Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (2) : 123-129    https://doi.org/10.1007/s11515-018-1485-3
RESEARCH ARTICLE
Media optimization for extracellular amylase production by Pseudomonas balearica vitps19 using response surface methodology
Moni Philip Jacob Kizhakedathil, Subathra Devi Chandrasekaran()
Department of Biotechnology, School of Biosciences and Technology, VIT University, Vellore – 632014, Tamil Nadu, India
 Download: PDF(666 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: In this study, we optimized the process for enhancing amylase production from Pseudomonas balearica VITPS19 isolated from agricultural lands in Kolathur, India.

METHODS: Process optimization for enhancing amylase production from the isolate was carried out by Response Surface Methodology (RSM) with optimized chemical and physical sources using Design expert v.7.0. A central composite design was used to evaluate the interaction between parameters. Interaction between four factors – maltose (C-source), malt extract (N-source), pH, and CaCl2 was studied.

RESULTS: The factors pH and CaCl2 concentration were found to affect amylase production. Validation of the experiment showed a nearly twofold increase in alpha amylase production.

CONCLUSION: Amylase production was thus optimized and increased yield was achieved.

Keywords Pseudomonas balearica VITPS19      alpha amylase      optimization      response surface methodology      central composite design      pH     
Corresponding Author(s): Subathra Devi Chandrasekaran   
Online First Date: 15 March 2018    Issue Date: 28 May 2018
 Cite this article:   
Moni Philip Jacob Kizhakedathil,Subathra Devi Chandrasekaran. Media optimization for extracellular amylase production by Pseudomonas balearica vitps19 using response surface methodology[J]. Front. Biol., 2018, 13(2): 123-129.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1485-3
https://academic.hep.com.cn/fib/EN/Y2018/V13/I2/123
Factors Independent variables Coded Levels
a (-2) –1 0 + 1 + a ( + 2)
A Maltose % 0 0.5 1 1.5 2
B Malt extract % 0 0.25 0.50 0.75 1
C CaCl2% 0 0.05 0.10 0.15 0.2
D pH 6 6.25 6.5 6.75 7
Tab.1  Range of values for the response surface method- CCD
Runs number Coded value order A B C D Enzyme activity
(U)
Predicted response
(U)
8 1 1.5 0.75 0.15 6.25 0.52 0.16
5 2 0.5 0.25 0.15 6.25 0.76 0.926
28 3 1 0.5 0.1 6.5 1.90 1.90
19 4 1 0 0.5 6.5 1.77 2.108
26 5 1 0.5 0.1 6.5 1.90 1.90
30 6 1 0.5 0.1 6.5 1.90 1.90
12 7 1.5 0.75 0.05 6.75 2.10 1.186
22 8 1 0.5 0.2 6.5 0.49 0.46
11 9 0.5 0.75 0.05 6.75 2.42 1.996
27 10 1 0.5 0.1 6.5 1.90 1.90
15 11 0.5 0.5 0.15 6.75 2.48 1.958
10 12 1.5 0.25 0.05 6.75 1.92 1.986
13 13 0.5 0.25 0.15 6.75 1.94 1.79
17 14 0 0.5 0.1 6.5 1.92 2.416
23 15 1 0.5 0.1 6 0.30 0.12
24 16 1 0.5 0.1 7 0.59 1.44
4 17 1.5 0.75 0.05 6.25 0.55 0.73
7 18 0.5 0.75 0.15 6.25 0.80 0.766
9 19 0.5 0.25 0.05 6.75 1.96 1.056
1 20 0.5 0.25 0.05 6.25 1.89 1.292
29 21 1 0.5 0.1 6.5 1.90 1.90
21 22 1 0.5 0 6.5 0.42 1.1
16 23 1.5 0.75 0.15 6.75 0.28 0.912
25 24 1 0.5 0.1 6.5 1.90 1.90
3 25 0.5 0.75 0.05 6.25 1.08 1.244
14 26 1.5 0.25 0.15 6.75 2.73 1.824
18 27 2 0.5 0.1 6.5 1.73 1.936
2 28 1.5 0.25 0.05 6.25 2.05 1.856
6 29 1.5 0.25 0.15 6.25 0.80 1.256
20 30 1 1 0.1 6.5 0.78 1.148
Tab.2  Response of the experimental design by RSM
Source Sum of squares df Mean square F value p-value Prob>F
Model 11.01 14 0.79 2.40 0.0479 Significant
A-A 0.32 1 0.32 0.99 0.3345
B-B 1.39 1 1.39 4.23 0.0563
C-C 0.58 1 0.58 1.77 0.2021
D-D 2.62 1 2.62 8.00 0.0121 Significant
AB 1.13 1 1.13 3.45 0.0819
AC 0.056 1 0.056 0.17 0.6837
AD 0.089 1 0.089 0.27 0.6103
BC 0.013 1 0.013 0.039 0.8467
BD 0.11 1 0.11 0.33 0.5751
CD 0.18 1 0.18 0.54 0.4711
A2 0.14 1 0.14 0.42 0.5279
B2 0.13 1 0.13 0.41 0.5316
C2 2.32 1 2.32 7.07 0.0171 Significant
D2 2.18 1 2.18 6.65 0.0202 Significant
Residual 5.24 16 0.33
Lack of Fit 5.24 10 0.52
Pure Error 0.000 6 0.000
Cor total 16.25 30
Tab.3  Analysis of variance (ANOVA) for the quadratic model of amylase production obtained from the experimental results
Std. Dev. 0.57 R-Squared 0.6774
Mean 1.47 Adj R-Squared 0.3951
C.V. % 39.03 Pred R-Squared -0.8581
PRESS 30.19 deq Precision 5.972
Tab.4  R-Squared, Adj R-Squared, Pred R-Squared, and Adeq Precision value of the model
Fig.1  (A) Three dimensional curves showing the effects of factors C (CaCl2) and D (pH). (B) Contour plots showing the effects of factors C (CaCl2) and D (pH).
Fig.2  Perturbation graph showing the effect of all independent variables on amylase production.
Fig.3  Plot between expected normal values versus residuals.
1 Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72(1-2): 248–254
https://doi.org/10.1016/0003-2697(76)90527-3 pmid: 942051
2 Dey G, Mitra A, Banerjee R,Maiti B R (2001). Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem Eng J, 7(3): 227–231
https://doi.org/10.1016/S1369-703X(00)00139-X
3 Elibol M, Tanyildizi M S, Dursun O (2005). Optimization of α-amylase production by Bacillus sp. using response surface methodology. Process Biochem, 40(7): 2291–2296
https://doi.org/10.1016/j.procbio.2004.06.018
4 Gangadharan D,Sivaramakrishnan S, Nampoothiri K M, Sukumaran R K, Pandey A (2008). Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresour Technol, 99(11): 4597–4602
https://doi.org/10.1016/j.biortech.2007.07.028 pmid: 17761415
5 Kizhakedathil M P J, Chandrasekaran S D (2017). Screening for extracellular enzymes from actinomycetes isolated from agricultural soils of Kolathur, Tamil Nadu, India. Curr Bioact Compd, 13 (In press)
https://doi.org/10.2174/1573407213666170615112449
6 Kumar R, Mehta A (2013). Isolation, optimization and characterization of α-amylase from Bacillus alcalophilus. Int J Sci Res, 2(7): 171–174
7 Liu J, Weng L, Zhang Q, Xu H, Ji L (2003). Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology. World J Microbiol Biotechnol, 3(3): 317–323
https://doi.org/10.1023/A:1023622925933
8 Meena B, Rajan L A, Vinithkumar N V, Kirubagaran R (2013). Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol, 13(1): 145
https://doi.org/10.1186/1471-2180-13-145 pmid: 23800234
9 Miller G L (1959). Use of dinitrosalycilic acid reagent for determination of reducing sugars. Anal Chem, 31(3): 426–428
https://doi.org/10.1021/ac60147a030
10 Myers R, Montgomery R C (2002). Response surface methodology: Process and product optimization using designed experiments. New York, Wiley
11 Nigam P, Singh D (1995). Enzyme and microbial systems involved in starch processing. Enzyme Microb Technol, 17(9): 770–778
https://doi.org/10.1016/0141-0229(94)00003-A
12 Osorio N M (2001). Response Surface Modelling of the Production of v-3 Polyunsaturated Fatty Acids-Enriched Fats by a Commercial Immobilized Lipase. J Mol Catal B Enzym,11: 677–686
13 Pujari V, Chandra T S (2000). Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Process Biochem, 36: 31–37
14 Rameshkumar A, Sivasudha T (2011). Optimization of nutritional constitute for enhanced α-amylase production by solid state fermentation technology. Int J Microbiol Res, 2(2): 148
15 Rao K J, Kim C, Rhee S (2000). Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cereveasiae using response surface methodology. Process Biochem, 35(7): 639–647
https://doi.org/10.1016/S0032-9592(99)00129-6
16 Saha K, Maity S, Roy S, Pahan K, Pathak R, Majumdar S, Gupta S (2014). Optimization of amylase production from B. amyloliquefaciens (MTCC 1270) using solid state fermentation. Int J Microbiol, 2014: 764046
https://doi.org/10.1155/2014/764046 pmid: 24949017
17 Stergiou P, Papamichael E (2014). Optimization of the production of extracellular α-amylase by Kluyveromyces marxianus IF0 0288 by response surface methodology. Braz Arch Biol Technol, 57(6): 421–426
https://doi.org/10.1590/S1516-8913201401485
18 Suganthi V, Mohanasrinivasan V (2014). Optimization studies for enhanced bacteriocin production by Pediococcus pentosaceus KC692718 using response surface methodology. J Food Sci Technol,
https://doi.org/10.1007/s13197-014-1440-5 pmid: 26028762
19 Sunitha K, Lee J, Oh T(1999). Optimization of medium components for phytase production by E. coli using response surface methodology. Bioprocess Eng, 21: 477–481
20 Viswanathan S, Rohini S, Rajesh R, Poomari K (2014). Production and medium optimization of amylase by Bacillus Spp. using submerged fermentation method. W J Chem, 9(1): 1–6
21 Vohra A, Satyanarayana T (2002). Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Proc Biogeosciences, 37: 999–1004
[1] Bijan Keikhaei, Pejman Salehi-Fard, Mostafa Paridar, Mehraneh Karimzadeh, Razie Dehghani, Asma Zamiri, Vahideh Takhviji. Widely distribution of hematological parameters in thalassemia patients with similar α-globin genotype[J]. Front. Biol., 2018, 13(6): 469-474.
[2] Sanjeeb Kumar Mandal, Nupur Ojha, Nilanjana Das. Process optimization of benzo[ghi]perylene biodegradation by yeast consortium in presence of ZnO nanoparticles and produced biosurfactant using Box-Behnken design[J]. Front. Biol., 2018, 13(6): 418-424.
[3] Hoda Sabati, Hossein Motamedi. Investigation of the relationship between cell surface hydrophobicity and demulsifying capability of biodemulsifier-producing bacteria[J]. Front. Biol., 2018, 13(5): 358-365.
[4] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[5] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[6] Mohammad Ghasem Hanafi, Mojgan Samet Zadeh, Mohammad Momeni, Sorour Rajabkordi. Relationship between breast arterial calcification on mammography with coronary CT angiography findings[J]. Front. Biol., 2018, 13(4): 309-313.
[7] Rituparna Das, Nayan Ranjan Saha, Arundhati Pal, Dipankar Chattopadhyay, Amal Kanti Paul. Comparative evaluation of physico-chemical characteristics of biopolyesters P(3HB) and P(3HB-co-3HV) produced by endophytic Bacillus cereus RCL 02[J]. Front. Biol., 2018, 13(4): 297-308.
[8] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[9] Syed Baker, Svetlana V. Prudnikova, Tatiana Volova. Siberian plants: untapped repertoire of bioactive endosymbionts[J]. Front. Biol., 2018, 13(3): 157-167.
[10] Reza Talebi, Ahmad Ahmadi, Fazlollah Afraz. Construction of protein–protein interaction network based on transcriptome profiling of ovine granulosa cells during the sheep’s anestrus phase[J]. Front. Biol., 2018, 13(3): 215-225.
[11] Mangala Lakshmi Ragavan, Nilanjana Das. Process optimization for microencapsulation of probiotic yeasts[J]. Front. Biol., 2018, 13(3): 197-207.
[12] Narjes Feizollahi, Zeinab Deris Zayeri, Najme Moradi, Mahvash Zargar, Hadi Rezaeeyan. The effect of coagulation factors polymorphisms on abortion[J]. Front. Biol., 2018, 13(3): 190-196.
[13] Mallahalli S. Manu, Kuruvanthe S. Rachana, Gopal M. Advirao. Insulin inhibits the JNK mediated cell death via upregulation of AKT expression in Schwann cells grown in hyperglycemia[J]. Front. Biol., 2018, 13(2): 137-144.
[14] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[15] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed