|
|
Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity |
Shang WU, Harley M. S. SMITH( ) |
Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA |
|
|
Abstract The indeterminate growth pattern displayed by shoots is mediated by the proper maintenance of the shoot meristem. Meristem maintenance is dependent upon the balance of stem cell perpetuation in the central zone (CZ) and organogenesis in the peripheral zone (PZ). Although the mechanisms that coordinate CZ and PZ function is not understood, meristem cell fate is likely achieved by the spatial interplay between gene regulatory networks and hormone signaling pathways. During shoot maturation, the identity of the shoot meristem as well as the lateral organs are transformed during the vegetative and reproductive transitions. Studies in model plant systems indicate that three amino acid extension (TALE) homeodomain proteins integrate signaling events that transform the identity of the shoot meristem and establish reproductive patterns of growth. This review will highlight the function of TALE homeodomain transcription factors that regulate shoot meristem cell fate and also function with phase specific regulators to maintain shoot meristem identity.
|
Keywords
shoot development
meristem
flowering
patterning
homeodomain
|
Corresponding Author(s):
SMITH Harley M. S.,Email:harleys@ucr.edu
|
Issue Date: 01 April 2012
|
|
1 |
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science , 309(5737): 1052–1056 doi: 10.1126/science.1115983 pmid:16099979
|
2 |
Aida M, Ishida T, Tasaka M (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development , 126(8): 1563–1570 pmid:10079219
|
3 |
Aida M, Tasaka M (2006). Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol Biol , 60(6): 915–928 doi: 10.1007/s11103-005-2760-7 pmid:16724261
|
4 |
Amasino R (2010). Seasonal and developmental timing of flowering. Plant J , 61(6): 1001–1013 doi: 10.1111/j.1365-313X.2010.04148.x pmid:20409274
|
5 |
Barton M K (2010). Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol , 341(1): 95–113 doi: 10.1016/j.ydbio.2009.11.029 pmid:19961843
|
6 |
Barton M K, Poethig R S (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development , 119(16): 823–831
|
7 |
Becker A, Theissen G (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol , 29(3): 464–489 doi: 10.1016/S1055-7903(03)00207-0 pmid:14615187
|
8 |
Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V (2006). KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell , 18(8): 1900–1907 doi: 10.1105/tpc.106.041988 pmid:16798887
|
9 |
Bernier G (1988). The Control of Floral Evocation and Morphogenesis. Annu Rev Plant Physiol Plant Mol Biol , 39(1): 175–219 doi: 10.1146/annurev.pp.39.060188.001135
|
10 |
Bernier G (2011). My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot , (In press) doi: 10.1093/jxb/err114 pmid:21586428
|
11 |
Bhatt A M, Etchells J P, Canales C, Lagodienko A, Dickinson H (2004). VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene , 328: 103–111 doi: 10.1016/j.gene.2003.12.033 pmid:15019989
|
12 |
Bleckmann A, Simon R (2009). Interdomain signaling in stem cell maintenance of plant shoot meristems. Mol Cells , 27(6): 615–620 doi: 10.1007/s10059-009-0094-z pmid:19533029
|
13 |
Bolduc N, Hake S (2009). The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell , 21(6): 1647–1658 doi: 10.1105/tpc.109.068221 pmid:19567707
|
14 |
Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000). Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J , 24(1): 103–111 doi: 10.1046/j.1365-313x.2000.00859.x pmid:11029708
|
15 |
Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development , 119(3): 721–743
|
16 |
Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater M M, Colombo L (2007). Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell , 19(8): 2544–2556 doi: 10.1105/tpc.107.051797 pmid:17693535
|
17 |
Braybrook S A, Kuhlemeier C (2010). How a plant builds leaves. Plant Cell , 22(4): 1006–1018 doi: 10.1105/tpc.110.073924 pmid:20424178
|
18 |
Byrne M E, Groover A T, Fontana J R, Martienssen R A (2003). Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development , 130(17): 3941–3950 doi: 10.1242/dev.00620 pmid:12874117
|
19 |
Byrne M E, Simorowski J, Martienssen R A (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development , 129(8): 1957–1965 pmid:11934861
|
20 |
Chae E, Tan Q K, Hill T A, Irish V F (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development , 135(7): 1235–1245 doi: 10.1242/dev.015842 pmid:18287201
|
21 |
Chen H, Banerjee A K, Hannapel D J (2004). The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J , 38(2): 276–284 doi: 10.1111/j.1365-313X.2004.02048.x pmid:15078330
|
22 |
Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M (1996). The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development , 122(5): 1567–1575 pmid:8625843
|
23 |
Crevillén P, Dean C (2011). Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol , 14(1): 38–44 doi: 10.1016/j.pbi.2010.08.015 pmid:20884277
|
24 |
D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011). Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J , 65(6): 972–979 doi: 10.1111/j.1365-313X.2011.04482.x pmid:21205031
|
25 |
de Folter S, Immink R G, Kieffer M, Parenicová L, Henz S R, Weigel D, Busscher M, Kooiker M, Colombo L, Kater M M, Davies B, Angenent G C (2005). Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell , 17(5): 1424–1433 doi: 10.1105/tpc.105.031831 pmid:15805477
|
26 |
Dodsworth S (2009). A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol , 336(1): 1–9 doi: 10.1016/j.ydbio.2009.09.031 pmid:19782675
|
27 |
Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006). Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol , 60(4): 469–480 doi: 10.1007/s11103-005-4814-2 pmid:16525885
|
28 |
Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T (1996). The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J , 10(6): 967–979 doi: 10.1046/j.1365-313X.1996.10060967.x pmid:9011081
|
29 |
Eriksson S, B?hlenius H, Moritz T, Nilsson O (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell , 18(9): 2172–2181 doi: 10.1105/tpc.106.042317 pmid:16920780
|
30 |
Ferrándiz C, Gu Q, Martienssen R, Yanofsky M F (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development , 127(4): 725–734 pmid:10648231
|
31 |
Fornara F, de Montaigu A, Coupland G (2010). SnapShot: Control of flowering in Arabidopsis. Cell 141(3): 550, 550 e1–2
|
32 |
Gómez-Mena C, Sablowski R (2008). ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell , 20(8): 2059–2072 doi: 10.1105/tpc.108.059188 pmid:18757555
|
33 |
Gregis V, Sessa A, Colombo L, Kater M M (2008). AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J , 56(6): 891–902 doi: 10.1111/j.1365-313X.2008.03648.x pmid:18694458
|
34 |
Gustafson-Brown C, Savidge B, Yanofsky M F (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell , 76(1): 131–143 doi: 10.1016/0092-8674(94)90178-3 pmid:7506995
|
35 |
Hake S, Smith H M, Holtan H, Magnani E, Mele G, Ramirez J (2004). The role of knox genes in plant development. Annu Rev Cell Dev Biol , 20(1): 125–151 doi: 10.1146/annurev.cellbio.20.031803.093824 pmid:15473837
|
36 |
Hamant O, Pautot V (2010). Plant development: a TALE story. C R Biol , 333(4): 371–381 doi: 10.1016/j.crvi.2010.01.015 pmid:20371112
|
37 |
Hay A, Tsiantis M (2009). A KNOX family TALE. Curr Opin Plant Biol , 12(5): 593–598 doi: 10.1016/j.pbi.2009.06.006 pmid:19632142
|
38 |
Hay A, Tsiantis M (2010). KNOX genes: versatile regulators of plant development and diversity. Development , 137(19): 3153–3165 doi: 10.1242/dev.030049 pmid:20823061
|
39 |
Helliwell C, Wood C, Robertson M, Peacock J, Dennis E (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecularweight protein complex. The Plant Journal , 46(2), 183–192
|
40 |
Hepworth S, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal , 21(16): 4327–4337
|
41 |
Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008). Molecular biology of gibberellins signaling in higher plants. Int Rev Cell Mol Biol , 268: 191–221 doi: 10.1016/S1937-6448(08)00806-X pmid:18703407
|
42 |
Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development , 120: 405–413
|
43 |
Jang S, Torti S, Coupland G (2009). Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J , 60(4): 614–625 doi: 10.1111/j.1365-313X.2009.03986.x pmid:19656342
|
44 |
Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol , 15(17): 1560–1565 doi: 10.1016/j.cub.2005.07.023 pmid:16139211
|
45 |
Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith H M (2008). Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis. Plant J , 54(5): 924–937 doi: 10.1111/j.1365-313X.2008.03458.x pmid:18298668
|
46 |
Kanrar S, Onguka O, Smith H M S (2006). Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta , 224(5): 1163–1173 doi: 10.1007/s00425-006-0298-9 pmid:16741748
|
47 |
Kerstetter R A, Laudencia-Chingcuanco D, Smith L G, Hake S (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development , 124(16): 3045–3054 pmid:9272946
|
48 |
King R W, Evans L T (2003). Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol , 54(1): 307–328 doi: 10.1146/annurev.arplant.54.031902.135029 pmid:14502993
|
49 |
Kobayashi Y, Weigel D (2007). Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev , 21(19): 2371–2384 doi: 10.1101/gad.1589007 pmid:17908925
|
50 |
Kyozuka J (2007). Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol , 10(5): 442–446 doi: 10.1016/j.pbi.2007.08.010 pmid:17904411
|
51 |
Lal S, Pacis L B, Smith H M (2011). Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 Module by the Homeodomain Proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol Plant , (In press) doi: 10.1093/mp/ssr041 pmid:21653282
|
52 |
Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev , 14(18): 2366–2376 doi: 10.1101/gad.813600 pmid:10995392
|
53 |
Lee J, Lee I (2010). Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot , 61(9): 2247–2254 doi: 10.1093/jxb/erq098 pmid:20413527
|
54 |
Lee J, Oh M, Park H, Lee I (2008). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J , 55(5): 832–843 doi: 10.1111/j.1365-313X.2008.03552.x pmid:18466303
|
55 |
Liljegren S J, Gustafson-Brown C, Pinyopich A, Ditta G S, Yanofsky M F (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell , 11(6): 1007–1018 pmid:10368173
|
56 |
Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development , 135(8): 1481–1491 doi: 10.1242/dev.020255 pmid:18339670
|
57 |
Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007). Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development , 134(10): 1901–1910 doi: 10.1242/dev.003103 pmid:17428825
|
58 |
Long J A, Barton M K (1998). The development of apical embryonic pattern in Arabidopsis. Development , 125(16): 3027–3035 pmid:9671577
|
59 |
Long J A, Moan E I, Medford J I, Barton M K (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature , 379(6560): 66–69 doi: 10.1038/379066a0 pmid:8538741
|
60 |
Lyndon R F (1998). The shoot apical meristem, Its growth and development. (Cambridge: Cambridge University Press).
|
61 |
Mandel M A, Yanofsky M F (1995). The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell , 7(11): 1763–1771 pmid:8535133
|
62 |
Martínez-Zapater J M, Jarillo J A, Cruz-Alvarez M, Roldan M, Salinas J (1995). Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J , 7(4): 543–551 doi: 10.1046/j.1365-313X.1995.7040543.x
|
63 |
Messenguy F, Dubois E (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene , 316: 1–21 doi: 10.1016/S0378-1119(03)00747-9 pmid:14563547
|
64 |
Michaels S D, Amasino R M (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell , 11(5): 949–956 pmid:10330478
|
65 |
Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M (2003). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J , 33(5): 867–874 doi: 10.1046/j.1365-313X.2003.01671.x pmid:12609028
|
66 |
Moens C B, Selleri L (2006). Hox cofactors in vertebrate development. Dev Biol , 291(2): 193–206 doi: 10.1016/j.ydbio.2005.10.032 pmid:16515781
|
67 |
Mukherjee K, Brocchieri L, Bürglin T R (2009). A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol , 26(12): 2775–2794 doi: 10.1093/molbev/msp201 pmid:19734295
|
68 |
Parcy F, Nilsson O, Busch M A, Lee I, Weigel D (1998). A genetic framework for floral patterning. Nature , 395(6702): 561–566 doi: 10.1038/26903 pmid:9783581
|
69 |
Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001). Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell , 13(12): 2687–2702 pmid:11752381
|
70 |
Proveniers M, Rutjens B, Brand M, Smeekens S (2007). The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J , 52(5): 899–913 doi: 10.1111/j.1365-313X.2007.03285.x pmid:17908157
|
71 |
Purwestri Y A, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K (2009). The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol , 50(3): 429–438 doi: 10.1093/pcp/pcp012 pmid:19179350
|
72 |
Ragni L, Belles-Boix E, Günl M, Pautot V (2008). Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell , 20(4): 888–900 doi: 10.1105/tpc.108.058230 pmid:18390591
|
73 |
Ramirez J, Bolduc N, Lisch D, Hake S (2009). Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiol , 151(4): 1878–1888 doi: 10.1104/pp.109.145920 pmid:19854860
|
74 |
Roeder A H, Ferrándiz C, Yanofsky M F (2003). The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol , 13(18): 1630–1635 doi: 10.1016/j.cub.2003.08.027 pmid:13678595
|
75 |
Ruiz-García L, Madue?o F, Wilkinson M, Haughn G, Salinas J, Martínez-Zapater J M (1997). Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell , 9(11): 1921–1934 pmid:9401118
|
76 |
Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009). Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J , 58(4): 641–654 doi: 10.1111/j.1365-313X.2009.03809.x pmid:19175771
|
77 |
Saddic L A, Huvermann B, Bezhani S, Su Y, Winter C M, Kwon C S, Collum R P, Wagner D (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development , 133(9): 1673–1682 doi: 10.1242/dev.02331 pmid:16554366
|
78 |
Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev , 15(5): 581–590 doi: 10.1101/gad.867901 pmid:11238378
|
79 |
Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science , 288(5471): 1613–1616 doi: 10.1126/science.288.5471.1613 pmid:10834834
|
80 |
Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U (2003). Dissection of floral induction pathways using global expression analysis. Development , 130(24): 6001–6012 doi: 10.1242/dev.00842 pmid:14573523
|
81 |
Schultz E A, Haughn G W (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development , 119: 745–765
|
82 |
Scofield S, Murray J A (2006). KNOX gene function in plant stem cell niches. Plant Mol Biol , 60(6): 929–946 doi: 10.1007/s11103-005-4478-y pmid:16724262
|
83 |
Searle I, He Y, Turck F, Vincent C, Fornara F, Kr?ber S, Amasino R A, Coupland G (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev , 20(7): 898–912 doi: 10.1101/gad.373506 pmid:16600915
|
84 |
Shalit A, Rozman A, Goldshmidt A, Alvarez J P, Bowman J L, Eshed Y, Lifschitz E (2009). The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA , 106(20): 8392–8397 doi: 10.1073/pnas.0810810106 pmid:19416824
|
85 |
Shani E, Yanai O, Ori N (2006). The role of hormones in shoot apical meristem function. Curr Opin Plant Biol , 9(5): 484–489 doi: 10.1016/j.pbi.2006.07.008 pmid:16877025
|
86 |
Shen W H, Xu L (2009). Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol Plant , 2(4): 600–609 doi: 10.1093/mp/ssp022 pmid:19825642
|
87 |
Smith H M, Campbell B C, Hake S (2004). Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol , 14(9): 812–817 doi: 10.1016/j.cub.2004.04.032 pmid:15120075
|
88 |
Smith H M, Hake S (2003). The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell , 15(8): 1717–1727 doi: 10.1105/tpc.012856 pmid:12897247
|
89 |
Smith H M, Ung N, Lal S, Courtier J (2011). Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. J Exp Bot , 62(2): 583–593 doi: 10.1093/jxb/erq296 pmid:20937733
|
90 |
Smith H M S, Boschke I, Hake S (2002). Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA , 99(14): 9579–9584 doi: 10.1073/pnas.092271599 pmid:12093897
|
91 |
Smith L G, Greene B, Veit B, Hake S (1992). A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development , 116(1): 21–30 pmid:1362381
|
92 |
Souer E, Rebocho A B, Bliek M, Kusters E, de Bruin R A, Koes R (2008). Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell , 20(8): 2033–2048 doi: 10.1105/tpc.108.060871 pmid:18713949
|
93 |
Steeves T A, Sussex I M (1989). Patterns in Plant Development. (Cambridge: Cambridge University Press).
|
94 |
Takada S, Hibara K i, Ishida T, Tasaka M (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development , 128(7): 1127–1135 pmid:11245578
|
95 |
Takano S, Niihama M, Smith H M, Tasaka M, Aida M (2010). gorgon, a novel missense mutation in the SHOOT MERISTEMLESS gene, impairs shoot meristem homeostasis in Arabidopsis. Plant Cell Physiol , 51(4): 621–634 doi: 10.1093/pcp/pcq028 pmid:20208065
|
96 |
Taoka K I, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature , 476(7360): 332–335 doi: 10.1038/nature10272 pmid:21804566
|
97 |
Telfer A, Bollman K M, Poethig R S (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development , 124(3): 645–654 pmid:9043079
|
98 |
Teper-Bamnolker P, Samach A (2005). The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell , 17(10): 2661–2675 doi: 10.1105/tpc.105.035766 pmid:16155177
|
99 |
Trevaskis B, Hemming M N, Peacock W J, Dennis E S (2006). HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol , 140(4): 1397–1405 doi: 10.1104/pp.105.073486 pmid:16500994
|
100 |
Ung N, Lal S, Smith H M (2011). The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol , 156(2): 605–614 doi: 10.1104/pp.110.171462 pmid:21505100
|
101 |
van der Schoot C, Rinne P L (2011). Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci , 180(1): 120–131 doi: 10.1016/j.plantsci.2010.08.009 pmid:21421354
|
102 |
van der Valk P, Proveniers M C G, Pertijs J H, Lamers J T W H, van Dun C M P, Smeekens J C M (2004). Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed , 123(6): 531–535 doi: 10.1111/j.1439-0523.2004.01026.x
|
103 |
Vernoux T, Besnard F, Traas J (2010). Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol , 2(4): a001487 doi: 10.1101/cshperspect.a001487 pmid:20452945
|
104 |
Vollbrecht E, Reiser L, Hake S (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development , 127(14): 3161–3172 pmid:10862752
|
105 |
Wagner D, Sablowski R W M, Meyerowitz E M (1999). Transcriptional activation of APETALA1 by LEAFY. Science , 285(5427): 582–584 doi: 10.1126/science.285.5427.582 pmid:10417387
|
106 |
Wang J W, Czech B, Weigel D (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell , 138(4): 738–749 doi: 10.1016/j.cell.2009.06.014 pmid:19703399
|
107 |
Weigel D, Alvarez J, Smyth D R, Yanofsky M F, Meyerowitz E M (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell , 69(5): 843–859 doi: 10.1016/0092-8674(92)90295-N pmid:1350515
|
108 |
Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science , 309(5737): 1056–1059 doi: 10.1126/science.1114358 pmid:16099980
|
109 |
William D A, Su Y, Smith M R, Lu M, Baldwin D A, Wagner D (2004). Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA , 101(6): 1775–1780 doi: 10.1073/pnas.0307842100 pmid:14736918
|
110 |
Willmann M R, Poethig R S (2011). The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development , 138(4): 677–685 doi: 10.1242/dev.057448 pmid:21228003
|
111 |
Winter C M, Austin R S, Blanvillain-Baufumé S, Reback M A, Monniaux M, Wu M F, Sang Y, Yamaguchi A, Yamaguchi N, Parker J E, Parcy F, Jensen S T, Li H, Wagner D (2011). LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell , 20(4): 430–443 doi: 10.1016/j.devcel.2011.03.019 pmid:21497757
|
112 |
Yamaguchi A, Wu M F, Yang L, Wu G, Poethig R S, Wagner D (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell , 17(2): 268–278 doi: 10.1016/j.devcel.2009.06.007 pmid:19686687
|
113 |
Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science , 303(5664): 1640–1644 doi: 10.1126/science.1094305 pmid:15016992
|
114 |
Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol , 15(17): 1566–1571 doi: 10.1016/j.cub.2005.07.060 pmid:16139212
|
115 |
Yu H, Ito T, Wellmer F, Meyerowitz E M (2004). Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet , 36(2): 157–161 doi: 10.1038/ng1286 pmid:14716314
|
116 |
Yu H, Xu Y, Tan E L, Kumar P P (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA , 99(25): 16336–16341 doi: 10.1073/pnas.212624599 pmid:12451184
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|