Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (2) : 125-132    https://doi.org/10.1007/s11515-011-1133-7
REVIEW
The plant Mediator and its role in noncoding RNA production
Yun Ju KIM, Xuemei CHEN()
Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
 Download: PDF(196 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mediator, a conserved multiprotein complex in animals, plants, and fungi, is a cofactor of RNA polymerase II (Pol II). It is known to promote basal Pol II-mediated transcription as well as bridge sequence-specific transcriptional regulators and Pol II to integrate regulatory information. Pol II transcribes not only protein-coding genes but also intergenic regions to generate noncoding RNAs such as small RNAs (microRNAs and small interfering RNAs) and long noncoding RNAs. Intriguingly, two plant-specific polymerases, Pol IV and Pol V, have evolved from Pol II and play a role in the production of small interfering RNAs and long noncoding RNAs at heterochromatic regions to maintain genome stability through transcriptional gene silencing (TGS). Recent studies have defined the composition of the plant Mediator and evaluated its role in noncoding RNA production in relationship to Pol II, Pol IV and Pol V. Here, we review the functions of Mediator and that of noncoding RNAs generated by Pol II, Pol IV and Pol V in plants, and discuss a role of Mediator in epigenetic regulation via noncoding RNA production.

Keywords small RNA      noncoding RNA      Mediator      Pol II      Pol IV      Pol V     
Corresponding Author(s): CHEN Xuemei,Email:xuemei.chen@ucr.edu   
Issue Date: 01 April 2011
 Cite this article:   
Yun Ju KIM,Xuemei CHEN. The plant Mediator and its role in noncoding RNA production[J]. Front Biol, 2011, 6(2): 125-132.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1133-7
https://academic.hep.com.cn/fib/EN/Y2011/V6/I2/125
MammalianS. cerevisiaeA. thalianaModule
MED1MED1Middle
MED2MED2Tail
MED3POLYGLUTAMINE DOMAIN 1 (PGD1)Tail
MED4MED4MED4Middle
MED5NEGATIVE REGULATION OF URS TWO 1 (NUT1)Tail
MED6MED6MED6Head
MED7MED7MED7Middle
MED8MED8MED8Head
MED9CHROMOSOME SEGREGATION 2 (CSE2)MED9Middle
MED10NEGATIVE REGULATION OF URS TWO 2 (NUT2)MED10Middle
MED11MED11MED11Head
MED12SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 8 (SRB8)CRYPTIC PRECOCIOUS (CRP)CDK
MED13SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 9 (SRB9)MED13CDK
MED14RESISTANT TO GLUCOSE REPRESSION 1 (RGR1)STRUWWELPETER (SWP)Tail
MED15GALACTOSE METABOLISM 11 (GAL11)MED15Tail
MED16SWITCH INDEPENDENT 4 (SIN4)MED16Tail
MED17SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 4 (SRB4)MED17Head
MED18SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 5 (SRB5)MED18Head
MED19REPRESSOR OF HYPOXIC GENES 3 (ROX3)MED19Head
MED20SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 2 (SRB2)MED20Head
MED21SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 7 (SRB7)MED21Middle
MED22SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 6 (SRB6)MED22Head
MED23MED23Not identified
MED24Not identified
MED25PHYTOCHROME AND FLOWERING TIME 1 (PFT1)Not identified
MED26Not identified
MED27MED27Not identified
MED28MED28Head
MED29Head
MED30Head
MED31SUPPRESSOR OF HPR 1 (SOH1)MED31Middle
CDK8SUPPRESSOR OF RNA POLYMERASE B MUTATIONS 10 (SRB10)HUA ENHANCER 3 (HEN3)CDK
Cyclin CSUPPRESSOR OF RNA POLYMERASE B MUTATIONS 11 (SRB11)CDK
Tab.1  Mediator composition from diverse eukaryotes
Fig.1  Roles of Mediator in noncoding RNA production in plants. (A) A diagram of the miRNA biogenesis pathway in . Mediator recruits Pol II to promoters of microRNA genes to promote the transcription of genes possibly by bridging the interaction between transcription factors and Pol II. A gene is transcribed by Pol II into a capped and polyadenylated primary precursor, which undergoes processing to give rise to a small RNA duplex containing the miRNA and the antisense miRNA*. The duplex is methylated on the 2′ OH of the 3′ terminal nucleotides, and the miRNA strand is bound by AGO1, the miRNA effector protein. Known factors in miRNA biogenesis are indicated. TF, transcription factor; CBC, cap binding complex; DDL, DAWDLE; DCL1, DICER-LIKE1; HYL1, HYPONASTIC LEAVES1; SE, SERRATE; HEN1, HUA ENHANCER1; AGO1, ARGONAUTE1. (B) A diagram of siRNA biogenesis and siRNA-mediated transcriptional gene silencing at repeats and transposable elements. The black rectangle represents a repeats- or transposable element-containing locus that harbors DNA methylation (CH). Pol IV presumably transcribes the locus into a single-stranded noncoding RNA, which eventually gives rise to 24 nt siRNAs through the activities of RNA-dependent RNA polymerase 2 (RDR2), DICER-LIKE3 (DCL3), and HEN1. The siRNAs are bound by AGO4, a major siRNA effector protein. The AGO4/siRNA complexes are thought to be recruited back to homologous chromatin by noncoding scaffold transcripts produced by Pol V, and at some loci, Pol II. It is not known whether Mediator assists Pol V in the production of noncoding RNAs, but it is required for noncoding RNA production by Pol II. The small black dots in (A) and (B) indicate the methyl group on the 3′ terminal ribose of small RNAs.
Fig.1  Roles of Mediator in noncoding RNA production in plants. (A) A diagram of the miRNA biogenesis pathway in . Mediator recruits Pol II to promoters of microRNA genes to promote the transcription of genes possibly by bridging the interaction between transcription factors and Pol II. A gene is transcribed by Pol II into a capped and polyadenylated primary precursor, which undergoes processing to give rise to a small RNA duplex containing the miRNA and the antisense miRNA*. The duplex is methylated on the 2′ OH of the 3′ terminal nucleotides, and the miRNA strand is bound by AGO1, the miRNA effector protein. Known factors in miRNA biogenesis are indicated. TF, transcription factor; CBC, cap binding complex; DDL, DAWDLE; DCL1, DICER-LIKE1; HYL1, HYPONASTIC LEAVES1; SE, SERRATE; HEN1, HUA ENHANCER1; AGO1, ARGONAUTE1. (B) A diagram of siRNA biogenesis and siRNA-mediated transcriptional gene silencing at repeats and transposable elements. The black rectangle represents a repeats- or transposable element-containing locus that harbors DNA methylation (CH). Pol IV presumably transcribes the locus into a single-stranded noncoding RNA, which eventually gives rise to 24 nt siRNAs through the activities of RNA-dependent RNA polymerase 2 (RDR2), DICER-LIKE3 (DCL3), and HEN1. The siRNAs are bound by AGO4, a major siRNA effector protein. The AGO4/siRNA complexes are thought to be recruited back to homologous chromatin by noncoding scaffold transcripts produced by Pol V, and at some loci, Pol II. It is not known whether Mediator assists Pol V in the production of noncoding RNAs, but it is required for noncoding RNA production by Pol II. The small black dots in (A) and (B) indicate the methyl group on the 3′ terminal ribose of small RNAs.
1 Ansari S A, He Q, Morse R H (2009). Mediator complex association with constitutively transcribed genes in yeast. Proc Natl Acad Sci USA , 106(39): 16734–16739
doi: 10.1073/pnas.0905103106 pmid:19805365
2 Autran D, Jonak C, Belcram K, Beemster G T, Kronenberger J, Grandjean O, Inzé D, Traas J (2002). Cell numbers and leaf development in Arabidopsis: a functional analysis of the STRUWWELPETER gene. EMBO J , 21(22): 6036–6049
doi: 10.1093/emboj/cdf614 pmid:12426376
3 B?ckstr?m S, Elfving N, Nilsson R, Wingsle G, Bj?rklund S (2007). Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol Cell , 26(5): 717–729
doi: 10.1016/j.molcel.2007.05.007 pmid:17560376
4 Baek H J, Kang Y K, Roeder R G (2006). Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J Biol Chem , 281(22): 15172–15181
doi: 10.1074/jbc.M601983200 pmid:16595664
5 Bari R, Datt Pant B, Stitt M, Scheible W R (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol , 141(3): 988–999
doi: 10.1104/pp.106.079707 pmid:16679424
6 Black J C, Choi J E, Lombardo S R, Carey M (2006). A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell , 23(6): 809–818
doi: 10.1016/j.molcel.2006.07.018 pmid:16973433
7 Carlson M, Osmond B C, Botstein D (1981). Mutants of yeast defective in sucrose utilization. Genetics , 98(1): 25–40
pmid:7040163
8 Casamassimi A, Napoli C (2007). Mediator complexes and eukaryotic transcription regulation: an overview. Biochimie , 89(12): 1439–1446
doi: 10.1016/j.biochi.2007.08.002 pmid:17870225
9 Cerdán P D, Chory J (2003). Regulation of flowering time by light quality. Nature , 423(6942): 881–885
doi: 10.1038/nature01636 pmid:12815435
10 Chen X (2009). Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol , 25(1): 21–44
doi: 10.1146/annurev.cellbio.042308.113417 pmid:19575669
11 Chi Y, Huddleston M J, Zhang X, Young R A, Annan R S, Carr S A, Deshaies R J (2001). Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev , 15(9): 1078–1092
doi: 10.1101/gad.867501 pmid:11331604
12 Dhawan R, Luo H, Foerster A M, Abuqamar S, Du H N, Briggs S D, Mittelsten Scheid O, Mengiste T (2009). HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell , 21(3): 1000–1019
doi: 10.1105/tpc.108.062364 pmid:19286969
13 Ding N, Zhou H, Esteve P O, Chin H G, Kim S, Xu X, Joseph S M, Friez M J, Schwartz C E, Pradhan S, Boyer T G (2008). Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell , 31(3): 347–359
doi: 10.1016/j.molcel.2008.05.023 pmid:18691967
14 Dotson M R, Yuan C X, Roeder R G, Myers L C, Gustafsson C M, Jiang Y W, Li Y, Kornberg R D, Asturias F J (2000). Structural organization of yeast and mammalian mediator complexes. Proc Natl Acad Sci USA , 97(26): 14307–14310
doi: 10.1073/pnas.260489497 pmid:11114191
15 El-Shami M, Pontier D, Lahmy S, Braun L, Picart C, Vega D, Hakimi M A, Jacobsen S E, Cooke R, Lagrange T (2007). Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev , 21(20): 2539–2544
doi: 10.1101/gad.451207 pmid:17938239
16 Fan X, Chou D M, Struhl K (2006). Activator-specific recruitment of Mediator in vivo. Nat Struct Mol Biol , 13(2): 117–120
doi: 10.1038/nsmb1049 pmid:16429153
17 Fan X, Struhl K (2009). Where does mediator bind in vivo? PLoS ONE , 4(4): e5029
doi: 10.1371/journal.pone.0005029 pmid:19343176
18 Gonzalez D, Bowen A J, Carroll T S, Conlan R S (2007). The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription. Mol Cell Biol , 27(15): 5306–5315
doi: 10.1128/MCB.01912-06 pmid:17526732
19 Guglielmi B, van Berkum N L, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon H M, Holstege F C, Werner M (2004). A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res , 32(18): 5379–5391
doi: 10.1093/nar/gkh878 pmid:15477388
20 Hallberg M, Polozkov G V, Hu G Z, Beve J, Gustafsson C M, Ronne H, Bj?rklund S (2004). Site-specific Srb10-dependent phosphorylation of the yeast Mediator subunit Med2 regulates gene expression from the 2-microm plasmid. Proc Natl Acad Sci USA , 101(10): 3370–3375
doi: 10.1073/pnas.0400221101 pmid:14988503
21 Han S J, Lee J S, Kang J S, Kim Y J (2001). Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes. J Biol Chem , 276(40): 37020–37026
doi: 10.1074/jbc.M105596200 pmid:11470794
22 Havecker E R, Wallbridge L M, Hardcastle T J, Bush M S, Kelly K A, Dunn R M, Schwach F, Doonan J H, Baulcombe D C (2010). The Arabidopsis RNA-directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell , 22(2): 321–334
doi: 10.1105/tpc.109.072199 pmid:20173091
23 Hengartner C J, Myer V E, Liao S M, Wilson C J, Koh S S, Young R A (1998). Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell , 2(1): 43–53
doi: 10.1016/S1097-2765(00)80112-4 pmid:9702190
24 Herr A J, Jensen M B, Dalmay T, Baulcombe D C (2005). RNA polymerase IV directs silencing of endogenous DNA. Science , 308(5718): 118–120
doi: 10.1126/science.1106910 pmid:15692015
25 Hirst M, Kobor M S, Kuriakose N, Greenblatt J, Sadowski I (1999). GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol Cell , 3(5): 673–678
doi: 10.1016/S1097-2765(00)80360-3 pmid:10360183
26 Holstege F C, Jennings E G, Wyrick J J, Lee T I, Hengartner C J, Green M R, Golub T R, Lander E S, Young R A (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell , 95(5): 717–728
doi: 10.1016/S0092-8674(00)81641-4 pmid:9845373
27 Huang L, Jones A M, Searle I, Patel K, Vogler H, Hubner N C, Baulcombe D C (2009). An atypical RNA polymerase involved in RNA silencing shares small subunits with RNA polymerase II. Nat Struct Mol Biol , 16(1): 91–93
doi: 10.1038/nsmb.1539 pmid:19079263
28 Kang J S, Kim S H, Hwang M S, Han S J, Lee Y C, Kim Y J (2001). The structural and functional organization of the yeast mediator complex. J Biol Chem , 276(45): 42003–42010
doi: 10.1074/jbc.M105961200 pmid:11555651
29 Kanno T, Huettel B, Mette M F, Aufsatz W, Jaligot E, Daxinger L, Kreil D P, Matzke M, Matzke A J (2005). Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet , 37(7): 761–765
doi: 10.1038/ng1580 pmid:15924141
30 Kawashima C G, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya Y N, Saito K, Takahashi H, Dalmay T (2009). Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J , 57(2): 313–321
doi: 10.1111/j.1365-313X.2008.03690.x pmid:18801012
31 Kidd B N, Edgar C I, Kumar K K, Aitken E A, Schenk P M, Manners J M, Kazan K (2009). The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis. Plant Cell , 21(8): 2237–2252
doi: 10.1105/tpc.109.066910 pmid:19671879
32 Kim Y J, Zheng B, Yu Y, Won S Y, Mo B, Chen X (2011). The role of Mediator in small and long noncoding RNA production in Arabidopsis thaliana. EMBO J , (In press)
doi: 10.1038/emboj.2011.3 pmid:21252857
33 Krebs A R, Demmers J, Karmodiya K, Chang N C, Chang A C, Tora L (2010). ATAC and Mediator coactivators form a stable complex and regulate a set of non-coding RNA genes. EMBO Rep , 11(7): 541–547
doi: 10.1038/embor.2010.75 pmid:20508642
34 Kuras L, Struhl K (1999). Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature , 399(6736): 609–613
doi: 10.1038/21239 pmid:10376605
35 Lahmy S, Pontier D, Cavel E, Vega D, El-Shami M, Kanno T, Lagrange T (2009). PolV(PolIVb) function in RNA-directed DNA methylation requires the conserved active site and an additional plant-specific subunit. Proc Natl Acad Sci USA , 106(3): 941–946
doi: 10.1073/pnas.0810310106 pmid:19141635
36 Larivière L, Geiger S, Hoeppner S, R?ther S, Str?sser K, Cramer P (2006). Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20. Nat Struct Mol Biol , 13(10): 895–901
doi: 10.1038/nsmb1143 pmid:16964259
37 Lee Y C, Park J M, Min S, Han S J, Kim Y J (1999). An activator binding module of yeast RNA polymerase II holoenzyme. Mol Cell Biol , 19(4): 2967–2976
pmid:10082564
38 Li C F, Pontes O, El-Shami M, Henderson I R, Bernatavichute Y V, Chan S W, Lagrange T, Pikaard C S, Jacobsen S E (2006). An ARGONAUTE4-containing nuclear processing center colocalized with Cajal bodies in Arabidopsis thaliana. Cell , 126(1): 93–106
doi: 10.1016/j.cell.2006.05.032 pmid:16839879
39 Li J, Yang Z, Yu B, Liu J, Chen X (2005). Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol , 15(16): 1501–1507
doi: 10.1016/j.cub.2005.07.029 pmid:16111943
40 Liu Y, Kung C, Fishburn J, Ansari A Z, Shokat K M, Hahn S (2004). Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol Cell Biol , 24(4): 1721–1735
doi: 10.1128/MCB.24.4.1721-1735.2004 pmid:14749387
41 Liu Z, Meyerowitz E M (1995). LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development , 121(4): 975–991
pmid:7743940
42 Malik S, Roeder R G (2000). Transcriptional regulation through Mediator-like coactivators in yeast and metazoan cells. Trends Biochem Sci , 25(6): 277–283
doi: 10.1016/S0968-0004(00)01596-6 pmid:10838567
43 Malik S, Roeder R G (2010). The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nat Rev Genet , 11(11): 761–772
doi: 10.1038/nrg2901 pmid:20940737
44 Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou A G (2006). MicroRNA promoter element discovery in Arabidopsis. RNA , 12(9): 1612–1619
doi: 10.1261/rna.130506 pmid:16888323
45 Mittler G, Kremmer E, Timmers H T, Meisterernst M (2001). Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep , 2(9): 808–813
doi: 10.1093/embo-reports/kve186 pmid:11559591
46 Mosher R A, Schwach F, Studholme D, Baulcombe D C (2008). PolIVb influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. Proc Natl Acad Sci USA , 105(8): 3145–3150
doi: 10.1073/pnas.0709632105 pmid:18287047
47 N??r A M, Taatjes D J, Zhai W, Nogales E, Tjian R (2002). Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev , 16(11): 1339–1344
doi: 10.1101/gad.987602 pmid:12050112
48 Neigeborn L, Carlson M (1984). Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics , 108(4): 845–858
pmid:6392017
49 Nelson C, Goto S, Lund K, Hung W, Sadowski I (2003). Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature , 421(6919): 187–190
doi: 10.1038/nature01243 pmid:12520306
50 Onodera Y, Haag J R, Ream T, Nunes P C, Pontes O, Pikaard C S (2005). Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell , 120(5): 613–622
doi: 10.1016/j.cell.2005.02.007 pmid:15766525
51 Ooi L, Wood I C (2007). Chromatin crosstalk in development and disease: lessons from REST. Nat Rev Genet , 8(7): 544–554
doi: 10.1038/nrg2100 pmid:17572692
52 Park J M, Kim H S, Han S J, Hwang M S, Lee Y C, Kim Y J (2000). In vivo requirement of activator-specific binding targets of mediator. Mol Cell Biol , 20(23): 8709–8719
doi: 10.1128/MCB.20.23.8709-8719.2000 pmid:11073972
53 Ream T S, Haag J R, Wierzbicki A T, Nicora C D, Norbeck A D, Zhu J K, Hagen G, Guilfoyle T J, Pasa-Toli? L, Pikaard C S (2009). Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA polymerase II. Mol Cell , 33(2): 192–203
doi: 10.1016/j.molcel.2008.12.015 pmid:19110459
54 Reese J C (2003). Basal transcription factors. Curr Opin Genet Dev , 13(2): 114–118
doi: 10.1016/S0959-437X(03)00013-3 pmid:12672487
55 Sato S, Tomomori-Sato C, Banks C A, Sorokina I, Parmely T J, Kong S E, Jin J, Cai Y, Lane W S, Brower C S, Conaway R C, Conaway J W (2003). Identification of mammalian Mediator subunits with similarities to yeast Mediator subunits Srb5, Srb6, Med11, and Rox3. J Biol Chem , 278(17): 15123–15127
doi: 10.1074/jbc.C300054200 pmid:12584197
56 Sikorski T W, Buratowski S (2009). The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol , 21(3): 344–351
doi: 10.1016/j.ceb.2009.03.006 pmid:19411170
57 Simchen G, Winston F, Styles C A, Fink G R (1984). Ty-mediated gene expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc Natl Acad Sci USA , 81(8): 2431–2434
doi: 10.1073/pnas.81.8.2431 pmid:6326126
58 Stern M, Jensen R, Herskowitz I (1984). Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol , 178(4): 853–868
doi: 10.1016/0022-2836(84)90315-2 pmid:6436497
59 Struhl K (1996). Chromatin structure and RNA polymerase II connection: implications for transcription. Cell , 84(2): 179–182
doi: 10.1016/S0092-8674(00)80970-8 pmid:8565061
60 Sun X, Zhang Y, Cho H, Rickert P, Lees E, Lane W, Reinberg D (1998). NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol Cell , 2(2): 213–222
doi: 10.1016/S1097-2765(00)80131-8 pmid:9734358
61 Suzuki Y, Nogi Y, Abe A, Fukasawa T (1988). GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol Cell Biol , 8(11): 4991–4999
pmid:3062377
62 Taatjes D J, Schneider-Poetsch T, Tjian R (2004). Distinct conformational states of nuclear receptor-bound CRSP-Med complexes. Nat Struct Mol Biol , 11(7): 664–671
doi: 10.1038/nsmb789 pmid:15195149
63 Takagi Y, Calero G, Komori H, Brown J A, Ehrensberger A H, Hudmon A, Asturias F, Kornberg R D (2006). Head module control of mediator interactions. Mol Cell , 23(3): 355–364
doi: 10.1016/j.molcel.2006.06.007 pmid:16885025
64 Thomas M C, Chiang C M (2006). The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol , 41(3): 105–178
doi: 10.1080/10409230600648736 pmid:16858867
65 Thompson C M, Young R A (1995). General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci USA , 92(10): 4587–4590
doi: 10.1073/pnas.92.10.4587 pmid:7753848
66 van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn T T, van Leenen D, Holstege F C (2005). Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell , 19(4): 511–522
doi: 10.1016/j.molcel.2005.06.033 pmid:16109375
67 Vincent O, Kuchin S, Hong S P, Townley R, Vyas V K, Carlson M (2001). Interaction of the Srb10 kinase with Sip4, a transcriptional activator of gluconeogenic genes in Saccharomyces cerevisiae. Mol Cell Biol , 21(17): 5790–5796
doi: 10.1128/MCB.21.17.5790-5796.2001 pmid:11486018
68 Wang W, Chen X (2004). HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in the specification of floral organ identity in Arabidopsis. Development , 131(13): 3147–3156
doi: 10.1242/dev.01187 pmid:15175247
69 Wierzbicki A T, Haag J R, Pikaard C S (2008). Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell , 135(4): 635–648
doi: 10.1016/j.cell.2008.09.035 pmid:19013275
70 Wollenberg A C, Strasser B, Cerdán P D, Amasino R M (2008). Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering. Plant Physiol , 148(3): 1681–1694
doi: 10.1104/pp.108.125468 pmid:18790998
71 Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol , 138(4): 2145–2154
doi: 10.1104/pp.105.062943 pmid:16040653
72 Xie Z, Johansen L K, Gustafson A M, Kasschau K D, Lellis A D, Zilberman D, Jacobsen S E, Carrington J C (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol , 2(5): E104
doi: 10.1371/journal.pbio.0020104 pmid:15024409
73 Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009). SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell , 21(1): 347–361
doi: 10.1105/tpc.108.060137 pmid:19122104
74 Yudkovsky N, Ranish J A, Hahn S (2000). A transcription reinitiation intermediate that is stabilized by activator. Nature , 408(6809): 225–229
doi: 10.1038/35041603 pmid:11089979
75 Zhang X, Henderson I R, Lu C, Green P J, Jacobsen S E (2007). Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci USA , 104(11): 4536–4541
doi: 10.1073/pnas.0611456104 pmid:17360559
76 Zheng B, Wang Z, Li S, Yu B, Liu J Y, Chen X (2009). Intergenic transcription by RNA polymerase II coordinates Pol IV and Pol V in siRNA-directed transcriptional gene silencing in Arabidopsis. Genes Dev , 23(24): 2850–2860
doi: 10.1101/gad.1868009 pmid:19948763
77 Zheng X, Zhu J, Kapoor A, Zhu J K (2007). Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J , 26(6): 1691–1701
doi: 10.1038/sj.emboj.7601603 pmid:17332757
78 Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science , 299(5607): 716–719
doi: 10.1126/science.1079695 pmid:12522258
[1] Yiming SUN, Zhiheng XU. Regulation of neural stem cell by bone morphogenetic protein (BMP) signaling during brain development[J]. Front Biol, 2010, 5(5): 380-385.
[2] Ming ZHOU, Lianfeng GU, Pingchuan LI, Xianwei SONG, Liya WEI, Zhiyu CHEN, Xiaofeng CAO. Degradome sequencing reveals endogenous small RNA targets in rice ( Oryza sativa L. ssp . indica )[J]. Front. Biol., 2010, 5(1): 67-90.
[3] MU Junjie, YAO Xue, CHEN Qimin, GENG Yunqi, QIAO Wentao. MicroRNAs and their role in viral infection[J]. Front. Biol., 2007, 2(1): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed