Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 205-215    https://doi.org/10.1007/s11515-014-1305-3
REVIEW
Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy
Hee Jung CHUNG1,2,*()
1. Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2. Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
 Download: PDF(615 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Neuronal Kv7/KCNQ channels are critical regulators of neuronal excitability since they potently suppress repetitive firing of action potentials. These voltage-dependent potassium channels are composed mostly of Kv7.2 / KCNQ2 and Kv7.3 / KCNQ3 subunits that show overlapping distribution throughout the brain and in the peripheral nervous system. They are also called ‘M-channels’ since their inhibition by muscarinic agonists leads to a profound increase in action potential firing. Consistent with their ability to suppress seizures and attenuate chronic inflammatory and neuropathic pain, mutations in the KCNQ2 and KCNQ3 genes are associated with benign familial neonatal convulsions, a dominantly-inherited epilepsy in infancy. Recently, de novo mutations in the KCNQ2 gene have been linked to early onset epileptic encephalopathy. Notably, some of these mutations are clustered in a region of the intracellular cytoplasmic tail of Kv7.2 that interacts with a ubiquitous calcium sensor, calmodulin. In this review, we highlight the recent advances in understanding the role of calmodulin in modulating physiological function of neuronal Kv7 channels including their biophysical properties, assembly, and trafficking. We also summarize recent studies that have investigated functional impact of epilepsy-associated mutations localized to the calmodulin binding domains of Kv7.2.

Keywords calmodulin      Kv7      KCNQ      epilepsy      action potential      M-channel     
Corresponding Author(s): Hee Jung CHUNG   
Issue Date: 24 June 2014
 Cite this article:   
Hee Jung CHUNG. Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy[J]. Front. Biol., 2014, 9(3): 205-215.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1305-3
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/205
Fig.1  Schematic representation of a single Kv7.2 subunit. Schematic drawing (not to scale) of a Kv7.2 subunit (accession number: Y15065; 844 amino acids) showing a short N-terminal tail, 6 transmembrane domains (S1-6), and a long C-terminal tail that contains four predicted α-helical regions (A-D) and ankyrin-G binding domain (amino acids 833-842). The proximal C-terminal tail from helix A (amino acids 335-356) to helix B (amino acids 532-558) provides phosphorylation sites for protein kinase C (PKC) and tyrosine kinase Src (not shown) as well as binding sites for calmodulin (CaM), A-kinase-anchoring protein (AKAP79/150), and syntaxin 1A. A subunit interaction domain (Sid) spans from helix C (amino acids 574-588) to helix D (amino acids 619-653). The binding regions for PIP2 (phosphatidylinositol-(4,5)-bisphosphate) are also indicated.
Fig.2  Ca2+-dependent interactions of Kv7.2/Kv7.3 channels with CaM. In this model, one apoCaM binds to both helix A and helix B of a single Kv7.2 or Kv7.3 in 1:1 stoichiometry. The apoCaM binding regulates the assembly of Kv7.2/Kv7.3 channels and facilitates the channel exit from the ER. One Ca2+-CaM binds only to helix B of a single Kv7.2 or Kv7.3 in 1:1 stoichiometry. The Ca2+-CaM is critical for Ca2+-dependent current suppression of Kv7.2/Kv7.3 channels.
Fig.3  Location of the mutations associated with BFNC and epileptic encephalopathy in the helices A and B of Kv7.2. In this schematic representation of a single Kv7.2 subunit (accession number: Y15065), the CaM binding motifs in helices A and B are indicated. The amino acid residues mutated in BFNC and epileptic encephalopathy are indicated in red and blue, respectively.
1 AivarP, Fernández-OrthJ, Gomis-PerezC, AlberdiA, AlaimoA, RodríguezM S, GiraldezT, MirandaP, AresoP, VillarroelA (2012). Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker. PLoS One, 7(10): e47263
doi: 10.1371/journal.pone.0047263 pmid: 23115641
2 AlaimoA, AlberdiA, Gomis-PerezC, Fernandez-OrthJ, Gomez-PosadaJ C, AresoP, VillarroelA (2012). Cooperativity between calmodulin binding sites in Kv7.2 channels. J Cell Sci
pmid: 23203804
3 AlaimoA, Gómez-PosadaJ C, AivarP, EtxeberríaA, Rodriguez-AlfaroJ A, AresoP, VillarroelA (2009). Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem, 284(31): 20668-20675
doi: 10.1074/jbc.M109.019539 pmid: 19494108
4 AlfonsoI, HahnJ S, PapazianO, MartinezY L, ReyesM A, AicardiJ (1997). Bilateral tonic-clonic epileptic seizures in non-benign familial neonatal convulsions. Pediatr Neurol, 16(3): 249-251
doi: 10.1016/S0887-8994(97)89978-X pmid: 9165519
5 BalM, ZhangJ, HernandezCC, ZaikaO, ShapiroMS (2010) Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-Type) K+ channels. The Journal of neuroscience: the official journal of the Society for Neuroscience30: 2311-2323.
6 Blackburn-MunroG, JensenB S (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol, 460(2-3): 109-116
doi: 10.1016/S0014-2999(02)02924-2 pmid: 12559370
7 BorgattiR, ZuccaC, CavalliniA, FerrarioM, PanzeriC, CastaldoP, SoldovieriM V, BaschirottoC, BresolinN, Dalla BernardinaB, TaglialatelaM, BassiM T (2004). A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology, 63(1): 57-65
doi: 10.1212/01.WNL.0000132979.08394.6D pmid: 15249611
8 BrownD A, PassmoreG M (2009). Neural KCNQ (Kv7) channels. Br J Pharmacol, 156(8): 1185-1195
doi: 10.1111/j.1476-5381.2009.00111.x pmid: 19298256
9 ChoveauF S, BierbowerS M, ShapiroM S (2012). Pore helix-S6 interactions are critical in governing current amplitudes of KCNQ3 K+ channels. Biophys J, 102(11): 2499-2509
doi: 10.1016/j.bpj.2012.04.019 pmid: 22713565
10 ChungH J, JanY N, JanL Y (2006). Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci U S A, 103(23): 8870-8875
doi: 10.1073/pnas.0603376103 pmid: 16735477
11 ClarkB D, GoldbergE M, RudyB (2009). Electrogenic tuning of the axon initial segment. Neuroscientist, 15(6): 651-668
doi: 10.1177/1073858409341973 pmid: 20007821
12 CooperE C, HarringtonE, JanY N, JanL Y (2001) M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci, 21: 9529-9540
13 CoppolaG, CastaldoP, Miraglia del GiudiceE, BelliniG, GalassoF, SoldovieriM V, AnzaloneL, SferroC, AnnunziatoL, PascottoA, TaglialatelaM (2003). A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology, 61(1): 131-134
doi: 10.1212/01.WNL.0000069465.53698.BD pmid: 12847176
14 DahimèneS, AlcoléaS, NaudP, JourdonP, EscandeD, BrasseurR, ThomasA, BaróI, MérotJ (2006). The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ Res, 99(10): 1076-1083
doi: 10.1161/01.RES.0000250262.12219.95 pmid: 17053194
15 DaileyJ W, CheongJ H, KoK H, Adams-CurtisL E, JobeP C (1995). Anticonvulsant properties of D-20443 in genetically epilepsy-prone rats: prediction of clinical response. Neurosci Lett, 195(2): 77-80
doi: 10.1016/0304-3940(95)11783-S pmid: 7478272
16 DedekK, FuscoL, TeloyN, SteinleinO K (2003). Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res, 54(1): 21-27
doi: 10.1016/S0920-1211(03)00037-8 pmid: 12742592
17 DedekK, KunathB, KananuraC, ReunerU, JentschT J, SteinleinO K (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci U S A, 98(21): 12272-12277
doi: 10.1073/pnas.211431298 pmid: 11572947
18 DelmasP, BrownD A (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci, 6(11): 850-862
doi: 10.1038/nrn1785 pmid: 16261179
19 DenckerD, DiasR, PedersenM L, HusumH (2008). Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav, 12(1): 49-53
doi: 10.1016/j.yebeh.2007.09.023 pmid: 18086455
20 DevauxJ J, KleopaK A, CooperE C, SchererS S (2004). KCNQ2 is a nodal K+ channel. J Neurosci, 24: 1236-1244
21 EtxeberriaA, AivarP, Rodriguez-AlfaroJ A, AlaimoA, VillaceP, Gomez-PosadaJ C, AresoP, VillarroelA (2008). Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J, 22: 1135-1143
22 EtxeberriaA, Santana-CastroI, RegaladoMP, AivarP, VillarroelA (2004). Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation. J Neurosci, 24: 9146-9152
23 EtzioniA, SiloniS, ChikvashvilliD, StrulovichR, SachyaniD, RegevN, Greitzer-AntesD, HirschJ A, LotanI (2011). Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A. J Neurosci, 31: 14158-14171
24 FordC P, StemkowskiPL, LightP E, SmithP A (2003). Experiments to test the role of phosphatidylinositol 4,5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. J Neurosci, 234931-4941
25 GamperN, LiY, ShapiroM S (2005). Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell, 16(8): 3538-3551
doi: 10.1091/mbc.E04-09-0849 pmid: 15901836
26 GamperN, ShapiroM S (2003). Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol, 122(1): 17-31
doi: 10.1085/jgp.200208783 pmid: 12810850
27 GamperN, ShapiroM S (2007). Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci, 8(12): 921-934
doi: 10.1038/nrn2257 pmid: 17971783
28 Gómez-PosadaJ C, AivarP, AlberdiA, AlaimoA, EtxeberríaA, Fernández-OrthJ, ZamalloaT, Roura-FerrerM, VillaceP, AresoP, CasisO, VillarroelA (2011). Kv7 channels can function without constitutive calmodulin tethering. PLoS One, 6(9): e25508
doi: 10.1371/journal.pone.0025508 pmid: 21980481
29 GuN, VervaekeK, HuH, StormJ F (2005). Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol, 566(Pt 3): 689-715
doi: 10.1113/jphysiol.2005.086835 pmid: 15890705
30 GunthorpeM J, LargeC H, SankarR (2012). The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 53(3): 412-424
doi: 10.1111/j.1528-1167.2011.03365.x pmid: 22220513
31 HadleyJ K, PassmoreG M, TatulianL, Al-QatariM, YeF, WickendenA D, BrownD A (2003) Stoichiometry of expressed KCNQ2/KCNQ3 potassium channels and subunit composition of native ganglionic M channels deduced from block by tetraethylammonium. J Neurosci, 23: 5012-5019
32 HaitinY, AttaliB (2008). The C-terminus of Kv7 channels: a multifunctional module. J Physiol, 586(7): 1803-1810
doi: 10.1113/jphysiol.2007.149187 pmid: 18218681
33 HansenH H, AndreasenJ T, WeikopP, MirzaN, Scheel-KrügerJ, MikkelsenJ D (2007). The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory responses to the psychostimulants cocaine, methylphenidate and phencyclidine. Eur J Pharmacol, 570(1-3): 77-88
doi: 10.1016/j.ejphar.2007.05.029 pmid: 17628530
34 HernandezC C, ZaikaO, ShapiroM S (2008). A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. J Gen Physiol, 132(3): 361-381
doi: 10.1085/jgp.200810007 pmid: 18725531
35 HigashidaH, HoshiN, ZhangJ S, YokoyamaS, HashiiM, JinD, NodaM, RobbinsJ (2005). Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res, 51(3): 231-234
doi: 10.1016/j.neures.2004.11.009 pmid: 15710486
36 HoeflichK P, IkuraM (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell, 108(6): 739-742
doi: 10.1016/S0092-8674(02)00682-7 pmid: 11955428
37 HoshiN, LangebergL K, ScottJ D (2005). Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol, 7(11): 1066-1073
doi: 10.1038/ncb1315 pmid: 16228013
38 HoshiN, ZhangJ S, OmakiM, TakeuchiT, YokoyamaS, WanaverbecqN, LangebergL K, YonedaY, ScottJ D, BrownD A, HigashidaH (2003). AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci, 6(6): 564-571
doi: 10.1038/nn1062 pmid: 12754513
39 HowardA L, NeuA, MorganR J, EchegoyenJ C, SolteszI (2007a). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol, 97(3): 2394-2409
doi: 10.1152/jn.00509.2006 pmid: 16943315
40 HowardR J, ClarkK A, HoltonJ M, MinorD L Jr (2007b). Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron, 53(5): 663-675
doi: 10.1016/j.neuron.2007.02.010 pmid: 17329207
41 KorsgaardM P, HartzB P, BrownW D, AhringP K, StrøbaekD, MirzaN R (2005). Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther, 314(1): 282-292
doi: 10.1124/jpet.105.083923 pmid: 15814569
42 KosenkoA, KangS, SmithI M, GreeneD L, LangebergL K, ScottJ D, HoshiN (2012). Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. EMBO J, 31(14): 3147-3156
doi: 10.1038/emboj.2012.156 pmid: 22643219
43 KwanP, BrodieM J (2000). Epilepsy after the first drug fails: substitution or add-on? Seizure, 9(7): 464-468
doi: 10.1053/seiz.2000.0442 pmid: 11034869
44 LaiH C, JanL Y (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci, 7(7): 548-562
doi: 10.1038/nrn1938 pmid: 16791144
45 LargeC H, SokalD M, NehligA, GunthorpeM J, SankarR, CreanC S, VanlandinghamK E, WhiteH S (2012). The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia, 53(3): 425-436
doi: 10.1111/j.1528-1167.2011.03364.x pmid: 22221318
46 LercheH, BiervertC, AlekovA K, SchleithoffL, LindnerM, KlingerW, BretschneiderF, MitrovicN, Jurkat-RottK, BodeH, Lehmann-HornF, SteinleinO K (1999). A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol, 46(3): 305-312
doi: 10.1002/1531-8249(199909)46:3<305::AID-ANA5>3.0.CO;2-5 pmid: 10482260
47 LiY, GamperN, HilgemannDW, ShapiroMS (2005). Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci, 25: 9825-9835
48 LiuW, DevauxJ J (2014). Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. Mol Cell Neurosci, 58: 40-52
pmid: 24333508
49 MaljevicS, WuttkeT V, LercheH (2008). Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol, 586(7): 1791-1801
doi: 10.1113/jphysiol.2008.150656 pmid: 18238816
50 MartireM, CastaldoP, D'AmicoM, PreziosiP, AnnunziatoL, TaglialatelaM (2004). M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci, 24: 592-597
51 MoulardB, PicardF, le HellardS, AgulhonC, WeilandS, FavreI, BertrandS, MalafosseA, BertrandD (2001). Ion channel variation causes epilepsies. Brain Res Brain Res Rev, 36(2-3): 275-284
doi: 10.1016/S0165-0173(01)00104-7 pmid: 11690625
52 OhtaharaS, YamatogiY (2006). Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res, 70(Suppl 1): S58-S67
doi: 10.1016/j.eplepsyres.2005.11.021 pmid: 16829045
53 OrhanG, BockM, SchepersD, IlinaE I, ReichelS N, LofflerH, JezutkovicN, WeckhuysenS, MandelstamS, SulsA, DankerT, GuentherE, SchefferI E, JongheP D, LercheH, MaljevicS (2013). Dominant-negative Effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol, 75(3): 382-394
54 PanZ, KaoT, HorvathZ, LemosJ, SulJ Y, CranstounS D, BennettV, SchererS S, CooperE C (2006). A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci, 26: 2599-2613
55 PassmoreG M, SelyankoA A, MistryM, Al-QatariM, MarshS J, MatthewsE A, DickensonAH, BrownT A, BurbidgeS A, MainM, BrownD A (2003). KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci, 23: 7227-7236
56 PeretzA, SheininA, YueC, Degani-KatzavN, GiborG, NachmanR, GopinA, TamE, ShabatD, YaariY, AttaliB (2007). Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol, 97(1): 283-295
doi: 10.1152/jn.00634.2006 pmid: 17050829
57 PetersH C, HuH, PongsO, StormJ F, IsbrandtD (2005). Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci, 8(1): 51-60
doi: 10.1038/nn1375 pmid: 15608631
58 PsenkaT M, HoldenK R (1996). Benign familial neonatal convulsions; psychosocial adjustment to the threat of recurrent seizures. Seizure, 5(3): 243-245
doi: 10.1016/S1059-1311(96)80044-6 pmid: 8902929
59 RasmussenH B, Frøkjaer-JensenC, JensenC S, JensenH S, JørgensenN K, MisonouH, TrimmerJ S, OlesenS P, SchmittN (2007). Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci, 120(Pt 6): 953-963
doi: 10.1242/jcs.03396 pmid: 17311847
60 RegevN, Degani-KatzavN, KorngreenA, EtzioniA, SiloniS, AlaimoA, ChikvashviliD, VillarroelA, AttaliB, LotanI (2009). Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity. PLoS One, 4(8): e6586
doi: 10.1371/journal.pone.0006586 pmid: 19675672
61 RichardsM C, HeronS E, SpendloveH E, SchefferI E, GrintonB, BerkovicS F, MulleyJ C, DavyA (2004). Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet, 41(3): e35
doi: 10.1136/jmg.2003.013938 pmid: 14985406
62 RobbinsJ (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther, 90(1): 1-19
doi: 10.1016/S0163-7258(01)00116-4 pmid: 11448722
63 RocheJ P, WestenbroekR, SoromA J, HilleB, MackieK, ShapiroM S (2002). Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Br J Pharmacol, 137(8): 1173-1186
doi: 10.1038/sj.bjp.0704989 pmid: 12466226
64 RostockA, ToberC, RundfeldtC, BartschR, EngelJ, PolymeropoulosE E, KutscherB, LöscherW, HönackD, WhiteH S, WolfH H (1996). D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res, 23(3): 211-223
doi: 10.1016/0920-1211(95)00101-8 pmid: 8739124
65 SaitsuH, KatoM, KoideA, GotoT, FujitaT, NishiyamaK, TsurusakiY, DoiH, MiyakeN, HayasakaK, MatsumotoN (2012). Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol, 72(2): 298-300
doi: 10.1002/ana.23620 pmid: 22926866
66 SchmittB, WohlrabG, SanderT, SteinleinO K, HajnalB L (2005). Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res, 65(3): 161-168
doi: 10.1016/j.eplepsyres.2005.05.009 pmid: 16039833
67 SchroederB C, KubischC, SteinV, JentschT J (1998). Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 396(6712): 687-690
doi: 10.1038/25367 pmid: 9872318
68 SchwakeM, AthanasiaduD, BeimgrabenC, BlanzJ, BeckC, JentschTJ, SaftigP, FriedrichT (2006). Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci, 26: 3757-3766
69 SchwakeM, JentschT J, FriedrichT (2003). A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep, 4(1): 76-81
doi: 10.1038/sj.embor.embor715 pmid: 12524525
70 SchwakeM, PuschM, KharkovetsT, JentschT J (2000). Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem, 275(18): 13343-13348
doi: 10.1074/jbc.275.18.13343 pmid: 10788442
71 SchwarzJ R, GlassmeierG, CooperE C, KaoT C, NoderaH, TabuenaD, KajiR, BostockH (2006). KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol, 573(Pt 1): 17-34
doi: 10.1113/jphysiol.2006.106815 pmid: 16527853
72 SelyankoA A, BrownD A (1996). Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron, 16(1): 151-162
doi: 10.1016/S0896-6273(00)80032-X pmid: 8562079
73 ShahM M, MiglioreM, BrownD A (2011). Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons. J Physiol, 589(Pt 24): 6029-6038
pmid: 22041186
74 ShahM M, MiglioreM, ValenciaI, CooperE C, BrownD A (2008). Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A, 105(22): 7869-7874
doi: 10.1073/pnas.0802805105 pmid: 18515424
75 ShahM, MistryM, MarshS J, BrownD A, DelmasP (2002). Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol, 544(Pt 1): 29-37
doi: 10.1113/jphysiol.2002.028571 pmid: 12356878
76 ShahidullahM, SantarelliL C, WenH, LevitanI B (2005). Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc Natl Acad Sci U S A, 102(45): 16454-16459
doi: 10.1073/pnas.0503966102 pmid: 16263935
77 SinghNA, WestenskowP, CharlierC, PappasC, LeslieJ, DillonJ, AndersonVE, SanguinettiMC, LeppertMF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 126: 2726-2737
78 SoldovieriM V, Boutry-KryzaN, MilhM, DoummarD, HeronB, BourelE, AmbrosinoP, MiceliF, De MariaM, DorisonN, AuvinS, EchenneB, OertelJ, RiquetA, LambertL, GerardM, RoubergueA, CalenderA, MignotC, TaglialatelaM, LescaG (2014). Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat, 35(3): 356-367
doi: 10.1002/humu.22500 pmid: 24375629
79 SoldovieriM V, CastaldoP, IodiceL, MiceliF, BarreseV, BelliniG, Miraglia del GiudiceE, PascottoA, BonattiS, AnnunziatoL, TaglialatelaM (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem, 281(1): 418-428
doi: 10.1074/jbc.M510980200 pmid: 16260777
80 SoldovieriM V, MiceliF, TaglialatelaM (2011). Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda), 26(5): 365-376
doi: 10.1152/physiol.00009.2011 pmid: 22013194
81 SongA H, WangD, ChenG, LiY, LuoJ, DuanS, PooM M (2009). A selective filter for cytoplasmic transport at the axon initial segment. Cell, 136(6): 1148-1160
doi: 10.1016/j.cell.2009.01.016 pmid: 19268344
82 SuhB C, HilleB (2002). Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron, 35(3): 507-520
doi: 10.1016/S0896-6273(02)00790-0 pmid: 12165472
83 SuhB C, HilleB (2007). Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol, 582(Pt 3): 911-916
doi: 10.1113/jphysiol.2007.132647 pmid: 17412763
84 SuhB C, HorowitzL F, HirdesW, MackieK, HilleB (2004). Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol, 123(6): 663-683
doi: 10.1085/jgp.200409029 pmid: 15173220
85 SurtiT S, JanL Y (2005). A potassium channel, the M-channel, as a therapeutic target. Curr Opin Investig Drugs, 6(7): 704-711
pmid: 16044666
86 ToberC, RostockA, RundfeldtC, BartschR (1996). D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol, 303(3): 163-169
doi: 10.1016/0014-2999(96)00073-8 pmid: 8813562
87 TzingounisA V, HeidenreichM, KharkovetsT, SpitzmaulG, JensenH S, NicollR A, JentschT J (2010). The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A, 107(22): 10232-10237
doi: 10.1073/pnas.1004644107 pmid: 20534576
88 TzingounisA V, NicollR A (2008). Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A, 105(50): 19974-19979
doi: 10.1073/pnas.0810535105 pmid: 19060215
89 WangH S, PanZ, ShiW, BrownB S, WymoreR S, CohenI S, DixonJ E, McKinnonD (1998). KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science, 282(5395): 1890-1893
doi: 10.1126/science.282.5395.1890 pmid: 9836639
90 WatanabeH, NagataE, KosakaiA, NakamuraM, YokoyamaM, TanakaK, SasaiH (2000). Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem, 75(1): 28-33
doi: 10.1046/j.1471-4159.2000.0750028.x pmid: 10854243
91 WeckhuysenS, MandelstamS, SulsA, AudenaertD, DeconinckT, ClaesL R, DeprezL, SmetsK, HristovaD, YordanovaI, JordanovaA, CeulemansB, JansenA, HasaertsD, RoelensF, LagaeL, YendleS, StanleyT, HeronS E, MulleyJ C, BerkovicS F, SchefferI E, de JongheP (2012). KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol, 71(1): 15-25
doi: 10.1002/ana.22644 pmid: 22275249
92 WenH, LevitanIB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci, 22: 7991-8001
93 WinksJS, HughesS, FilippovA K, TatulianL, AbogadieF C, BrownD A, MarshS J (2005). Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci, 25: 3400-3413
94 WongW, ScottJ D (2004). AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol, 5(12): 959-970
doi: 10.1038/nrm1527 pmid: 15573134
95 WuttkeT V, Jurkat-RottK, PaulusW, GarncarekM, Lehmann-HornF, LercheH (2007). Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology, 69(22): 2045-2053
doi: 10.1212/01.wnl.0000275523.95103.36 pmid: 17872363
96 XuQ, ChangA, ToliaA, MinorD L Jr (2013). Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol, 425(2): 378-394
doi: 10.1016/j.jmb.2012.11.023 pmid: 23178170
97 YueC, YaariY (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci, 24: 4614-4624
98 YueC, YaariY (2006) Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J Neurophysiol, 95(6): 3480-3495
99 Yus-NajeraE, Santana-CastroI, VillarroelA (2002). The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem, 277(32): 28545-28553
doi: 10.1074/jbc.M204130200 pmid: 12032157
100 ZaikaO, TolstykhG P, JaffeD B, ShapiroM S (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci, 27: 8914-8926
101 ZhangH, CraciunL C, MirshahiT, RohácsT, LopesC M, JinT, LogothetisD E (2003). PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron, 37(6): 963-975
doi: 10.1016/S0896-6273(03)00125-9 pmid: 12670425
[1] Ailing Zhou,Song Han,Zhaolan Joe Zhou. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder[J]. Front. Biol., 2017, 12(1): 1-6.
[2] Arunesh Saras,Laura E. Simon,Harlan J. Brawer,Richard E. Price,Mark A. Tanouye. Drosophila seizure disorders: genetic suppression of seizure susceptibility[J]. Front. Biol., 2016, 11(2): 96-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed