Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (3) : 255-262    https://doi.org/10.1007/s11515-010-0035-4
REVIEW
Rice allelopathy and its properties of molecular ecology
Wenxiong LIN1,2(), Changxun FANG1,2, Ting CHEN1,2, Ruiyu LIN1,2, Jun XIONG1,2, Haibin WANG1,2
1. Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fuzhou 350002, China; 2. Agroecological Institute/School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
 Download: PDF(142 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Crop allelopathy is a promising and environmentally friendly method in weed control; however, the inducible genetic trait for allelopathy in the suppression of weeds needs to be overcome for practical use. Further study needs to be directed to this end to elucidate the molecular genetics and its physiologic mechanism. In this paper, the authors review recent advances in the investigation of rice allelopathy and its molecular regulatory mechanism, especially in responses to stressful conditions including biotic and abiotic factors in China. Previous studies show that rice allelopathy could be enhanced when the rice accession was exposed to stressful conditions, and further analysis by the transcriptomics and proteomics approaches conducted in our laboratory indicated that the increase in allelopathic potential of rice, when exposed to the stresses, was attributed to increased expression level of genes involved in phenolic synthetic metabolism. The increasing phenolic compounds have been confirmed as the main allelochemicals and they jointly act to suppress the target, especially in responses to stressful condition, but it seems to be the primary effect in phenolic allelopathy. We still wonder how the exudates from rice root, which were released into rhizosphere soil, are transformed by soil microorganism to produce the higher secondary effect of phenolic allelopathy in the suppression of weeds. Therefore, the authors suggest that rhizosphere biologic properties of allelopathy in rice and its mechanism are being the key research areas worldwide, and systems biology and its approaches, such as metagenomics and metaproteomics, would be helpful to reveal the process and its molecular ecological mechanism regarding rhizospheric biology of rice allelopathy.

Keywords Allelopathy      rice      molecular mechanism      stress     
Corresponding Author(s): LIN Wenxiong,Email:wenxiong181@163.com   
Issue Date: 01 June 2010
 Cite this article:   
Wenxiong LIN,Changxun FANG,Ting CHEN, et al. Rice allelopathy and its properties of molecular ecology[J]. Front Biol, 2010, 5(3): 255-262.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0035-4
https://academic.hep.com.cn/fib/EN/Y2010/V5/I3/255
rice accessionsinhibitory rate
RSASRERSSaverage
PI31277757.243.235.445.0abA
Lemont10.8-33.44.2-6.0eD
Moroberekan23.414.617.618.4dC
IAC2550.035.145.043.6abA
IAC4745.335.921.034.1bcAB
IAC12046.942.617.324.4cdBC
Batatais47.513.535.835.9abAB
Iguape Cateto58.238.242.146.2aA
Average44.0aA23.6bB23.0bB30.2
Tab.1  IRs of rice cultivars tested with three methods and their significant comparison
1 Belz R G (2007). Allelopathy in crop/weed interactions—an update. Pest Manag Sci , 63(4): 308–326
doi: 10.1002/ps.1320
2 Bennett L T, Kasela S, Tibbits J (2008). Non-parametric multivariate comparisons of soil fungal composition: Sensitivity to thresholds and indications of structural redundancy in T-RFLP data. Soil Biol Biochem , 40(7): 1601–1611
doi: 10.1016/j.soilbio.2008.01.008
3 Berendji S, Asghari J B, Matin A A (2008). Allelopathic potential of rice (Oryza sativa) varieties on seedling growth of barnyardgrass (Echinochloa crus-galli). J Plant Interact , 3(3): 175–180
doi: 10.1080/17429140802032855
4 Bi H H, Zeng R S, Su L M, An M, Luo S M (2007). Rice allelopathy induced by methyl jasmonate and methyl salicylate. J Chem Ecol , 33(5): 1089–1103
doi: 10.1007/s10886-007-9286-1
5 Blum U (1998). Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol , 24(4):685–708
doi: 10.1023/A:1022394203540
6 Chou C H, Chang F J, Oka H I (1991). Allelopathic potential of wild rice Oryza perennis. Taiwania , 36: 201–210
7 Dilday R H, Nastasi P, Lin J, Smith R J (1991). Allelopathic activity in rice (Oryza sativa L.) against ducksalad (Heteranthea limosa (sw.) Wild.). In: Hanson J N, Shaffer M J, Ball D A, Cole C V, eds. Proceedings of the Symposium for Sustainable agriculture for the Great Plains. ARS, USDA , 193–201
8 Dilday R H, Yan W G, Moldenhauer K A K, Gravois K A (1998). Allelopathic activity in rice for controlling major aquatic weeds. In: Olofsdotter M, ed. Allelopathy in rice. International Rice Research Institute, Los Banos, Philippines , 7–26
9 Dilday R H, Mattice J D, Moldenhauer K A (2000). An overview of rice allelopathy in the USA. In: Kim K U, Shin D H, eds. Rice allelopathy. Kyungpook National University, Taegu , 15–26
10 Dong Z H (2002). Study on dynamic genetics of allelopathy and its interactions with environment in rice (Oryza sativa L.). MS Thesis, Fujian Agriculture and Forestry University, Fujian, China (in Chinese)
11 Ebana K, Yan W G, Dilday R H, Namai H, Okuno K (2001). Analysis of QTL associated with the allelopathic effect of rice using water-soluble extracts. Breed Sci , 51(1): 47–51
doi: 10.1270/jsbbs.51.47
12 Einhellig F A (1999). An integrated view of allelochemicals amid multiple stresses. In: Inderjit, Dakshini K M M, Foy C L, eds. Principles and practices of plant ecology: Allelochemical Interactions. Boca Raton, Florida , USA: CRC Press, 479–494
13 Euringer K, Lueders T (2008). An optimised PCR/T-RFLP fingerprinting approach for the investigation of protistan communities in groundwater environments. J Microbiol Methods , 75(2): 262–268
doi: 10.1016/j.mimet.2008.06.012
14 Fang C X, Xiong J, Qiu L, Wang H B, Song B Q, He H B, Lin R Y, Lin W X (2009). Analysis of gene expressions associated with increased allelopathy in rice (Oryza sativa L.) induced by exogenous salicylic acid. Plant Growth Regul , 57(2): 163–172
doi: 10.1007/s10725-008-9333-0
15 Foy C L (1999). How to make bioassays for allelopathy more relevant to field conditions with particular reference to cropland weeds. In: Inderjit, Dakshini K M M, Foy C L, eds. Principles and practices in plant ecology: Allelopathic interactions. Boca Raton, Florida , USA: CRC Press, 25–33
16 Griffin T J, Gygi S P, Ideker T, Rist B, Eng J, Hood L, Aebersold R (2002). Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol Cell Proteomics , 1(4): 323–333
doi: 10.1074/mcp.M200001-MCP200
17 Gygi S P, Rochon Y, Franza B R, Aebersold R (1999). Correlation between protein and mRNA abundance in yeast. Mol Cell Biol , 19(3): 1720–1730
18 He H B (2009). Change in allelopathic potential of rice and its molecular mechanism in the responses to barnyardgrass stress. DR Thesis, Fujian Agriculture and Forestry University, Fujian, China (in Chinese)
19 He H B, Lin W X, Wang H B, Fang C X, Gan Q F, Wu W X, Chen X X, Liang Y Y (2006). Analysis of metabolites in root exudates from allelopathic and non allelopathic rice seedlings. Allelopathy J , 18(2): 247–254
20 He H Q, Shen L H, Xiong J, Jia X L, Lin W X , Wu H (2004). Conditional genetic effect of allelopathy in rice (Oryza sativa L.) under different environmental conditions. Plant Growth Regul , 44(3): 211–218
21 He H Q, Jia X L, Liang Y Y, Ke Y Q, Guo Y C, Liang K J, Lin W X (2005). Analyzing the molecular mechanism of crop allelopathy by using differential proteomics. Chinese Acta Ecol Sin , 12: 3141–3145 (in Chinese)
doi: 10.1007/s10725-004-5107-5
22 Hong H, Pruden A, Reardon K F (2007). Comparison of CE-SSCP and DGGE for monitoring a complex microbial community remediating mine drainage. J Microbiol Methods , 69(1): 52–64
doi: 10.1016/j.mimet.2006.11.016
23 Hu Q, Dou M N, Qi H Y, Xie X M, Zhuang G Q, Yang M (2007). Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. J Environ Sci (China) , 19(9): 1114–1119
doi: 10.1016/S1001-0742(07)60181-8
24 Inderjit (1996). Plant phenolics in allelopathy. Bot Rev , 62: 186–202
25 Jensen L B, Courtois B, Shen L S, Li Z K, Olofsdotter M, Mauleon R P (2001). Locating genes controlling allelopathic effects against Echinochloa crus-galli (L.) in upland rice. Agron J , 93: 21–26
26 Kim K W, Kim K U, Shin D H, Lee I J, Kim H Y, Koh J C, Nam S H (2000). Searching for allelochemicals from the allelopathic rice cultivar, Kouketsumochi. Korean J Weed Sci , 20: 197–207
27 Lee S B, Seo K I, Koo J H, Hur H S, Shin J C (2005). QTLs and molecular markers associated with rice allelopathy. In: Haper J D I, An M, Kent J H, eds. Proceedings of the Fourth World Congress on Allelopathy “Establishing the scientific base” Charles Sturt University, Wagga Wagga, NSW, Australia . 505–507
28 Lin W X, Kim K U, Shin D H (2000). Allelopathic potential in rice (Oryza sativa L.) and its modes of action on barnyardgrass (Echinochloa crus-galli). Allelopathy J , 7: 215–224
doi: 10.1016/S1872-2032(07)60078-X
29 Lin W X, He H Q, Guo Y C, Chen F Y, Liang Y Y (2001). Rice allelopathy and its physiobiochemical characteristics. Chin J Appl Ecol , 6: 871–875 (in Chinese)
30 Lin W X, He H Q, Kim K U (2003). The performance of allelopathic heterosis in rice (Oryza sativa L.). Allelopathy J , 12: 179–188
31 Lin W X, He H B, Xiong J, Shen L H, Wu M H, Lin R Y, He H Q, Liang Y Y, Li Z W, Chen T (2006). Advances in the investigation of rice allelopathy and its molecular ecology. Acta Ecol Sin , 8: 2687–2694 (in Chinese)
32 Lin R Y, Rong H, Zhou J J, Yu C P, Ye C Y, Chen L S, Lin W X (2007). Impact of rice seedling allelopathy on rhizospheric microbial populations and their functional diversities. Chinese Acta Ecol Sin , 27: 3644–3654 (in Chinese)
33 Macías F A, Molinillo J M G, Varela R M, Galindo J C G (2007). Allelopathy—a natural alternative for weed control. Pest Manag Sci , 63(4): 327–348
doi: 10.1002/ps.1342
34 Mattice J D, Lavy T, Skulman B W, Dilday R H (1998). Searching for allelochemicals in rice that control ducksalad. In: Olofsdotter M, ed. Allelopathy in rice. Proceedings of Workshop on Allelopathy in Rice. Manila, Philippines , 25-27Nov.1996. IRRI, Manila, Philippines. 81–98
35 Mattice J D, Dilday R H, Gbur E E, Skulman B W (2001). Barnyardgrass growth inhibition with rice using high performance liquid chromatography to identify rice accession activity. Agron J , 93: 8–11
36 Moody K (1991). Weed management in rice. In: Pimentel D, ed. Handbook of Pest Management in Agriculture . Boca Raton, Florida, USA: CRC Press, 301–328
37 Navarez D C, Olofsdotter M (1996). Relay seeding technique for screening allelopathic rice (Oryza sativa). Proceedings of the 2nd International Weed Control Congress, Copenhagen, Denmark . 1285–1290
38 Nie L, Wu G, Zhang W (2006). Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun , 339(2): 603–610
doi: 10.1016/j.bbrc.2005.11.055
39 Park S, Ku Y K, Seo M J, Kim D Y, Yeon J E, Lee K M, Jeong S C, Yoon W K, Harn C H, Kim H M (2006). Principal component analysis and discriminant analysis (PCA-DA) fordiscriminating profiles of terminal restriction fragment lengthpolymorphism (T-RFLP) in soil bacterial communities. Soil Biol Biochem , 38(8): 2344–2349
doi: 10.1016/j.soilbio.2006.02.019
40 Paterson A H, Tanksley S D, Sorrells M E (1991). DNA markers in plant improvement. Adv Agron , 46: 39–90
doi: 10.1016/S0065-2113(08)60578-7
41 Putnam A R, Duke W B (1974). Biological suppression of weeds: Evidence for allelopathy in accessions of cucumber. Science , 185(4148): 370–372
doi: 10.1126/science.185.4148.370
42 Rice E L (1984). Allelopathy, 2nd ed. Orlando, Florida, USA: Academic Press, 422
43 Rice E L (1987). Allelopathy: An overview. Allelochemical: Role in agriculture in forestry. In: American Chemical Society Symposium Series No . 330. 8–22
44 Rimando A M, Olofsdotter M, Dayan F E, Duke S O (2001). Searching for rice allelochemicals. an example of bioassay-guided isolation. Agron J , 93: 16–20
45 Schmalenberger A, Tebbe C C, Kertesz M A, Drake H, Küsel K (2008). Two-dimensional single strand conformation polymorphism (SSCP) of 16S rRNA gene fragments reveals highly dissimilar bacterial communities in an acidic fen. Eur J Soil Biol , 44(5-6): 495–500
doi: 10.1016/j.ejsobi.2008.07.002
46 Seal A N, Haig T, Pratley J E (2004). Evaluation of putative allelochemicals in rice root exudates for their role in the suppression of arrowhead root growth. J Chem Ecol , 30(8): 1663–1678
doi: 10.1023/B:JOEC.0000042075.96379.71
47 Shen L H, Lin W X (2007). Effects of phosphorus levels on allelopathic potential of rice co-cultured with barnyardgrass. Allelopathy J , 19: 23–32
48 Shen L H, Liang Y Y, He H Q, He J, Liang K J, Lin W X (2004). Comparative analysis on the evaluation efficiency of allelopathic potential in rice (Oryza sativa L.) by using different bioassay methods and its application. Chin J Appl Ecol , 9: 1575–1579 (in Chinese)
49 Shen L H, Xiong J, Lin W X (2008). Rice allelopathy research in China. In: Zeng R S, Mallik A U, Luo S M, eds. Allelopathy in sustainable agriculture and forestry . New York: Springer, 215–233
doi: 10.1007/978-0-387-77337-7_11
50 Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe C C (2007). Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods , 69(3): 470–479
doi: 10.1016/j.mimet.2007.02.014
51 Song B Q, Xiong J, Fang C X, Qiu L, Lin R Y, Liang Y Y, Lin W X (2008). Allelopathic enhancement and differential gene expression in rice under low nitrogen treatment. J Chem Ecol , 34(5): 688–695
doi: 10.1007/s10886-008-9455-x
52 Sun X X (2009a). Allelopathic weed-suppressing effects of rice accessions and the rihzosphere properties under dry-raising condition in the field. DR Thesis, Fujian Agriculture and Forestry University, Fujian, China (in Chinese)
53 Sun X X, Wang H B, Lin H F, He H B, Lu J C, Zeng C M, Xiong J, Lin W X (2009b). Effects of weed suppression by different allelopathic rice varieties under dry-raising condition. Chin J Eco-Agric , 17(5): 842–846
doi: 10.3724/SP.J.1011.2009.00842
54 Taylor E B, Williams M A (2010). Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery. Microb Ecol , 59(2): 390–399
doi: 10.1007/s00248-009-9593-x
55 Wang H B, Xiong J, Fang C X, Qiu L, Wu W X, He H B, Lin W X (2007). FQ-PCR analysis on the differential expression of the key enzyme genes involved in isoprenoid metabolic pathway in allelopathic and weak allelopathic rice accessions (Oryza sativa L.) under nitrogen stress condition. Acta Agron Sin , 33(8): 1329–1334 (in Chinese)
56 Wang H B, He H B, Qiu L, Shen L H, Fang C X, Lin R Y, Lin W X (2009a). Molecular physiological properties of the enhanced weed-suppression ability of rice allelopathy induced by lower phosphorus supplies. Chin J Appl Environ Biol , 15(3): 289–294 (in Chinese)
57 Wang H B, He H B, Ye C Y, Lu J C, Chen R S, Guo X K, Liu C H, Lin W X (2009b). Physiological responses of allelopathic rice accessions to low phosphorus stress. Allelopathy J , 23(1): 175–184
58 Wu H, Pratley J, Lemerle D, Haig T (1999). Crop cultivars with allelopathy capability. Weed Res , 39(3): 171–180
doi: 10.1046/j.1365-3180.1999.00136.x
59 Xiong J (2008). Studies on Molecular Ecological Mechanisms of Rice Allelotathy in the Suppression of Weed Mediated by Nitrogen Nutrient. DR Thesis, Fujian Agriculture and Forestry University, Fujian, China (in Chinese)
60 Xiong J, Jia X L, Deng J Y, Jiang B Y, He H B, Lin W X (2007a). Analysis of epistatic effect and QTL interactions with environment for allelopathy in rice (Oryza sativa L.). Allelopathy J , 20(2): 259–268
61 Xiong J, Wang H B, Fang C X, Qiu L, Wu W X, He H B, Lin W X (2007b). The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply. J Plant Physiol Mol Biol , 33(5): 387–394 (in Chinese)
62 Xu Z H, He Y, Cui S, Zhao M, Zhang X, Li D (2003). Genes mapping on rice allelopathy against barnyardgrass. Chin J Appl Ecol , 14(12): 2258–2260 (in Chinese)
63 Yang C M, Chou C H, Chang I F, Lin S J (2004). Effects of three allelopathic phenolics on chlorophyll accumulation of rice (Oryza sativa) seedlings: II Stimulation of consumption-orientation. Bot Bull Acad Sin , 45: 119–125
64 Ying Y L, Lv Z M, Min H, Cheng J (2008). Dynamic changes of microbial community diversity in a photohydrogen producing reactor monitored by PCR-DGGE. J Environ Sci (China) , 20(9): 1118–1125
doi: 10.1016/S1001-0742(08)62158-0
65 Zeng D L, Qian Q, Teng S, Dong G J, Fujimoto H, Kunihifo Y, Zhu L H (2003). Genetic analysis of rice allelopathy. Chin Sci Bull , 48(3): 265–268 (in Chinese)
66 Zhu J (1995). Analysis of conditional genetic effects and variance components in developmental genetics. Genetics , 141(4): 1633–1639
[1] Hanane Gourine, Hadria Grar, Wafaa Dib, Nabila Mehedi, Ahmed Boualga, Djamel Saidi, Omar Kheroua. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats[J]. Front. Biol., 2018, 13(5): 366-375.
[2] Mahin Najafian, Yalda Jafrideh, Behnaz Ghazisaeidi. Effectiveness of fractional CO2 laser in women with stress urinary incontinence[J]. Front. Biol., 2018, 13(2): 145-148.
[3] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[4] Vadim V. Davydov, Alexander V. Shestopalov, Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
[5] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[6] Fakhredin Saba, Najmaldin Saki, Elahe Khodadi, Masoud Soleimani. Crosstalk between catecholamines and erythropoiesis[J]. Front. Biol., 2017, 12(2): 103-115.
[7] Paul J. Lucassen,Charlotte A. Oomen. Stress, hippocampal neurogenesis and cognition: functional correlations[J]. Front. Biol., 2016, 11(3): 182-192.
[8] Jian Zou,Jinbo Yu,Yuqing Zhu,Jiali Zhu,Jing Du,Xu Yang. Application of glutathione to antagonize H2O2-induced oxidative stress in rat tracheal epithelial cells[J]. Front. Biol., 2016, 11(1): 59-63.
[9] Vadim V. Davydov,Evgenya R. Grabovetskaya,Amjad Hamdallah. Age-dependent peculiarities modulation of activity of aldehyde scavenger enzymes in mitochondria of rat thigh muscle during stress[J]. Front. Biol., 2016, 11(1): 28-31.
[10] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[11] Yu Lu,Biao Yan,Xudong Liu,Yuchao Zhang,Shibi Zeng,Hao Hu,Rong Xiang,Yu Xu,Ying Yu,Xu Yang. Comparative study of oxidative stress induced by sand flower and schistose nanosized layered double hydroxides in N2a cells[J]. Front. Biol., 2015, 10(3): 279-286.
[12] Jacqueline A. GLEAVE,Peter D. PERRI,Joanne E. NASH. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection[J]. Front. Biol., 2014, 9(6): 489-503.
[13] Vadim V. DAVYDOV,Amjad HAMDALLAH,Evgenya R. GRABOVETSKAYA. Age-related peculiarities of change in content of free radical oxidation products in muscle during stress[J]. Front. Biol., 2014, 9(4): 283-286.
[14] Xuejing HOU, Harvey J. M. HOU. Roles of manganese in photosystem II dynamics to irradiations and temperatures[J]. Front Biol, 2013, 8(3): 312-322.
[15] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed