Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (2) : 144-154    https://doi.org/10.1007/s11515-011-1182-y
REVIEW
Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity
Shang WU, Harley M. S. SMITH()
Center for Plant Cell Biology, Institute of Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
 Download: PDF(242 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The indeterminate growth pattern displayed by shoots is mediated by the proper maintenance of the shoot meristem. Meristem maintenance is dependent upon the balance of stem cell perpetuation in the central zone (CZ) and organogenesis in the peripheral zone (PZ). Although the mechanisms that coordinate CZ and PZ function is not understood, meristem cell fate is likely achieved by the spatial interplay between gene regulatory networks and hormone signaling pathways. During shoot maturation, the identity of the shoot meristem as well as the lateral organs are transformed during the vegetative and reproductive transitions. Studies in model plant systems indicate that three amino acid extension (TALE) homeodomain proteins integrate signaling events that transform the identity of the shoot meristem and establish reproductive patterns of growth. This review will highlight the function of TALE homeodomain transcription factors that regulate shoot meristem cell fate and also function with phase specific regulators to maintain shoot meristem identity.

Keywords shoot development      meristem      flowering      patterning      homeodomain     
Corresponding Author(s): SMITH Harley M. S.,Email:harleys@ucr.edu   
Issue Date: 01 April 2012
 Cite this article:   
Shang WU,Harley M. S. SMITH. Out of step: The function of TALE homeodomain transcription factors that regulate shoot meristem maintenance and meristem identity[J]. Front Biol, 2012, 7(2): 144-154.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1182-y
https://academic.hep.com.cn/fib/EN/Y2012/V7/I2/144
Fig.1  The role of ATH1 and PNY/PNF in regulating vegetative meristem identity. In this model, we propose that and act in an antagonistic manner to regulate the temporal levels of . In addition, ATH1 promotes vegetative shoot identity by activating in a FR1 dependent manner. Positive regulation of and by ATH1 results in the repression and expression. Ultimately, inflorescence identity is repressed in part through the inactivation of expression. The solid line depicts known regulatory events while the white filled line indicates a proposed regulectory event.
Fig.2  The role of PNY and PNF in regulating flower specification. Based on this model, we propose that PNY (as well as PNF) acts to regulate flower specification by down-regulating , which allows for optimal gene expression. In addition, PNY-STM (as well as PNF-STM) heterodimer may associate with SOC1-AGL24-FUL to promote the upregulation of . Lastly, the FT activates and in a PNY (as well as PNF) dependent manner. The solid lines and arrows depict known interactions and regulatory events while the white filled lines and arrows suggest possible interactions and regulatory events.
1 Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science , 309(5737): 1052–1056
doi: 10.1126/science.1115983 pmid:16099979
2 Aida M, Ishida T, Tasaka M (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development , 126(8): 1563–1570
pmid:10079219
3 Aida M, Tasaka M (2006). Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol Biol , 60(6): 915–928
doi: 10.1007/s11103-005-2760-7 pmid:16724261
4 Amasino R (2010). Seasonal and developmental timing of flowering. Plant J , 61(6): 1001–1013
doi: 10.1111/j.1365-313X.2010.04148.x pmid:20409274
5 Barton M K (2010). Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Dev Biol , 341(1): 95–113
doi: 10.1016/j.ydbio.2009.11.029 pmid:19961843
6 Barton M K, Poethig R S (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development , 119(16): 823–831
7 Becker A, Theissen G (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol , 29(3): 464–489
doi: 10.1016/S1055-7903(03)00207-0 pmid:14615187
8 Belles-Boix E, Hamant O, Witiak S M, Morin H, Traas J, Pautot V (2006). KNAT6: an Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell , 18(8): 1900–1907
doi: 10.1105/tpc.106.041988 pmid:16798887
9 Bernier G (1988). The Control of Floral Evocation and Morphogenesis. Annu Rev Plant Physiol Plant Mol Biol , 39(1): 175–219
doi: 10.1146/annurev.pp.39.060188.001135
10 Bernier G (2011). My favourite flowering image: the role of cytokinin as a flowering signal. J Exp Bot , (In press)
doi: 10.1093/jxb/err114 pmid:21586428
11 Bhatt A M, Etchells J P, Canales C, Lagodienko A, Dickinson H (2004). VAAMANA—a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene , 328: 103–111
doi: 10.1016/j.gene.2003.12.033 pmid:15019989
12 Bleckmann A, Simon R (2009). Interdomain signaling in stem cell maintenance of plant shoot meristems. Mol Cells , 27(6): 615–620
doi: 10.1007/s10059-009-0094-z pmid:19533029
13 Bolduc N, Hake S (2009). The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell , 21(6): 1647–1658
doi: 10.1105/tpc.109.068221 pmid:19567707
14 Bonhomme F, Kurz B, Melzer S, Bernier G, Jacqmard A (2000). Cytokinin and gibberellin activate SaMADS A, a gene apparently involved in regulation of the floral transition in Sinapis alba. Plant J , 24(1): 103–111
doi: 10.1046/j.1365-313x.2000.00859.x pmid:11029708
15 Bowman J L, Alvarez J, Weigel D, Meyerowitz E M, Smyth D R (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development , 119(3): 721–743
16 Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater M M, Colombo L (2007). Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell , 19(8): 2544–2556
doi: 10.1105/tpc.107.051797 pmid:17693535
17 Braybrook S A, Kuhlemeier C (2010). How a plant builds leaves. Plant Cell , 22(4): 1006–1018
doi: 10.1105/tpc.110.073924 pmid:20424178
18 Byrne M E, Groover A T, Fontana J R, Martienssen R A (2003). Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development , 130(17): 3941–3950
doi: 10.1242/dev.00620 pmid:12874117
19 Byrne M E, Simorowski J, Martienssen R A (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development , 129(8): 1957–1965
pmid:11934861
20 Chae E, Tan Q K, Hill T A, Irish V F (2008). An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development , 135(7): 1235–1245
doi: 10.1242/dev.015842 pmid:18287201
21 Chen H, Banerjee A K, Hannapel D J (2004). The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J , 38(2): 276–284
doi: 10.1111/j.1365-313X.2004.02048.x pmid:15078330
22 Clark S E, Jacobsen S E, Levin J Z, Meyerowitz E M (1996). The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development , 122(5): 1567–1575
pmid:8625843
23 Crevillén P, Dean C (2011). Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. Curr Opin Plant Biol , 14(1): 38–44
doi: 10.1016/j.pbi.2010.08.015 pmid:20884277
24 D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C (2011). Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J , 65(6): 972–979
doi: 10.1111/j.1365-313X.2011.04482.x pmid:21205031
25 de Folter S, Immink R G, Kieffer M, Parenicová L, Henz S R, Weigel D, Busscher M, Kooiker M, Colombo L, Kater M M, Davies B, Angenent G C (2005). Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell , 17(5): 1424–1433
doi: 10.1105/tpc.105.031831 pmid:15805477
26 Dodsworth S (2009). A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol , 336(1): 1–9
doi: 10.1016/j.ydbio.2009.09.031 pmid:19782675
27 Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006). Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol , 60(4): 469–480
doi: 10.1007/s11103-005-4814-2 pmid:16525885
28 Endrizzi K, Moussian B, Haecker A, Levin J Z, Laux T (1996). The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J , 10(6): 967–979
doi: 10.1046/j.1365-313X.1996.10060967.x pmid:9011081
29 Eriksson S, B?hlenius H, Moritz T, Nilsson O (2006). GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell , 18(9): 2172–2181
doi: 10.1105/tpc.106.042317 pmid:16920780
30 Ferrándiz C, Gu Q, Martienssen R, Yanofsky M F (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development , 127(4): 725–734
pmid:10648231
31 Fornara F, de Montaigu A, Coupland G (2010). SnapShot: Control of flowering in Arabidopsis. Cell 141(3): 550, 550 e1–2
32 Gómez-Mena C, Sablowski R (2008). ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell , 20(8): 2059–2072
doi: 10.1105/tpc.108.059188 pmid:18757555
33 Gregis V, Sessa A, Colombo L, Kater M M (2008). AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J , 56(6): 891–902
doi: 10.1111/j.1365-313X.2008.03648.x pmid:18694458
34 Gustafson-Brown C, Savidge B, Yanofsky M F (1994). Regulation of the arabidopsis floral homeotic gene APETALA1. Cell , 76(1): 131–143
doi: 10.1016/0092-8674(94)90178-3 pmid:7506995
35 Hake S, Smith H M, Holtan H, Magnani E, Mele G, Ramirez J (2004). The role of knox genes in plant development. Annu Rev Cell Dev Biol , 20(1): 125–151
doi: 10.1146/annurev.cellbio.20.031803.093824 pmid:15473837
36 Hamant O, Pautot V (2010). Plant development: a TALE story. C R Biol , 333(4): 371–381
doi: 10.1016/j.crvi.2010.01.015 pmid:20371112
37 Hay A, Tsiantis M (2009). A KNOX family TALE. Curr Opin Plant Biol , 12(5): 593–598
doi: 10.1016/j.pbi.2009.06.006 pmid:19632142
38 Hay A, Tsiantis M (2010). KNOX genes: versatile regulators of plant development and diversity. Development , 137(19): 3153–3165
doi: 10.1242/dev.030049 pmid:20823061
39 Helliwell C, Wood C, Robertson M, Peacock J, Dennis E (2006). The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecularweight protein complex. The Plant Journal , 46(2), 183–192
40 Hepworth S, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal , 21(16): 4327–4337
41 Itoh H, Ueguchi-Tanaka M, Matsuoka M (2008). Molecular biology of gibberellins signaling in higher plants. Int Rev Cell Mol Biol , 268: 191–221
doi: 10.1016/S1937-6448(08)00806-X pmid:18703407
42 Jackson D, Veit B, Hake S (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development , 120: 405–413
43 Jang S, Torti S, Coupland G (2009). Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J , 60(4): 614–625
doi: 10.1111/j.1365-313X.2009.03986.x pmid:19656342
44 Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005). KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol , 15(17): 1560–1565
doi: 10.1016/j.cub.2005.07.023 pmid:16139211
45 Kanrar S, Bhattacharya M, Arthur B, Courtier J, Smith H M (2008). Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis. Plant J , 54(5): 924–937
doi: 10.1111/j.1365-313X.2008.03458.x pmid:18298668
46 Kanrar S, Onguka O, Smith H M S (2006). Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta , 224(5): 1163–1173
doi: 10.1007/s00425-006-0298-9 pmid:16741748
47 Kerstetter R A, Laudencia-Chingcuanco D, Smith L G, Hake S (1997). Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development , 124(16): 3045–3054
pmid:9272946
48 King R W, Evans L T (2003). Gibberellins and flowering of grasses and cereals: prizing open the lid of the “florigen” black box. Annu Rev Plant Biol , 54(1): 307–328
doi: 10.1146/annurev.arplant.54.031902.135029 pmid:14502993
49 Kobayashi Y, Weigel D (2007). Move on up, it’s time for change—mobile signals controlling photoperiod-dependent flowering. Genes Dev , 21(19): 2371–2384
doi: 10.1101/gad.1589007 pmid:17908925
50 Kyozuka J (2007). Control of shoot and root meristem function by cytokinin. Curr Opin Plant Biol , 10(5): 442–446
doi: 10.1016/j.pbi.2007.08.010 pmid:17904411
51 Lal S, Pacis L B, Smith H M (2011). Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 Module by the Homeodomain Proteins PENNYWISE and POUND-FOOLISH in Arabidopsis. Mol Plant , (In press)
doi: 10.1093/mp/ssr041 pmid:21653282
52 Lee H, Suh S S, Park E, Cho E, Ahn J H, Kim S G, Lee J S, Kwon Y M, Lee I (2000). The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev , 14(18): 2366–2376
doi: 10.1101/gad.813600 pmid:10995392
53 Lee J, Lee I (2010). Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot , 61(9): 2247–2254
doi: 10.1093/jxb/erq098 pmid:20413527
54 Lee J, Oh M, Park H, Lee I (2008). SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J , 55(5): 832–843
doi: 10.1111/j.1365-313X.2008.03552.x pmid:18466303
55 Liljegren S J, Gustafson-Brown C, Pinyopich A, Ditta G S, Yanofsky M F (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell , 11(6): 1007–1018
pmid:10368173
56 Liu C, Chen H, Er H L, Soo H M, Kumar P P, Han J H, Liou Y C, Yu H (2008). Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development , 135(8): 1481–1491
doi: 10.1242/dev.020255 pmid:18339670
57 Liu C, Zhou J, Bracha-Drori K, Yalovsky S, Ito T, Yu H (2007). Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development , 134(10): 1901–1910
doi: 10.1242/dev.003103 pmid:17428825
58 Long J A, Barton M K (1998). The development of apical embryonic pattern in Arabidopsis. Development , 125(16): 3027–3035
pmid:9671577
59 Long J A, Moan E I, Medford J I, Barton M K (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature , 379(6560): 66–69
doi: 10.1038/379066a0 pmid:8538741
60 Lyndon R F (1998). The shoot apical meristem, Its growth and development. (Cambridge: Cambridge University Press).
61 Mandel M A, Yanofsky M F (1995). The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell , 7(11): 1763–1771
pmid:8535133
62 Martínez-Zapater J M, Jarillo J A, Cruz-Alvarez M, Roldan M, Salinas J (1995). Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J , 7(4): 543–551
doi: 10.1046/j.1365-313X.1995.7040543.x
63 Messenguy F, Dubois E (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene , 316: 1–21
doi: 10.1016/S0378-1119(03)00747-9 pmid:14563547
64 Michaels S D, Amasino R M (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell , 11(5): 949–956
pmid:10330478
65 Michaels S D, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino R M (2003). AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J , 33(5): 867–874
doi: 10.1046/j.1365-313X.2003.01671.x pmid:12609028
66 Moens C B, Selleri L (2006). Hox cofactors in vertebrate development. Dev Biol , 291(2): 193–206
doi: 10.1016/j.ydbio.2005.10.032 pmid:16515781
67 Mukherjee K, Brocchieri L, Bürglin T R (2009). A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol , 26(12): 2775–2794
doi: 10.1093/molbev/msp201 pmid:19734295
68 Parcy F, Nilsson O, Busch M A, Lee I, Weigel D (1998). A genetic framework for floral patterning. Nature , 395(6702): 561–566
doi: 10.1038/26903 pmid:9783581
69 Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001). Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell , 13(12): 2687–2702
pmid:11752381
70 Proveniers M, Rutjens B, Brand M, Smeekens S (2007). The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J , 52(5): 899–913
doi: 10.1111/j.1365-313X.2007.03285.x pmid:17908157
71 Purwestri Y A, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K (2009). The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol , 50(3): 429–438
doi: 10.1093/pcp/pcp012 pmid:19179350
72 Ragni L, Belles-Boix E, Günl M, Pautot V (2008). Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell , 20(4): 888–900
doi: 10.1105/tpc.108.058230 pmid:18390591
73 Ramirez J, Bolduc N, Lisch D, Hake S (2009). Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiol , 151(4): 1878–1888
doi: 10.1104/pp.109.145920 pmid:19854860
74 Roeder A H, Ferrándiz C, Yanofsky M F (2003). The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol , 13(18): 1630–1635
doi: 10.1016/j.cub.2003.08.027 pmid:13678595
75 Ruiz-García L, Madue?o F, Wilkinson M, Haughn G, Salinas J, Martínez-Zapater J M (1997). Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell , 9(11): 1921–1934
pmid:9401118
76 Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M (2009). Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J , 58(4): 641–654
doi: 10.1111/j.1365-313X.2009.03809.x pmid:19175771
77 Saddic L A, Huvermann B, Bezhani S, Su Y, Winter C M, Kwon C S, Collum R P, Wagner D (2006). The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development , 133(9): 1673–1682
doi: 10.1242/dev.02331 pmid:16554366
78 Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001). KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev , 15(5): 581–590
doi: 10.1101/gad.867901 pmid:11238378
79 Samach A, Onouchi H, Gold S E, Ditta G S, Schwarz-Sommer Z, Yanofsky M F, Coupland G (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science , 288(5471): 1613–1616
doi: 10.1126/science.288.5471.1613 pmid:10834834
80 Schmid M, Uhlenhaut N H, Godard F, Demar M, Bressan R, Weigel D, Lohmann J U (2003). Dissection of floral induction pathways using global expression analysis. Development , 130(24): 6001–6012
doi: 10.1242/dev.00842 pmid:14573523
81 Schultz E A, Haughn G W (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development , 119: 745–765
82 Scofield S, Murray J A (2006). KNOX gene function in plant stem cell niches. Plant Mol Biol , 60(6): 929–946
doi: 10.1007/s11103-005-4478-y pmid:16724262
83 Searle I, He Y, Turck F, Vincent C, Fornara F, Kr?ber S, Amasino R A, Coupland G (2006). The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev , 20(7): 898–912
doi: 10.1101/gad.373506 pmid:16600915
84 Shalit A, Rozman A, Goldshmidt A, Alvarez J P, Bowman J L, Eshed Y, Lifschitz E (2009). The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc Natl Acad Sci USA , 106(20): 8392–8397
doi: 10.1073/pnas.0810810106 pmid:19416824
85 Shani E, Yanai O, Ori N (2006). The role of hormones in shoot apical meristem function. Curr Opin Plant Biol , 9(5): 484–489
doi: 10.1016/j.pbi.2006.07.008 pmid:16877025
86 Shen W H, Xu L (2009). Chromatin remodeling in stem cell maintenance in Arabidopsis thaliana. Mol Plant , 2(4): 600–609
doi: 10.1093/mp/ssp022 pmid:19825642
87 Smith H M, Campbell B C, Hake S (2004). Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr Biol , 14(9): 812–817
doi: 10.1016/j.cub.2004.04.032 pmid:15120075
88 Smith H M, Hake S (2003). The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell , 15(8): 1717–1727
doi: 10.1105/tpc.012856 pmid:12897247
89 Smith H M, Ung N, Lal S, Courtier J (2011). Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. J Exp Bot , 62(2): 583–593
doi: 10.1093/jxb/erq296 pmid:20937733
90 Smith H M S, Boschke I, Hake S (2002). Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA , 99(14): 9579–9584
doi: 10.1073/pnas.092271599 pmid:12093897
91 Smith L G, Greene B, Veit B, Hake S (1992). A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development , 116(1): 21–30
pmid:1362381
92 Souer E, Rebocho A B, Bliek M, Kusters E, de Bruin R A, Koes R (2008). Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell , 20(8): 2033–2048
doi: 10.1105/tpc.108.060871 pmid:18713949
93 Steeves T A, Sussex I M (1989). Patterns in Plant Development. (Cambridge: Cambridge University Press).
94 Takada S, Hibara K i, Ishida T, Tasaka M (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development , 128(7): 1127–1135
pmid:11245578
95 Takano S, Niihama M, Smith H M, Tasaka M, Aida M (2010). gorgon, a novel missense mutation in the SHOOT MERISTEMLESS gene, impairs shoot meristem homeostasis in Arabidopsis. Plant Cell Physiol , 51(4): 621–634
doi: 10.1093/pcp/pcq028 pmid:20208065
96 Taoka K I, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri Y A, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature , 476(7360): 332–335
doi: 10.1038/nature10272 pmid:21804566
97 Telfer A, Bollman K M, Poethig R S (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development , 124(3): 645–654
pmid:9043079
98 Teper-Bamnolker P, Samach A (2005). The flowering integrator FT regulates SEPALLATA3 and FRUITFULL accumulation in Arabidopsis leaves. Plant Cell , 17(10): 2661–2675
doi: 10.1105/tpc.105.035766 pmid:16155177
99 Trevaskis B, Hemming M N, Peacock W J, Dennis E S (2006). HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol , 140(4): 1397–1405
doi: 10.1104/pp.105.073486 pmid:16500994
100 Ung N, Lal S, Smith H M (2011). The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol , 156(2): 605–614
doi: 10.1104/pp.110.171462 pmid:21505100
101 van der Schoot C, Rinne P L (2011). Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci , 180(1): 120–131
doi: 10.1016/j.plantsci.2010.08.009 pmid:21421354
102 van der Valk P, Proveniers M C G, Pertijs J H, Lamers J T W H, van Dun C M P, Smeekens J C M (2004). Late heading of perennial ryegrass caused by introducing an Arabidopsis homeobox gene. Plant Breed , 123(6): 531–535
doi: 10.1111/j.1439-0523.2004.01026.x
103 Vernoux T, Besnard F, Traas J (2010). Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol , 2(4): a001487
doi: 10.1101/cshperspect.a001487 pmid:20452945
104 Vollbrecht E, Reiser L, Hake S (2000). Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development , 127(14): 3161–3172
pmid:10862752
105 Wagner D, Sablowski R W M, Meyerowitz E M (1999). Transcriptional activation of APETALA1 by LEAFY. Science , 285(5427): 582–584
doi: 10.1126/science.285.5427.582 pmid:10417387
106 Wang J W, Czech B, Weigel D (2009). miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell , 138(4): 738–749
doi: 10.1016/j.cell.2009.06.014 pmid:19703399
107 Weigel D, Alvarez J, Smyth D R, Yanofsky M F, Meyerowitz E M (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell , 69(5): 843–859
doi: 10.1016/0092-8674(92)90295-N pmid:1350515
108 Wigge P A, Kim M C, Jaeger K E, Busch W, Schmid M, Lohmann J U, Weigel D (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science , 309(5737): 1056–1059
doi: 10.1126/science.1114358 pmid:16099980
109 William D A, Su Y, Smith M R, Lu M, Baldwin D A, Wagner D (2004). Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci USA , 101(6): 1775–1780
doi: 10.1073/pnas.0307842100 pmid:14736918
110 Willmann M R, Poethig R S (2011). The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development , 138(4): 677–685
doi: 10.1242/dev.057448 pmid:21228003
111 Winter C M, Austin R S, Blanvillain-Baufumé S, Reback M A, Monniaux M, Wu M F, Sang Y, Yamaguchi A, Yamaguchi N, Parker J E, Parcy F, Jensen S T, Li H, Wagner D (2011). LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell , 20(4): 430–443
doi: 10.1016/j.devcel.2011.03.019 pmid:21497757
112 Yamaguchi A, Wu M F, Yang L, Wu G, Poethig R S, Wagner D (2009). The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev Cell , 17(2): 268–278
doi: 10.1016/j.devcel.2009.06.007 pmid:19686687
113 Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science , 303(5664): 1640–1644
doi: 10.1126/science.1094305 pmid:15016992
114 Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005). Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol , 15(17): 1566–1571
doi: 10.1016/j.cub.2005.07.060 pmid:16139212
115 Yu H, Ito T, Wellmer F, Meyerowitz E M (2004). Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet , 36(2): 157–161
doi: 10.1038/ng1286 pmid:14716314
116 Yu H, Xu Y, Tan E L, Kumar P P (2002). AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci USA , 99(25): 16336–16341
doi: 10.1073/pnas.212624599 pmid:12451184
[1] Zhihui XIE, Nengyin SHENG, Naihe JING. BMP signaling pathway and spinal cord development[J]. Front Biol, 2012, 7(1): 24-29.
[2] Chun-Ming LIU, Yuxin HU. Plant stem cells and their regulations in shoot apical meristems[J]. Front Biol, 2010, 5(5): 417-423.
[3] HU Zhe, LI Ping, MA Jinfang, WANG Yunlong, WANG Xinyu, WANG Chongying. Phenotypical and structural characterization of the mutant involved in shoot apical meristem[J]. Front. Biol., 2008, 3(4): 484-488.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed