Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (6) : 462-467    https://doi.org/10.1007/s11515-011-1169-8
REVIEW
Role of small RNAs in the interaction between Arabidopsis and Pseudomonas syringae
Yan LI1, Wenming WANG1, Jian-Min ZHOU2()
1. Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; 2. National Institute of Biological Sciences, Beijing, Beijing 102206, China
 Download: PDF(120 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Endogenous small RNAs (miRNAs and siRNAs) regulate gene expression in diverse biological processes. Research with the Arabidopsis-Pseudomonas syringae system has shown that small RNAs contribute to plant immunity by regulating the expression of their target genes. Plant immunity can be triggered by pathogen-associated molecular patterns (PAMPs) or effector proteins that are delivered into the host cell by the pathogen. Experimental evidence indicates that the miRNA pathway play a major role in PAMP-triggered immunity while some of the siRNA pathways appear to be more important in effector-triggered immunity. In addition, some P. syringae effector proteins appear to inhibit miRNA biogenesis or function to enhance bacterial virulence. These exciting findings illustrate a new battle ground for plant-pathogen interactions.

Keywords miRNA      siRNA      PTI      ETI      effectors     
Corresponding Author(s): ZHOU Jian-Min,Email:zhoujianmin@nibs.ac.cn   
Issue Date: 01 December 2011
 Cite this article:   
Yan LI,Wenming WANG,Jian-Min ZHOU. Role of small RNAs in the interaction between Arabidopsis and Pseudomonas syringae[J]. Front Biol, 2011, 6(6): 462-467.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1169-8
https://academic.hep.com.cn/fib/EN/Y2011/V6/I6/462
1 Agorio A, Vera P (2007). ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell , 19(11): 3778–3790
doi: 10.1105/tpc.107.054494 pmid:17993621
2 Baulcombe D (2004). RNA silencing in plants. Nature , 431(7006): 356–363
doi: 10.1038/nature02874 pmid:15372043
3 Boller T, He S Y (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science , 324(5928): 742–744
doi: 10.1126/science.1171647 pmid:19423812
4 Chapman E J, Carrington J C (2007). Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet , 8(11): 884–896
doi: 10.1038/nrg2179 pmid:17943195
5 Chisholm S T, Coaker G, Day B, Staskawicz B J (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell , 124(4): 803–814
doi: 10.1016/j.cell.2006.02.008 pmid:16497589
6 Crane Y M, Gelvin S B (2007). RNAi-mediated gene silencing reveals involvement of Arabidopsis chromatin-related genes in Agrobacterium-mediated root transformation. Proc Natl Acad Sci USA , 104(38): 15156–15161
doi: 10.1073/pnas.0706986104 pmid:17827277
7 Cui H T, Wang Y J, Xue L, Chu J F, Yan C Y, Fu J H, Chen M S, Innes R W, Zhou J M (2010). Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4. Cell Host Microbe , 7(2): 164–175
doi: 10.1016/j.chom.2010.01.009 pmid:20159621
8 Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE , 2(2): e219
doi: 10.1371/journal.pone.0000219 pmid:17299599
9 Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, Rathjen JP (2009). AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Boil , 19: 423–430
10 G?hre V, Spallek T, H?weker H, Mersmann S, Mentzel T, Boller T, de Torres M, Mansfield J W, Robatzek S (2008). Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB. Curr Biol , 18(23): 1824–1832
doi: 10.1016/j.cub.2008.10.063 pmid:19062288
11 He X F, Fang Y Y, Feng L, Guo H S (2008). Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett , 582(16): 2445–2452
doi: 10.1016/j.febslet.2008.06.011 pmid:18558089
12 Jagadeeswaran G, Saini A, Sunkar R (2009). Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta , 229(4): 1009–1014
doi: 10.1007/s00425-009-0889-3 pmid:19148671
13 Jones J D G, Dangl J L (2006). The plant immune system. Nature , 444(7117): 323–329
doi: 10.1038/nature05286 pmid:17108957
14 Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H L (2007). A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev , 21(23): 3123–3134
doi: 10.1101/gad.1595107 pmid:18003861
15 Katiyar-Agarwal S, Jin H L (2010). Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol , 48(1): 225–246
doi: 10.1146/annurev-phyto-073009-114457 pmid:20687832
16 Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu J K, Staskawicz B J, Jin H L (2006). A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA , 103(47): 18002–18007
doi: 10.1073/pnas.0608258103 pmid:17071740
17 Lanet E, Delannoy E, Sormani R, Floris M, Brodersen P, Crété P, Voinnet O, Robaglia C (2009). Biochemical evidence for translational repression by Arabidopsis microRNAs. Plant Cell , 21(6): 1762–1768
doi: 10.1105/tpc.108.063412 pmid:19531599
18 Li X Y, Lin H, Zhang W G, Zou Y, Zhang J, Tang X Y, Zhou J M (2005). Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci USA , 102(36): 12990–12995
doi: 10.1073/pnas.0502425102 pmid:16123135
19 Li Y, Zhang Q Q, Zhang J G, Wu L, Qi Y J, Zhou J M (2010). Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol , 152(4): 2222–2231
doi: 10.1104/pp.109.151803 pmid:20164210
20 Liu J, Elmore J M, Lin Z J, Coaker G (2011). A receptor-like cytoplasmic kinase phosphorylates the host target RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe , 9(2): 137–146
doi: 10.1016/j.chom.2011.01.010 pmid:21320696
21 Lu S F, Sun Y H, Amerson H, Chiang V L (2007). MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J , 51(6): 1077–1098
doi: 10.1111/j.1365-313X.2007.03208.x pmid:17635765
22 Morel J B, Godon C, Mourrain P, Béclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002). Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell , 14(3): 629–639
doi: 10.1105/tpc.010358 pmid:11910010
23 Mori I C, Schroeder J I (2004). Reactive oxygen species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol , 135(2): 702–708
doi: 10.1104/pp.104.042069 pmid:15208417
24 Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Rémoué K, Sanial M, Vo T A, Vaucheret H (2000). ArabidopsisSGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell , 101(5): 533–542
doi: 10.1016/S0092-8674(00)80863-6 pmid:10850495
25 Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science , 312(5772): 436–439
doi: 10.1126/science.1126088 pmid:16627744
26 Navarro L, Jay F, Nomura K, He S Y, Voinnet O (2008). Suppression of the microRNA pathway by bacterial effector proteins. Science , 321(5891): 964–967
doi: 10.1126/science.1159505 pmid:18703740
27 Padmanabhan C, Zhang X, Jin H L (2009). Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol , 12(4): 465–472
doi: 10.1016/j.pbi.2009.06.005 pmid:19608454
28 Sarris P F, Gao S, Karademiris K, Jin H, Kalantidis K, Panopoulos N J (2011). Phytobacterial type III effectors HopX1, HopAB1 and HopF2 enhance sense-post transcriptional gene silencing independently of plant R gene-effector recognition. Mol Plant Microbe Interact , 24(8): 907–907
doi: 10.1094/MPMI-01-11-0010
29 Wang Y J, Li J F, Hou S G, Wang X W, Li Y, Ren D T, Chen S, Tang X Y, Zhou J M (2010). A Pseudomonas syringae ADP-ribosyltransferase inhibits Arabidopsis mitogen-activated protein kinase kinases. Plant Cell , 22(6): 2033–2044
doi: 10.1105/tpc.110.075697 pmid:20571112
30 Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D (2010). The type III effector HopF2Pto targets Arabidopsis RIN4 protein to promote Pseudomonas syringae virulence. Proc Natl Acad Sci USA , 107(5): 2349–2354
doi: 10.1073/pnas.0904739107 pmid:20133879
31 Xiang T T, Zong N, Zou Y, Wu Y, Zhang J, Xing W M, Li Y, Tang X Y, Zhu L H, Chai J J, Zhou J M (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol , 18(1): 74–80
doi: 10.1016/j.cub.2007.12.020 pmid:18158241
32 Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X, Fang R (2011). Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J , 65(5): 820–828
doi: 10.1111/j.1365-313X.2010.04467.x pmid:21251104
33 Yu D, Fan B, MacFarlane S A, Chen Z (2003). Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. Mol Plant Microbe Interact , 16(3): 206–216
doi: 10.1094/MPMI.2003.16.3.206 pmid:12650452
34 Zhang J, Li W, Xiang T T, Liu Z X, Laluk K, Ding X J, Zou Y, Gao M H, Zhang X J, Chen S, Mengiste T, Zhang Y L, Zhou J M (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe , 7(4): 290–301
doi: 10.1016/j.chom.2010.03.007 pmid:20413097
35 Zhang J, Shao F, Li Y, Cui H T, Chen L J, Li H T, Zou Y, Long C Z, Lan L F, Chai J J, Chen S, Tang X Y, Zhou J M (2007). A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host Microbe , 1(3): 175–185
doi: 10.1016/j.chom.2007.03.006 pmid:18005697
36 Zhang X, Zhao H, Gao S, Wang W C, Katiyar-Agarwal S, Huang H D, Raikhel N, Jin H (2011). Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell , 42(3): 356–366
doi: 10.1016/j.molcel.2011.04.010 pmid:21549312
37 Zhou H, Lin J, Johnson A, Morgan R L, Zhong W, Ma W (2011). Pseudomonas syringae type III effector HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell Host Microbe , 9(3): 177–186
doi: 10.1016/j.chom.2011.02.007 pmid:21402357
38 Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot , 61(15): 4157–4168
doi: 10.1093/jxb/erq237 pmid:20729483
39 Zhou X, Sunkar R, Jin H, Zhu J K, Zhang W (2009). Genome-wide identification and analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. Genome Res , 19(1): 70–78
doi: 10.1101/gr.084806.108 pmid:18971307
40 Zilberman D, Cao X, Jacobsen S E (2003). ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science , 299(5607): 716–719
doi: 10.1126/science.1079695 pmid:12522258
41 Zilberman D, Cao X F, Johansen L K, Xie Z X, Carrington J C, Jacobsen S E (2004). Role of Arabidopsis ARGONAUTE4 in RNA-directed DNA methylation triggered by inverted repeats. Curr Biol , 14(13): 1214–1220
doi: 10.1016/j.cub.2004.06.055 pmid:15242620
42 Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones J D, Boller T, Felix G (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell , 125(4): 749–760
doi: 10.1016/j.cell.2006.03.037 pmid:16713565
43 Zipfel C, Robatzek S, Navarro L, Oakeley E J, Jones J D, Felix G, Boller T (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature , 428(6984): 764–767
doi: 10.1038/nature02485 pmid:15085136
[1] Peyman Hadi, Karimeh Haghani, Ali Noori-Zadeh, Salar Bakhtiyari. Prevalence of fragile X syndrome among patients with mental retardation in the west of Iran[J]. Front. Biol., 2018, 13(6): 464-468.
[2] Sanjeeb Kumar Mandal, Nupur Ojha, Nilanjana Das. Process optimization of benzo[ghi]perylene biodegradation by yeast consortium in presence of ZnO nanoparticles and produced biosurfactant using Box-Behnken design[J]. Front. Biol., 2018, 13(6): 418-424.
[3] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[4] Mallahalli S. Manu, Kuruvanthe S. Rachana, Gopal M. Advirao. Insulin inhibits the JNK mediated cell death via upregulation of AKT expression in Schwann cells grown in hyperglycemia[J]. Front. Biol., 2018, 13(2): 137-144.
[5] Moni Philip Jacob Kizhakedathil, Subathra Devi Chandrasekaran. Media optimization for extracellular amylase production by Pseudomonas balearica vitps19 using response surface methodology[J]. Front. Biol., 2018, 13(2): 123-129.
[6] Clare H. Scott Chialvo, Thomas Werner. Drosophila, destroying angels, and deathcaps! Oh my! A review of mycotoxin tolerance in the genus Drosophila[J]. Front. Biol., 2018, 13(2): 91-102.
[7] Karim Mowla, Elham Rajaei, Mohammad Taha Jalali, Zeinab Deris Zayeri. Threatening biomarkers in lupus pregnancy: Biochemistry and genetic challenges[J]. Front. Biol., 2018, 13(1): 28-35.
[8] Dhamodharan Duraikannu, Subathra Devi Chandrasekaran. Optimization and modeling studies on the production of a new fibrinolytic protease using Streptomyces radiopugnans_VITSD8[J]. Front. Biol., 2018, 13(1): 70-77.
[9] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[10] Farah Izana Abdullah, Lee Suan Chua, Zaidah Rahmat. Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS[J]. Front. Biol., 2017, 12(6): 448-458.
[11] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[12] Ji-Song Guan, Hong Xie, San-Xiong Liu. Epigenetic regulators sculpt the plastic brain[J]. Front. Biol., 2017, 12(5): 317-332.
[13] Teetam Ghosal, Nikita Augustine, Ashwini Siddapur, Vaishnavi Babu, Merlyn Keziah Samuel, Subathra Devi Chandrasekaran. Strain improvement, optimization and purification studies for enhanced production of streptokinase from Streptococcus uberis TNA-M1[J]. Front. Biol., 2017, 12(5): 376-384.
[14] Maryam Hassantash, Hedayat Sahraei, Zahra Bahari, Gholam Hossein Meftahi, Roshanak Vesali. The role of dopamine D2 receptors in the amygdala in metabolic and behavioral responses to stress in male Swiss-Webster mice[J]. Front. Biol., 2017, 12(4): 298-310.
[15] Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?[J]. Front. Biol., 2017, 12(3): 183-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed