: 10.1021/jm1000198 pmid:20550212
23 Cozzetto D, Tramontano A (2008). Advances and pitfalls in protein structure prediction. Curr Protein Pept Sci , 9(6): 567–577
doi: 10.2174/138920308786733958 pmid:19075747
24 Cozzini P, Kellogg G E, Spyrakis F, Abraham D J, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn L A, Morris G M, Orozco M, Pertinhez T A, Rizzi M, Sotriffer C A (2008). Target flexibility: an emerging consideration in drug discovery and design. J Med Chem , 51(20): 6237–6255
doi: 10.1021/jm800562d pmid:18785728
25 Daga P R, Patel R Y, Doerksen R J (2010). Template-based protein modeling: recent methodological advances. Curr Top Med Chem , 10(1): 84–94
doi: 10.2174/156802610790232314 pmid:19929829
26 Das R, Baker D (2008). Macromolecular modeling with rosetta. Annu Rev Biochem , 77(1): 363–382
doi: 10.1146/annurev.biochem.77.062906.171838 pmid:18410248
27 Das R, Qian B, Raman S, Vernon R, Thompson J, Bradley P, Khare S, Tyka M D, Bhat D, Chivian D, Kim D E, Sheffler W H, Malmstr?m L, Wollacott A M, Wang C, Andre I, Baker D (2007). Structure prediction for CASP7 targets using extensive all-atom refinement with Rosetta@home. Proteins , 69(S8 Suppl 8): 118–128
doi: 10.1002/prot.21636 pmid:17894356
28 Deng Y, Roux B (2009). Computations of standard binding free energies with molecular dynamics simulations. J Phys Chem B , 113(8): 2234–2246
doi: 10.1021/jp807701h pmid:19146384
29 Deschavanne P, Tufféry P (2009). Enhanced protein fold recognition using a structural alphabet. Proteins , 76(1): 129–137
doi: 10.1002/prot.22324 pmid:19089985
30 Dessailly B H, Nair R, Jaroszewski L, Fajardo J E, Kouranov A, Lee D, Fiser A, Godzik A, Rost B, Orengo C (2009). PSI-2: structural genomics to cover protein domain family space. Structure , 17(6): 869–881
doi: 10.1016/j.str.2009.03.015 pmid:19523904
31 Diaz P, Phatak S S, Xu J, Astruc-Diaz F, Cavasotto C N, Naguib M (2009a). 6-Methoxy-N-alkyl isatin acylhydrazone derivatives as a novel series of potent selective cannabinoid receptor 2 inverse agonists: design, synthesis, and binding mode prediction. J Med Chem , 52(2): 433–444
doi: 10.1021/jm801353p pmid:19115816
32 Diaz P, Phatak S S, Xu J, Fronczek F R, Astruc-Diaz F, Thompson C M, Cavasotto C N, Naguib M (2009b). 2,3-Dihydro-1-benzofuran derivatives as a series of potent selective cannabinoid receptor 2 agonists: design, synthesis, and binding mode prediction through ligand-steered modeling. ChemMedChem , 4(10): 1615–1629
doi: 10.1002/cmdc.200900226 pmid:19637157
33 Duan J, Wu J, Cheng Y, Duan R D (2010). Understanding the molecular activity of alkaline sphingomyelinase (NPP7) by computer modeling. Biochemistry , 49(42): 9096–9105
doi: 10.1021/bi101069u pmid:20839774
34 Dunbrack R L Jr (2006). Sequence comparison and protein structure prediction. Curr Opin Struct Biol , 16(3): 374–384
doi: 10.1016/j.sbi.2006.05.006 pmid:16713709
35 Engels K, Beyer C, Suárez Fernández M L, Bender F, Gassel M, Unden G, Marh?fer R J, Mottram J C, Selzer P M (2010). Inhibition of Eimeria tenella CDK-related kinase 2: From target identification to lead compounds. ChemMedChem , 5(8): 1259–1271
doi: 10.1002/cmdc.201000157 pmid:20575139
36 Evers A, Gohlke H, Klebe G (2003). Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. J Mol Biol , 334(2): 327–345
doi: 10.1016/j.jmb.2003.09.032 pmid:14607122
37 Evers A, Klebe G (2004). Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J Med Chem , 47(22): 5381–5392
doi: 10.1021/jm0311487 pmid:15481976
38 Fariselli P, Rossi I, Capriotti E, Casadio R (2007). The WWWH of remote homolog detection: the state of the art. Brief Bioinform , 8(2): 78–87
doi: 10.1093/bib/bbl032 pmid:17003074
39 Frenkel D, Smit B (2002). Understanding Molecular Simulations: From Algorithms to Applications. San Diego, Academic Press
40 Fujitani H, Tanida Y, Ito M, Jayachandran G, Snow C D, Shirts M R, Sorin E J, Pande V S (2005). Direct calculation of the binding free energies of FKBP ligands. J Chem Phys , 123(8): 084108
doi: 10.1063/1.1999637 pmid:16164283
41 Ge X, Roux B (2010). Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. J Phys Chem B , 114(29): 9525–9539
doi: 10.1021/jp100579y pmid:20608691
42 Gerek Z N, Ozkan S B (2010). A flexible docking scheme to explore the binding selectivity of PDZ domains. Protein Sci , 19(5): 914–928
pmid:20196074
43 Ginalski K (2006). Comparative modeling for protein structure prediction. Curr Opin Struct Biol , 16(2): 172–177
doi: 10.1016/j.sbi.2006.02.003 pmid:16510277
44 Goodsell D S, Morris G M, Olson A J (1996). Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit , 9(1): 1–5
doi: 10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6 pmid:8723313
45 Grant M A (2009). Protein structure prediction in structure-based ligand design and virtual screening. Comb Chem High Throughput Screen , 12(10): 940–960
doi: 10.2174/138620709789824718 pmid:20025561
46 Gruber C W, Muttenthaler M, Freissmuth M (2010). Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors. Curr Pharm Des , 16(28): 3071–3088 20687879
doi: 10.2174/138161210793292474
47 Grünberg R, Nilges M, Leckner J (2007). Biskit—a software platform for structural bioinformatics. Bioinformatics , 23(6): 769–770
doi: 10.1093/bioinformatics/btl655 pmid:17237072
48 Hildebrand A, Remmert M, Biegert A, S?ding J (2009). Fast and accurate automatic structure prediction with HHpred. Proteins , 77(S9 Suppl 9): 128–132
doi: 10.1002/prot.22499 pmid:19626712
49 Holford N, Ma S C, Ploeger B A (2010). Clinical trial simulation: a review. Clin Pharmacol Ther , 88(2): 166–182
doi: 10.1038/clpt.2010.114 pmid:20613720
50 Hou T, Wang J, Li Y Y, Wang W (2011). Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model , 51(1): 69–82
51 Hu H, He L Y, Gong Z, Li N, Lu Y N, Zhai Q W, Liu H, Jiang H L, Zhu W L, Wang H Y (2009). A novel class of antagonists for the FFAs receptor GPR40. Biochem Biophys Res Commun , 390(3): 557–563
doi: 10.1016/j.bbrc.2009.10.004 pmid:19818732
52 Irwin J J, Shoichet B K (2005). ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model , 45(1): 177–182
doi: 10.1021/ci049714+ pmid:15667143
53 Jamieson C, Basten S, Campbell R A, Cumming I A, Gillen K J, Gillespie J, Kazemier B, Kiczun M, Lamont Y, Lyons A J, Maclean J K, Moir E M, Morrow J A, Papakosta M, Rankovic Z, Smith L (2010). A novel series of positive modulators of the AMPA receptor: discovery and structure based hit-to-lead studies. Bioorg Med Chem Lett , 20(19): 5753–5756
doi: 10.1016/j.bmcl.2010.07.138 pmid:20805031
54 Jayalakshmi R, Natarajan R, Vivekanandan M, Natarajan G S (2010). Alignment-free sequence comparison using N-dimensional similarity space. Curr Comput Aided Drug Des , 6(4): 290–296
pmid:20883198
55 Jiao D, Golubkov P A, Darden T A, Ren P (2008). Calculation of protein-ligand binding free energy by using a polarizable potential. Proc Natl Acad Sci USA , 105(17): 6290–6295
doi: 10.1073/pnas.0711686105 pmid:18427113
56 Jiao D, Zhang J, Duke R E, Li G, Schnieders M J, Ren P (2009). Trypsin-ligand binding free energies from explicit and implicit solvent simulations with polarizable potential. J Comput Chem , 30(11): 1701–1711
doi: 10.1002/jcc.21268 pmid:19399779
57 Kannan S, Zacharias M (2010). Application of biasing-potential replica-exchange simulations for loop modeling and refinement of proteins in explicit solvent. Proteins , 78(13): 2809–2819
doi: 10.1002/prot.22796 pmid:20635348
58 Karplus K (2009). SAM-T08, HMM-based protein structure prediction. Nucleic Acids Res, 37(Suppl 2) : W492–W497
59 Kaufmann K W, Lemmon G H, Deluca S L, Sheehan J H, Meiler J (2010). Practically useful: what the Rosetta protein modeling suite can do for you. Biochemistry , 49(14): 2987–2998
doi: 10.1021/bi902153g pmid:20235548
60 Khalili-Araghi F, Gumbart J, Wen P C, Sotomayor M, Tajkhorshid E, Schulten K (2009). Molecular dynamics simulations of membrane channels and transporters. Curr Opin Struct Biol , 19(2): 128–137
doi: 10.1016/j.sbi.2009.02.011 pmid:19345092
61 Kikugawa G, Apostolov R, Kamiya N, Taiji M, Himeno R, Nakamura H, Yonezawa Y (2009). Application of MDGRAPE-3, a special purpose board for molecular dynamics simulations, to periodic biomolecular systems. J Comput Chem , 30(1): 110–118
doi: 10.1002/jcc.21035 pmid:18524021
62 Kim D E, Chivian D, Baker D (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res , 32(Suppl 2): W526–W531
63 Kimura S R, Tebben A J, Langley D R (2008). Expanding GPCR homology model binding sites via a balloon potential: A molecular dynamics refinement approach. Proteins , 71(4): 1919–1929
doi: 10.1002/prot.21906 pmid:18175323
64 Kiran M, Coakley S, Walkinshaw N, McMinn P, Holcombe M (2008). Validation and discovery from computational biology models. Biosystems , 93(1-2): 141–150
doi: 10.1016/j.biosystems.2008.03.010 pmid:18487010
65 Klepeis J L, Lindorff-Larsen K, Dror R O, Shaw D E (2009). Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol , 19(2): 120–127
doi: 10.1016/j.sbi.2009.03.004 pmid:19361980
66 Kortagere S, Cheng S Y, Antonio T, Zhen J, Reith M E, Dutta A K (2011). Interaction of novel hybrid compounds with the D3 dopamine receptor: Site-directed mutagenesis and homology modeling studies. Biochem Pharmacol , 81(1): 157–163
doi: 10.1016/j.bcp.2010.08.026 pmid:20833147
67 Kryshtafovych A, Fidelis K (2009). Protein structure prediction and model quality assessment. Drug Discov Today , 14(7-8): 386–393
doi: 10.1016/j.drudis.2008.11.010 pmid:19100336
68 Kubarenko A, Frank M, Weber A N (2007). Structure-function relationships of Toll-like receptor domains through homology modelling and molecular dynamics. Biochem Soc Trans , 35(Pt 6): 1515–1518
doi: 10.1042/BST0351515 pmid:18031257
69 Kurkcuoglu O, Bates P A (2010). Mechanism of cohesin loading onto chromosomes: a conformational dynamics study. Biophys J , 99(4): 1212–1220
doi: 10.1016/j.bpj.2010.06.006 pmid:20713005
70 Kutzner C, van der Spoel D, Fechner M, Lindahl E, Schmitt U W, de Groot B L, Grubmüller H (2007). Speeding up parallel GROMACS on high-latency networks. J Comput Chem , 28(12): 2075–2084
doi: 10.1002/jcc.20703 pmid:17405124
71 Lampros C, Papaloukas C, Exarchos K, Fotiadis D I, Tsalikakis D (2009). Improving the protein fold recognition accuracy of a reduced state-space Hidden Markov model. Comput Biol Med , 39(10): 907–914
doi: 10.1016/j.compbiomed.2009.07.007 pmid:19664763
72 Larsson P, Wallner B, Lindahl E, Elofsson A (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Sci , 17(6): 990–1002
doi: 10.1110/ps.073344908 pmid:18441233
73 Laursen L (2009). Computational biology: Biological logic. Nature , 462(7272): 408–410
doi: 10.1038/462408a pmid:19940895
74 Leach A R (2001). Molecular Modeling: Principles and Applications. Dorset, Pearson Education Ltd .
75 Lee M M, Bundschuh R, Chan M K (2008). Distant homology detection using a LEngth and STructure-based sequence Alignment Tool (LESTAT). Proteins , 71(3): 1409–1419
doi: 10.1002/prot.21830 pmid:18076050
76 Lin J H, Perryman A L, Schames J R, McCammon J A (2002). Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc , 124(20): 5632–5633
doi: 10.1021/ja0260162 pmid:12010024
77 Lindahl E, Sansom M S (2008). Membrane proteins: molecular dynamics simulations. Curr Opin Struct Biol , 18(4): 425–431
doi: 10.1016/j.sbi.2008.02.003 pmid:18406600
78 Liphardt J, Dumont S, Smith S B, Tinoco I Jr, Bustamante C (2002). Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science , 296(5574): 1832–1835
doi: 10.1126/science.1071152 pmid:12052949
79 Lobley A, Sadowski M I, Jones D T (2009). pGenTHREADER and pDomTHREADER: new methods for improved protein fold recognition and superfamily discrimination. Bioinformatics , 25(14): 1761–1767
doi: 10.1093/bioinformatics/btp302 pmid:19429599
80 Lu G, Zhang S, Fang X (2008). An improved string composition method for sequence comparison. BMC Bioinformatics , 9(Suppl 6): S15
doi: 10.1186/1471-2105-9-S6-S15 pmid:18541050
81 Malmstr?m L, Goodlett D R (2010). Protein structure modeling. Methods Mol Biol , 673: 63–72
doi: 10.1007/978-1-60761-842-3_5 pmid:20835793
82 Marco E, Gago F (2007). Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations. ChemMedChem , 2(10): 1388–1401
doi: 10.1002/cmdc.200700087 pmid:17806089
83 Marrink S J, Risselada H J, Yefimov S, Tieleman D P, de Vries A H (2007). The MARTINI force field: coarse grained model for biomolecular simulations. J Phys Chem B , 111(27): 7812–7824
doi: 10.1021/jp071097f pmid:17569554
84 Medina-Franco J L, Lopez-Vallejo F, Kuck D, Lyko F (2010). Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach. Mol Divers ,
doi: 10.1007/s11030-010-9262-5
85 Michino M, Chen J, Stevens R C, Brooks C L 3rd (2010). FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A. Proteins , 78(10): 2189–2201
doi: 10.1002/prot.22731 pmid:20544957
86 Montelione G T, Szyperski T (2010). Advances in protein NMR provided by the NIGMS Protein Structure Initiative: impact on drug discovery. Curr Opin Drug Discov Devel , 13(3): 335–349
pmid:20443167
87 Mooney C, Pollastri G (2009). Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information. Proteins , 77(1): 181–190
doi: 10.1002/prot.22429 pmid:19422056
88 Moro S, Deflorian F, Bacilieri M, Spalluto G (2006). Ligand-based homology modeling as attractive tool to inspect GPCR structural plasticity. Curr Pharm Des , 12(17): 2175–2185
doi: 10.2174/138161206777585265 pmid:16796562
89 Morra G, Meli M, Colombo G (2008). Molecular dynamics simulations of proteins and peptides: from folding to drug design. Curr Protein Pept Sci , 9(2): 181–196
doi: 10.2174/138920308783955234 pmid:18393887
90 Mortier J, Frederick R, Ganeff C, Remouchamps C, Talaga P, Pochet L, Wouters J, Piette J, Dejardin E, Masereel B (2010). Pyrazolo[4,3-c]isoquinolines as potential inhibitors of NF-kappaB activation. Biochem Pharmacol , 79(10): 1462–1472
doi: 10.1016/j.bcp.2010.01.007 pmid:20096267
91 Mortier J, Masereel B, Remouchamps C, Ganeff C, Piette J, Frederick R (2010). NF-kappaB inducing kinase (NIK) inhibitors: identification of new scaffolds using virtual screening. Bioorg Med Chem Lett , 20(15): 4515–4520
doi: 10.1016/j.bmcl.2010.06.027 pmid:20580552
92 Muddassar M, Jang J W, Hong S K, Cho Y S, Kim E E, Keum K C, Oh T, Cho S N, Pae A N (2010). Identification of novel antitubercular compounds through hybrid virtual screening approach. Bioorg Med Chem , 18(18): 6914–6921
doi: 10.1016/j.bmc.2010.07.010 pmid:20727773
93 Murumkar P R, Zambre V P, Yadav M R (2010). Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors. J Comput Aided Mol Des , 24(2): 143–156
doi: 10.1007/s10822-010-9322-z pmid:20179991
94 Myler P J, Stacy R, Stewart L, Staker B L, Van Voorhis W C, Varani G, Buchko G W (2009). The Seattle Structural Genomics Center for Infectious Disease (SSGCID). Infect Disord Drug Targets , 9(5): 493–506
doi: 10.2174/187152609789105687 pmid:19594426
95 Neves M A, Sim?es S, Sá e Melo M L (2010). Ligand-guided optimization of CXCR4 homology models for virtual screening using a multiple chemotype approach. J Comput Aided Mol Des , 24(12): 1023–1033
doi: 10.1007/s10822-010-9393-x pmid:20960031
96 Obungu V H, Gelfanova V, Rathnachalam R, Bailey A, Sloan-Lancaster J, Huang L (2009). Determination of the mechanism of action of anti-FasL antibody by epitope mapping and homology modeling. Biochemistry , 48(30): 7251–7260
doi: 10.1021/bi900296g pmid:19588926
97 Odell L R, Howan D, Gordon C P, Robertson M J, Chau N, Mariana A, Whiting A E, Abagyan R, Daniel J A, Gorgani N N, Robinson P J, McCluskey A (2010). The pthaladyns: GTP competitive inhibitors of dynamin I and II GTPase derived from virtual screening. J Med Chem , 53(14): 5267–5280
doi: 10.1021/jm100442u pmid:20575553
98 Ogata K, Isomura T, Kawata S, Yamashita H, Kubodera H, Wodak S J (2010). Lead generation and optimization based on protein-ligand complementarity. Molecules , 15(6): 4382–4400
doi: 10.3390/molecules15064382 pmid:20657448
99 Okimoto N, Futatsugi N, Fuji H, Suenaga A, Morimoto G, Yanai R, Ohno Y, Narumi T, Taiji M (2010). High-performance drug discovery: Computational screening by combining docking and molecular dynamics simulations. PLoS Comp Bio , 5(10): e1000528
100 Okumura H, Gallicchio E, Levy R M (2010). Conformational populations of ligand-sized molecules by replica exchange molecular dynamics and temperature reweighting. J Comput Chem , 31(7): 1357–1367
pmid:19882731
101 Ostrov D A, Magis A T, Wronski T J, Chan E K, Toro E J, Donatelli R E, Sajek K, Haroun I N, Nagib M I, Piedrahita A, Harris A, Holliday L S (2009). Identification of enoxacin as an inhibitor of osteoclast formation and bone resorption by structure-based virtual screening. J Med Chem , 52(16): 5144–5151
doi: 10.1021/jm900277z pmid:19630402
102 Pandit S A, Scott H L (2009). Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta , 1788(1): 136–148
doi: 10.1016/j.bbamem.2008.09.004 pmid:18848917
103 Pecic S, Makkar P, Chaudhary S, Reddy B V, Navarro H A, Harding W W (2010). Affinity of aporphines for the human 5-HT2A receptor: insights from homology modeling and molecular docking studies. Bioorg Med Chem , 18(15): 5562–5575
doi: 10.1016/j.bmc.2010.06.043 pmid:20621490
104 Peng J, Xu J (2010). Low-homology protein threading. Bioinformatics , 26(12): i294–i300
doi: 10.1093/bioinformatics/btq192 pmid:20529920
105 Phatak S S, Clifford C S, (2009). High-throughput and in silico screening in drug discovery. Exp. Opn. Drug Disc , 4(9): 947–959
doi: 10.1517/17460440903190961
106 Phatak S S, Gatica E A, Cavasotto C N (2010). Ligand-steered modeling and docking: a benchmarking study in class a g-protein-coupled receptors. J Chem Inf Model , 50(12): 2119–2128
doi: 10.1021/ci100285f pmid:21080692
107 Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kalé L, Schulten K (2005). Scalable molecular dynamics with NAMD. J Comput Chem , 26(16): 1781–1802
doi: 10.1002/jcc.20289 pmid:16222654
108 Postigo M P, Guido R V, Oliva G, Castilho M S, da R Pitta I, de Albuquerque J F, Andricopulo A D (2010). Discovery of new inhibitors of Schistosoma mansoni PNP by pharmacophore-based virtual screening. J Chem Inf Model , 50(9): 1693–1705 20695479
doi: 10.1021/ci100128k
109 Radestock S, Weil T, Renner S (2008). Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J Chem Inf Model , 48(5): 1104–1117
doi: 10.1021/ci8000265 pmid:18442221
110 Rai B K, Tawa G J, Katz A H, Humblet C (2010). Modeling G protein-coupled receptors for structure-based drug discovery using low-frequency normal modes for refinement of homology models: application to H3 antagonists. Proteins , 78(2): 457–473
doi: 10.1002/prot.22571 pmid:19787776
111 Rajman I (2008). PK/PD modelling and simulations: utility in drug development. Drug Discov Today , 13(7-8): 341–346
doi: 10.1016/j.drudis.2008.01.003 pmid:18405847
112 Roy A, Kucukural A, Zhang Y (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc , 5(4): 725–738
doi: 10.1038/nprot.2010.5 pmid:20360767
113 Sansom M S, Scott K A, Bond P J (2008). Coarse-grained simulation: a high-throughput computational approach to membrane proteins. Biochem Soc Trans , 36(Pt 1): 27–32
doi: 10.1042/BST0360027 pmid:18208379
114 Shaw D E, Chao J C, Eastwood M P, Gagliardo J, Grossman J P, Ho C R, Ierardi D J, Kolossváry I, Klepeis J L, Layman T, McLeavey C, Deneroff M M, Moraes M A, Mueller R, Priest E C, Shan Y, Spengler J, Theobald M, Towles B, Wang S C, Dror R O, Kuskin J S, Larson R H, Salmon J K, Young C, Batson B, Bowers K J (2007). Anton, a special-purpose machine for molecular dynamics simulation. ACM SIGARCH Computer Architecture News , 35(2): 1–12
doi: 10.1145/1273440.1250664
115 Shirts M R, Pande V S (2005). Comparison of efficiency and bias of free energies computed by exponential averaging, the Bennett acceptance ratio, and thermodynamic integration. J Chem Phys , 122(14): 144107
doi: 10.1063/1.1873592 pmid:15847516
116 Sierecki E, Sinko W, McCammon J A, Newton A C (2010). Discovery of small molecule inhibitors of the PH domain leucine-rich repeat protein phosphatase (PHLPP) by chemical and virtual screening. J Med Chem , 53(19): 6899–6911
doi: 10.1021/jm100331d pmid:20836557
117 Sisay M T, Steinmetzer T, Stirnberg M, Maurer E, Hammami M, Bajorath J, Gütschow M (2010). Identification of the first low-molecular-weight inhibitors of matriptase-2. J Med Chem , 53(15): 5523–5535
doi: 10.1021/jm100183e pmid:20684597
118 Stone J E, Hardy D J, Ufimtsev I S, Schulten K (2010). GPU-accelerated molecular modeling coming of age. J Mol Graph Model , 29(2): 116–125
doi: 10.1016/j.jmgm.2010.06.010 pmid:20675161
119 Stumpff-Kane A W, Maksimiak K, Lee M S, Feig M (2008). Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations. Proteins , 70(4): 1345–1356
doi: 10.1002/prot.21674 pmid:17876825
120 Sugita Y, Okamoto Y (1999). Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett , 314(1-2): 141–151
doi: 10.1016/S0009-2614(99)01123-9
121 Talele T T, Arora P, Kulkarni S S, Patel M R, Singh S, Chudayeu M, Kaushik-Basu N (2010). Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg Med Chem , 18(13): 4630–4638
122 Trojanowski S, Rutkowska A, Kolinski A (2010). TRACER. A new approach to comparative modeling that combines threading with free-space conformational sampling. Acta Biochim Pol , 57(1): 125–133
pmid:20309433
123 Verdonk M L, Cole J C, Hartshorn M J, Murray C W, Taylor R D (2003). Improved protein-ligand docking using GOLD. Proteins , 52(4): 609–623
doi: 10.1002/prot.10465 pmid:12910460
124 Walsh I, Baù D, Martin A J, Mooney C, Vullo A, Pollastri G (2009). Ab initio and template-based prediction of multi-class distance maps by two-dimensional recursive neural networks. BMC Struct Biol , 9(1): 5
doi: 10.1186/1472-6807-9-5 pmid:19183478
125 Weigelt J (2010). Structural genomics-impact on biomedicine and drug discovery. Exp Cell Res , 316(8): 1332–1338
doi: 10.1016/j.yexcr.2010.02.041 pmid:20211166
126 White S H (2004). The progress of membrane protein structure determination. Protein Sci , 13(7): 1948–1949
doi: 10.1110/ps.04712004 pmid:15215534
127 Wichapong K, Pianwanit S, Sippl W, Kokpol S (2010). Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease: insight into molecular interaction. J Mol Recognit , 23(3): 283–300
pmid:19693793
128 Wu S, Skolnick J, Zhang Y (2007). Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol , 5(1): 17
doi: 10.1186/1741-7007-5-17 pmid:17488521
129 Xiang Z (2006). Advances in homology protein structure modeling. Curr Protein Pept Sci , 7(3): 217–227
doi: 10.2174/138920306777452312 pmid:16787261
130 Yan R X, Si J N, Wang C, Zhang Z (2009). DescFold: a web server for protein fold recognition. BMC Bioinformatics , 10(1): 416
doi: 10.1186/1471-2105-10-416 pmid:20003426
131 Yang L J, Zou J, Xie H Z, Li L L, Wei Y Q, Yang S Y (2009). Steered molecular dynamics simulations reveal the likelier dissociation pathway of imatinib from its targeting kinases c-Kit and Abl. PLoS ONE , 4(12): e8470
doi: 10.1371/journal.pone.0008470 pmid:20041122
132 Yao L, Evans J A, Rzhetsky A (2009). Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol , 27(9): 531–540
doi: 10.1016/j.tibtech.2009.06.003 pmid:19674801
133 Ying Y, Huang K, Campbell C (2009). Enhanced protein fold recognition through a novel data integration approach. BMC Bioinformatics , 10(1): 267
doi: 10.1186/1471-2105-10-267 pmid:19709406
134 Zhang Y (2008). Progress and challenges in protein structure prediction. Curr Opin Struct Biol , 18(3): 342–348
doi: 10.1016/j.sbi.2008.02.004 pmid:18436442
135 Zhou H, Skolnick J (2010). Improving threading algorithms for remote homology modeling by combining fragment and template comparisons. Proteins , 78(9): 2041–2048
pmid:20455261
136 Zhu J, Cheng L, Fang Q, Zhou Z H, Honig B (2010). Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J Mol Biol , 397(3): 835–851
doi: 10.1016/j.jmb.2010.01.041 pmid:20109465
137 Zhu J, Fan H, Periole X, Honig B, Mark A E (2008). Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins , 72(4): 1171–1188
doi: 10.1002/prot.22005 pmid:18338384
138 Zwier M C, Chong L T (2010). Reaching biological timescales with all-atom molecular dynamics simulations. Curr Opin Pharmacol , 10(6): 745–752
doi: 10.1016/j.coph.2010.09.008 pmid:20934381
[1] C. GEORGE PRIYA DOSS,B. RAJITH,R. MAGESH,A. ASHISH KUMAR. Influence of the SNPs on the structural stability of CBS protein: Insight from molecular dynamics simulations[J]. Front. Biol., 2014, 9(6): 504-518.
[2] Shulong YANG, Xuelian WANG, Jinmiao LIU, Zhao LIU, Jiaxue HUANG. The applications of induced pluripotent stem (iPS) cells in drug development[J]. Front Biol, 2011, 06(01): 52-57.
[3] LIU Kai, WANG Yan, TAN Hongwei, CHEN Guangju, TONG Zhenhe. Computational simulations on the fish-type-II antifreeze protein-ice-solvent system[J]. Front. Biol., 2007, 2(2): 180-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed