Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (1) : 67-90    https://doi.org/10.1007/s11515-010-0007-8
Research articles
Degradome sequencing reveals endogenous small RNA targets in rice ( Oryza sativa L. ssp . indica )
Ming ZHOU1,Lianfeng GU1,Pingchuan LI1,Xianwei SONG1,Liya WEI1,Zhiyu CHEN1,Xiaofeng CAO2, 3,
1.State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate School of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China; 2.State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 3.2010-03-15 9:36:58;
 Download: PDF(861 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA (sRNA) targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). One hundred and seventy-seven transcripts targeted by a total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORs (ARFs) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5′ rapid amplification of cDNA ends (RLM 5′-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.
Keywords Degradome      miRNA      ta-siRNA      small RNA targets      rice      
Issue Date: 01 February 2010
 Cite this article:   
Ming ZHOU,Lianfeng GU,Pingchuan LI, et al. Degradome sequencing reveals endogenous small RNA targets in rice ( Oryza sativa L. ssp . indica )[J]. Front. Biol., 2010, 5(1): 67-90.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0007-8
https://academic.hep.com.cn/fib/EN/Y2010/V5/I1/67
Addo-Quaye C, Miller W, Axtell M J(2009). CleaveLand: a pipeline for usingdegradome data to find cleaved small RNA targets. Bioinformatics, 25: 130―131

doi: 10.1093/bioinformatics/btn604
Addo-Quaye C, Eshoo T W, Bartel D P, Axtell M J(2008). Endogenous siRNA and miRNA targets identified by sequencingof the Arabidopsis degradome. Curr Biol, 18: 758―762

doi: 10.1016/j.cub.2008.04.042
Allen E, Xie Z, Gustafson A M, Carrington J C(2005). microRNA-directed phasing during trans-acting siRNAbiogenesis in plants. Cell, 121: 207―221

doi: 10.1016/j.cell.2005.04.004
Archak S, Nagaraju J(2007). Computationalprediction of rice (Oryza sativa) miRNA targets. Genomics Proteomics Bioinformatics, 5: 196―206

doi: 10.1016/S1672-0229(08)60007-8
Axtell M J, Snyder J A, Bartel D P(2007). Common functions for diverse smallRNAs of land plants. Plant Cell, 19: 1750―1769

doi: 10.1105/tpc.107.051706
Bartel D P(2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281―297

doi: 10.1016/S0092-8674(04)00045-5
Bartel D P(2009). MicroRNAs: target recognition and regulatory functions. Cell, 136: 215―233

doi: 10.1016/j.cell.2009.01.002
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O(2008). Widespread translational inhibitionby plant miRNAs and siRNAs. Science, 320: 1185―1190

doi: 10.1126/science.1159151
German M A, Luo S, Schroth G, Meyers B C, Green P J(2009). Constructionof Parallel Analysis of RNA Ends (PARE) libraries for the study ofcleaved miRNA targets and the RNA degradome. Nat Protoc, 4: 356―362

doi: 10.1038/nprot.2009.8
German M A, Pillay M, Jeong D H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L A, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers B C, Green P J(2008). Global identification of microRNA-targetRNA pairs by parallel analysis of RNA ends. Nat Biotechnol, 26: 941―946

doi: 10.1038/nbt1417
Gregory B D, O'Malley R C, Lister R, Urich M A, Tonti-Filippini J, Chen H, Millar A H, Ecker J R(2008). A linkbetween RNA metabolism and silencing affecting Arabidopsis development. DevCell, 14: 854―866

doi: 10.1016/j.devcel.2008.04.005
Griffiths-Jones S, Saini H K, van Dongen S, Enright A J(2008). miRBase: tools for microRNA genomics. Nucleic Acids Res, 36: D154―158

doi: 10.1093/nar/gkm952
Hock J, Meister G(2008). The Argonauteprotein family. Genome Biol, 9: 210

doi: 10.1186/gb-2008-9-2-210
Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan G L, Walbot V, Sundaresan V, Vance V, Bowman L H(2009). Clusters and superclusters of phasedsmall RNAs in the developing inflorescence of rice. Genome Res, 19: 1429―1440

doi: 10.1101/gr.089854.108
Jones-Rhoades M W, Bartel D P(2004). Computationalidentification of plant microRNAs and their targets, including a stress-inducedmiRNA. Mol Cell, 14: 787―799

doi: 10.1016/j.molcel.2004.05.027
Jones-Rhoades M W, Bartel D P, Bartel B(2006). MicroRNAS and their regulatory rolesin plants. Annu Rev Plant Biol, 57: 19―53

doi: 10.1146/annurev.arplant.57.032905.105218
Kawashima C G, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya Y N, Saito K, Takahashi H, Dalmay T(2009). Sulphur starvation induces the expression of microRNA-395and one of its target genes but in different cell types. Plant J, 57: 313―321

doi: 10.1111/j.1365-313X.2008.03690.x
Lacombe S, Nagasaki H, Santi C, Duval D, Piegu B, Bangratz M, Breitler J C, Guiderdoni E, Brugidou C, Hirsch J, Cao X, Brice C, Panaud O, Karlowski W M, Sato Y, Echeverria M(2008). Identification of precursor transcriptsfor 6 novel miRNAs expands the diversity on the genomic organisationand expression of miRNA genes in rice. BMC Plant Biol, 8: 123

doi: 10.1186/1471-2229-8-123
Li R, Li Y, Kristiansen K, Wang J(2008). SOAP: short oligonucleotide alignment program.. Bioinformatics, 24: 713–714

doi: 10.1093/bioinformatics/btn025
Liu B, Li P, Li X, Liu C, Cao S, Chu C, Cao X(2005). Lossof function of OsDCL1 affects microRNA accumulation and causes developmentaldefects in rice. Plant Physiol, 139: 296―305

doi: 10.1104/pp.105.063420
Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X, Chu C, Deng X, Xue Y, Cao X(2007a). Oryza sativa dicer-like4 reveals a key role for small interferingRNA silencing in plant development. PlantCell, 19: 2705―2718

doi: 10.1105/tpc.107.052209
Liu P P, Montgomery T A, Fahlgren N, Kasschau K D, Nonogaki H, Carrington J C(2007b). Repression of AUXIN RESPONSE FACTOR10by microRNA160 is critical for seed germination and post-germinationstages. Plant J, 52: 133―146

doi: 10.1111/j.1365-313X.2007.03218.x
Liu Q, Zhang Y C, Wang C Y, Luo Y C, Huang Q J, Chen S Y, Zhou H, Qu L H, Chen Y Q(2009). Expression analysis of phytohormone-regulated microRNAs in rice,implying their regulation roles in plant hormone signaling. FEBS Lett, 583: 723―728

doi: 10.1016/j.febslet.2009.01.020
Llave C, Xie Z, Kasschau K D, Carrington J C(2002a). Cleavage of Scarecrow-like mRNA targets directed bya class of Arabidopsis miRNA. Science, 297: 2053―2056

doi: 10.1126/science.1076311
Llave C, Kasschau K D, Rector M A, Carrington J C(2002b). Endogenous and silencing-associated small RNAs in plants. Plant Cell, 14: 1605―1619

doi: 10.1105/tpc.003210
Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J(2008). Genome-wide analysis for discoveryof rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci U S A, 105: 4951―4956

doi: 10.1073/pnas.0708743105
Luo Y C, Zhou H, Li Y, Chen J Y, Yang J H, Chen Y Q, Qu L H(2006). Riceembryogenic calli express a unique set of microRNAs, suggesting regulatoryroles of microRNAs in plant post-embryogenic development. FEBS Lett, 580: 5111―5116

doi: 10.1016/j.febslet.2006.08.046
Maere S, Heymans K, Kuiper M(2005). BiNGO: a Cytoscape plugin to assessoverrepresentation of gene ontology categories in biological networks. Bioinformatics, 21: 3448―3449

doi: 10.1093/bioinformatics/bti551
Mallory A C, Bartel D P, Bartel B(2005). MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essentialfor proper development and modulates expression of early auxin responsegenes. Plant Cell, 17: 1360―1375

doi: 10.1105/tpc.105.031716
Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon G J, Qi Y(2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directedby the 5' terminal nucleotide. Cell. 133: 116―127

doi: 10.1016/j.cell.2008.02.034
Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek R L, Lee Y, Zheng L, Orvis J, Haas B, Wortman J, Buell C R(2007). The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res, 35: D883―887

doi: 10.1093/nar/gkl976
Park W, Li J, Song R, Messing J, Chen X(2002). CARPELFACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNAmetabolism in Arabidopsis thaliana. Curr Biol, 12: 1484―1495

doi: 10.1016/S0960-9822(02)01017-5
Peragine A, Yoshikawa M, Wu G, Albrecht H L, Poethig R S(2004). SGS3and SGS2/SDE1/RDR6 are required for juvenile development and the productionof trans-acting siRNAs in Arabidopsis. Genes Dev, 18: 2368―2379

doi: 10.1101/gad.1231804
Reinhart B J, Weinstein E G, Rhoades M W, Bartel B, Bartel D P(2002). MicroRNAsin plants. Genes Dev, 16: 1616―1626

doi: 10.1101/gad.1004402
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P(2002). Prediction of plant microRNA targets. Cell, 110: 513―520

doi: 10.1016/S0092-8674(02)00863-2
Rice P, Longden I, Bleasby A(2000). EMBOSS: the European Molecular BiologyOpen Software Suite. Trends Genet, 16: 276―277

doi: 10.1016/S0168-9525(00)02024-2
Rubio-Somoza I, Cuperus J T, Weigel D, Carrington J C(2009). Regulation and functional specialization of small RNA-targetnodes during plant development. Curr OpinPlant Biol, 12(5): 622―627

doi: 10.1016/j.pbi.2009.07.003
Song J J, Smith S K, Hannon G J, Joshua-Tor L(2004). Crystal structure of Argonaute and its implicationsfor RISC slicer activity. Science, 305: 1434―1437

doi: 10.1126/science.1102514
Sunkar, R., and Zhu, J.K.(2004). Noveland stress-regulated microRNAs and other small RNAs from Arabidopsis. PlantCell16, 2001―2019.

doi: 10.1105/tpc.104.022830
Sunkar R, Jagadeeswaran G(2008). In silicoidentification of conserved microRNAs in large number of diverse plantspecies. BMC Plant Biol, 8: 37

doi: 10.1186/1471-2229-8-37
Sunkar R, Girke T, Jain P K, Zhu J K(2005). Cloning and characterization of microRNAs from rice. Plant Cell, 17: 1397―1411

doi: 10.1105/tpc.105.031682
Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J K(2008). Identification ofnovel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol, 8: 25

doi: 10.1186/1471-2229-8-25
Vaucheret H(2008). Plant ARGONAUTES. TrendsPlant Sci, 13: 350―358

doi: 10.1016/j.tplants.2008.04.007
Vaucheret H, Vazquez F, Crete P, Bartel D P(2004). The action of ARGONAUTE1 in the miRNA pathway and itsregulation by the miRNA pathway are crucial for plant development. Genes Dev, 18: 1187―1197

doi: 10.1101/gad.1201404
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crete P(2004). Endogenous trans-acting siRNAs regulatethe accumulation of Arabidopsis mRNAs. Mol Cell, 16: 69―79

doi: 10.1016/j.molcel.2004.09.028
Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y(2007). Genome-wideanalysis of the auxin response factors (ARF) gene family in rice (Oryzasativa). Gene, 394: 13―24

doi: 10.1016/j.gene.2007.01.006
Wang J W, Wang L J, Mao Y B, Cai W J, Xue H W, Chen X Y(2005). Control of root cap formation by MicroRNA-targeted auxinresponse factors in Arabidopsis. Plant Cell, 17: 2204―2216

doi: 10.1105/tpc.105.033076
Warthmann N, Chen H, Ossowski S, Weigel D, Herve P(2008). Highlyspecific gene silencing by artificial miRNAs in rice. PLoS One, 3: e1829
Wu M F, Tian Q, Reed J W(2006). Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulatesboth female and male reproduction. Development, 133: 4211―4218

doi: 10.1242/dev.02602
Xie K, Wu C, Xiong L(2006). Genomic organization, differentialexpression, and interaction of SQUAMOSA promoter-binding-like transcriptionfactors and microRNA156 in rice. PlantPhysiol, 142: 280―293

doi: 10.1104/pp.106.084475
Xie Z, Kasschau K D, Carrington J C(2003). Negative feedback regulation of Dicer-Like1in Arabidopsis by microRNA-guidedmRNA degradation. Curr Biol, 13: 784―789

doi: 10.1016/S0960-9822(03)00281-1
Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C(2005). Expression of Arabidopsis MIRNA genes. PlantPhysiol, 138: 2145―2154

doi: 10.1104/pp.105.062943
Xue L J, Zhang J J, Xue H W(2009). Characterization and expression profilesof miRNAs in rice seeds. Nucleic AcidsRes, 37: 916―930

doi: 10.1093/nar/gkn998
Yang J H, Han S J, Yoon E K, Lee, W S(2006). Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and itsresponse to exogenous auxin in cultured rice cells'. Nucleic Acids Res, 34: 1892―1899

doi: 10.1093/nar/gkl118
Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C(2008). A diverseset of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res, 18: 1456―1465

doi: 10.1101/gr.075572.107
[1] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[2] Ali Amin Asnafi,Elahe Khodadi,Neda Golchin,Arash Alghasi,Yousef Tavakolifar,Najmaldin Saki. Association between microRNA-21, microRNA-150, and microRNA-451 expression and clinical outcome of patients with acute lymphoblastic leukemia[J]. Front. Biol., 2017, 12(1): 63-70.
[3] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[4] Javad Mohammdai-asl,Abolfazl Ramezani,Fatemeh Norozi,Amal Saki Malehi,Ali Amin Asnafi,Mohammad Ali Jalali Far,Seyed Hadi Mousavi,Najmaldin Saki. MicroRNAs in erythropoiesis and red blood cell disorders[J]. Front. Biol., 2015, 10(4): 321-332.
[5] Kazuhiro TANAKA, Nikhat J. SIDDIQI, Abdullah S. ALHOMIDA, Akhlaq A. FAROOQUI, Wei-Yi ONG. Differential regulation of cPLA2 and iPLA2 expression in the brain[J]. Front Biol, 2012, 7(6): 514-521.
[6] Yan LI, Wenming WANG, Jian-Min ZHOU. Role of small RNAs in the interaction between Arabidopsis and Pseudomonas syringae[J]. Front Biol, 2011, 6(6): 462-467.
[7] Francesca FANINI, Ivan VANNINI, Muller FABBRI. MicroRNAs and drug modulation in cancer: an intertwined new story[J]. Front Biol, 2011, 6(5): 351-356.
[8] Rui TANG, Ke ZEN. Gold glitters everywhere: nucleus microRNAs and their functions[J]. Front Biol, 2011, 06(01): 69-75.
[9] Wei HUANG, Ting BI, Weining SUN. Comparative analysis of panicle proteomes of two upland rice varieties upon hyper-osmotic stress[J]. Front Biol, 2010, 5(6): 546-555.
[10] Wenxiong LIN, Changxun FANG, Ting CHEN, Ruiyu LIN, Jun XIONG, Haibin WANG. Rice allelopathy and its properties of molecular ecology[J]. Front Biol, 2010, 5(3): 255-262.
[11] Sining KANG, Sixue CHEN, Shaojun DAI. Proteomics characteristics of rice leaves in response to environmental factors[J]. Front Biol, 2010, 5(3): 246-254.
[12] Jinbiao MA, Ying HUANG, . Post-transcriptional regulation of miRNA biogenesis and functions[J]. Front. Biol., 2010, 5(1): 32-40.
[13] YANG Guohua, TU Sansi, LI Shaoqing, FENG Lingling, KONG Jin, LI Hui, LI Yangsheng. Analysis of quantitative trait loci underlying the traits related to chlorophyll content of the flag leaf in rice[J]. Front. Biol., 2008, 3(4): 443-448.
[14] YAO Chunxin, XU Minghui, TIAN Wenzhong, TANG Zuoshun. Potential variability of trans-lysozyme gene rice under ecological conditions of Yunnan Province, China[J]. Front. Biol., 2008, 3(4): 449-452.
[15] FENG Wei, PAN Genxing, QIANG Sheng, LI Ruhai, WEI Jiguang. Influence of long-term different fertilization on soil weed seed bank diversity of a paddy soil under rice/rape rotation[J]. Front. Biol., 2008, 3(3): 320-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed