|
|
|
Role of calmodulin in neuronal Kv7/KCNQ potassium channels and epilepsy |
Hee Jung CHUNG1,2,*( ) |
1. Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 2. Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA |
|
|
|
|
Abstract Neuronal Kv7/KCNQ channels are critical regulators of neuronal excitability since they potently suppress repetitive firing of action potentials. These voltage-dependent potassium channels are composed mostly of Kv7.2 / KCNQ2 and Kv7.3 / KCNQ3 subunits that show overlapping distribution throughout the brain and in the peripheral nervous system. They are also called ‘M-channels’ since their inhibition by muscarinic agonists leads to a profound increase in action potential firing. Consistent with their ability to suppress seizures and attenuate chronic inflammatory and neuropathic pain, mutations in the KCNQ2 and KCNQ3 genes are associated with benign familial neonatal convulsions, a dominantly-inherited epilepsy in infancy. Recently, de novo mutations in the KCNQ2 gene have been linked to early onset epileptic encephalopathy. Notably, some of these mutations are clustered in a region of the intracellular cytoplasmic tail of Kv7.2 that interacts with a ubiquitous calcium sensor, calmodulin. In this review, we highlight the recent advances in understanding the role of calmodulin in modulating physiological function of neuronal Kv7 channels including their biophysical properties, assembly, and trafficking. We also summarize recent studies that have investigated functional impact of epilepsy-associated mutations localized to the calmodulin binding domains of Kv7.2.
|
| Keywords
calmodulin
Kv7
KCNQ
epilepsy
action potential
M-channel
|
|
Corresponding Author(s):
Hee Jung CHUNG
|
|
Issue Date: 24 June 2014
|
|
| 1 |
AivarP, Fernández-OrthJ, Gomis-PerezC, AlberdiA, AlaimoA, RodríguezM S, GiraldezT, MirandaP, AresoP, VillarroelA (2012). Surface expression and subunit specific control of steady protein levels by the Kv7.2 helix A-B linker. PLoS One, 7(10): e47263 doi: 10.1371/journal.pone.0047263 pmid: 23115641
|
| 2 |
AlaimoA, AlberdiA, Gomis-PerezC, Fernandez-OrthJ, Gomez-PosadaJ C, AresoP, VillarroelA (2012). Cooperativity between calmodulin binding sites in Kv7.2 channels. J Cell Sci pmid: 23203804
|
| 3 |
AlaimoA, Gómez-PosadaJ C, AivarP, EtxeberríaA, Rodriguez-AlfaroJ A, AresoP, VillarroelA (2009). Calmodulin activation limits the rate of KCNQ2 K+ channel exit from the endoplasmic reticulum. J Biol Chem, 284(31): 20668-20675 doi: 10.1074/jbc.M109.019539 pmid: 19494108
|
| 4 |
AlfonsoI, HahnJ S, PapazianO, MartinezY L, ReyesM A, AicardiJ (1997). Bilateral tonic-clonic epileptic seizures in non-benign familial neonatal convulsions. Pediatr Neurol, 16(3): 249-251 doi: 10.1016/S0887-8994(97)89978-X pmid: 9165519
|
| 5 |
BalM, ZhangJ, HernandezCC, ZaikaO, ShapiroMS (2010) Ca2+/calmodulin disrupts AKAP79/150 interactions with KCNQ (M-Type) K+ channels. The Journal of neuroscience: the official journal of the Society for Neuroscience30: 2311-2323.
|
| 6 |
Blackburn-MunroG, JensenB S (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur J Pharmacol, 460(2-3): 109-116 doi: 10.1016/S0014-2999(02)02924-2 pmid: 12559370
|
| 7 |
BorgattiR, ZuccaC, CavalliniA, FerrarioM, PanzeriC, CastaldoP, SoldovieriM V, BaschirottoC, BresolinN, Dalla BernardinaB, TaglialatelaM, BassiM T (2004). A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology, 63(1): 57-65 doi: 10.1212/01.WNL.0000132979.08394.6D pmid: 15249611
|
| 8 |
BrownD A, PassmoreG M (2009). Neural KCNQ (Kv7) channels. Br J Pharmacol, 156(8): 1185-1195 doi: 10.1111/j.1476-5381.2009.00111.x pmid: 19298256
|
| 9 |
ChoveauF S, BierbowerS M, ShapiroM S (2012). Pore helix-S6 interactions are critical in governing current amplitudes of KCNQ3 K+ channels. Biophys J, 102(11): 2499-2509 doi: 10.1016/j.bpj.2012.04.019 pmid: 22713565
|
| 10 |
ChungH J, JanY N, JanL Y (2006). Polarized axonal surface expression of neuronal KCNQ channels is mediated by multiple signals in the KCNQ2 and KCNQ3 C-terminal domains. Proc Natl Acad Sci U S A, 103(23): 8870-8875 doi: 10.1073/pnas.0603376103 pmid: 16735477
|
| 11 |
ClarkB D, GoldbergE M, RudyB (2009). Electrogenic tuning of the axon initial segment. Neuroscientist, 15(6): 651-668 doi: 10.1177/1073858409341973 pmid: 20007821
|
| 12 |
CooperE C, HarringtonE, JanY N, JanL Y (2001) M channel KCNQ2 subunits are localized to key sites for control of neuronal network oscillations and synchronization in mouse brain. J Neurosci, 21: 9529-9540
|
| 13 |
CoppolaG, CastaldoP, Miraglia del GiudiceE, BelliniG, GalassoF, SoldovieriM V, AnzaloneL, SferroC, AnnunziatoL, PascottoA, TaglialatelaM (2003). A novel KCNQ2 K+ channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology, 61(1): 131-134 doi: 10.1212/01.WNL.0000069465.53698.BD pmid: 12847176
|
| 14 |
DahimèneS, AlcoléaS, NaudP, JourdonP, EscandeD, BrasseurR, ThomasA, BaróI, MérotJ (2006). The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ Res, 99(10): 1076-1083 doi: 10.1161/01.RES.0000250262.12219.95 pmid: 17053194
|
| 15 |
DaileyJ W, CheongJ H, KoK H, Adams-CurtisL E, JobeP C (1995). Anticonvulsant properties of D-20443 in genetically epilepsy-prone rats: prediction of clinical response. Neurosci Lett, 195(2): 77-80 doi: 10.1016/0304-3940(95)11783-S pmid: 7478272
|
| 16 |
DedekK, FuscoL, TeloyN, SteinleinO K (2003). Neonatal convulsions and epileptic encephalopathy in an Italian family with a missense mutation in the fifth transmembrane region of KCNQ2. Epilepsy Res, 54(1): 21-27 doi: 10.1016/S0920-1211(03)00037-8 pmid: 12742592
|
| 17 |
DedekK, KunathB, KananuraC, ReunerU, JentschT J, SteinleinO K (2001). Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci U S A, 98(21): 12272-12277 doi: 10.1073/pnas.211431298 pmid: 11572947
|
| 18 |
DelmasP, BrownD A (2005). Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci, 6(11): 850-862 doi: 10.1038/nrn1785 pmid: 16261179
|
| 19 |
DenckerD, DiasR, PedersenM L, HusumH (2008). Effect of the new antiepileptic drug retigabine in a rodent model of mania. Epilepsy Behav, 12(1): 49-53 doi: 10.1016/j.yebeh.2007.09.023 pmid: 18086455
|
| 20 |
DevauxJ J, KleopaK A, CooperE C, SchererS S (2004). KCNQ2 is a nodal K+ channel. J Neurosci, 24: 1236-1244
|
| 21 |
EtxeberriaA, AivarP, Rodriguez-AlfaroJ A, AlaimoA, VillaceP, Gomez-PosadaJ C, AresoP, VillarroelA (2008). Calmodulin regulates the trafficking of KCNQ2 potassium channels. FASEB J, 22: 1135-1143
|
| 22 |
EtxeberriaA, Santana-CastroI, RegaladoMP, AivarP, VillarroelA (2004). Three mechanisms underlie KCNQ2/3 heteromeric potassium M-channel potentiation. J Neurosci, 24: 9146-9152
|
| 23 |
EtzioniA, SiloniS, ChikvashvilliD, StrulovichR, SachyaniD, RegevN, Greitzer-AntesD, HirschJ A, LotanI (2011). Regulation of neuronal M-channel gating in an isoform-specific manner: functional interplay between calmodulin and syntaxin 1A. J Neurosci, 31: 14158-14171
|
| 24 |
FordC P, StemkowskiPL, LightP E, SmithP A (2003). Experiments to test the role of phosphatidylinositol 4,5-bisphosphate in neurotransmitter-induced M-channel closure in bullfrog sympathetic neurons. J Neurosci, 234931-4941
|
| 25 |
GamperN, LiY, ShapiroM S (2005). Structural requirements for differential sensitivity of KCNQ K+ channels to modulation by Ca2+/calmodulin. Mol Biol Cell, 16(8): 3538-3551 doi: 10.1091/mbc.E04-09-0849 pmid: 15901836
|
| 26 |
GamperN, ShapiroM S (2003). Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels. J Gen Physiol, 122(1): 17-31 doi: 10.1085/jgp.200208783 pmid: 12810850
|
| 27 |
GamperN, ShapiroM S (2007). Regulation of ion transport proteins by membrane phosphoinositides. Nat Rev Neurosci, 8(12): 921-934 doi: 10.1038/nrn2257 pmid: 17971783
|
| 28 |
Gómez-PosadaJ C, AivarP, AlberdiA, AlaimoA, EtxeberríaA, Fernández-OrthJ, ZamalloaT, Roura-FerrerM, VillaceP, AresoP, CasisO, VillarroelA (2011). Kv7 channels can function without constitutive calmodulin tethering. PLoS One, 6(9): e25508 doi: 10.1371/journal.pone.0025508 pmid: 21980481
|
| 29 |
GuN, VervaekeK, HuH, StormJ F (2005). Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. J Physiol, 566(Pt 3): 689-715 doi: 10.1113/jphysiol.2005.086835 pmid: 15890705
|
| 30 |
GunthorpeM J, LargeC H, SankarR (2012). The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 53(3): 412-424 doi: 10.1111/j.1528-1167.2011.03365.x pmid: 22220513
|
| 31 |
HadleyJ K, PassmoreG M, TatulianL, Al-QatariM, YeF, WickendenA D, BrownD A (2003) Stoichiometry of expressed KCNQ2/KCNQ3 potassium channels and subunit composition of native ganglionic M channels deduced from block by tetraethylammonium. J Neurosci, 23: 5012-5019
|
| 32 |
HaitinY, AttaliB (2008). The C-terminus of Kv7 channels: a multifunctional module. J Physiol, 586(7): 1803-1810 doi: 10.1113/jphysiol.2007.149187 pmid: 18218681
|
| 33 |
HansenH H, AndreasenJ T, WeikopP, MirzaN, Scheel-KrügerJ, MikkelsenJ D (2007). The neuronal KCNQ channel opener retigabine inhibits locomotor activity and reduces forebrain excitatory responses to the psychostimulants cocaine, methylphenidate and phencyclidine. Eur J Pharmacol, 570(1-3): 77-88 doi: 10.1016/j.ejphar.2007.05.029 pmid: 17628530
|
| 34 |
HernandezC C, ZaikaO, ShapiroM S (2008). A carboxy-terminal inter-helix linker as the site of phosphatidylinositol 4,5-bisphosphate action on Kv7 (M-type) K+ channels. J Gen Physiol, 132(3): 361-381 doi: 10.1085/jgp.200810007 pmid: 18725531
|
| 35 |
HigashidaH, HoshiN, ZhangJ S, YokoyamaS, HashiiM, JinD, NodaM, RobbinsJ (2005). Protein kinase C bound with A-kinase anchoring protein is involved in muscarinic receptor-activated modulation of M-type KCNQ potassium channels. Neurosci Res, 51(3): 231-234 doi: 10.1016/j.neures.2004.11.009 pmid: 15710486
|
| 36 |
HoeflichK P, IkuraM (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell, 108(6): 739-742 doi: 10.1016/S0092-8674(02)00682-7 pmid: 11955428
|
| 37 |
HoshiN, LangebergL K, ScottJ D (2005). Distinct enzyme combinations in AKAP signalling complexes permit functional diversity. Nat Cell Biol, 7(11): 1066-1073 doi: 10.1038/ncb1315 pmid: 16228013
|
| 38 |
HoshiN, ZhangJ S, OmakiM, TakeuchiT, YokoyamaS, WanaverbecqN, LangebergL K, YonedaY, ScottJ D, BrownD A, HigashidaH (2003). AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nat Neurosci, 6(6): 564-571 doi: 10.1038/nn1062 pmid: 12754513
|
| 39 |
HowardA L, NeuA, MorganR J, EchegoyenJ C, SolteszI (2007a). Opposing modifications in intrinsic currents and synaptic inputs in post-traumatic mossy cells: evidence for single-cell homeostasis in a hyperexcitable network. J Neurophysiol, 97(3): 2394-2409 doi: 10.1152/jn.00509.2006 pmid: 16943315
|
| 40 |
HowardR J, ClarkK A, HoltonJ M, MinorD L Jr (2007b). Structural insight into KCNQ (Kv7) channel assembly and channelopathy. Neuron, 53(5): 663-675 doi: 10.1016/j.neuron.2007.02.010 pmid: 17329207
|
| 41 |
KorsgaardM P, HartzB P, BrownW D, AhringP K, StrøbaekD, MirzaN R (2005). Anxiolytic effects of Maxipost (BMS-204352) and retigabine via activation of neuronal Kv7 channels. J Pharmacol Exp Ther, 314(1): 282-292 doi: 10.1124/jpet.105.083923 pmid: 15814569
|
| 42 |
KosenkoA, KangS, SmithI M, GreeneD L, LangebergL K, ScottJ D, HoshiN (2012). Coordinated signal integration at the M-type potassium channel upon muscarinic stimulation. EMBO J, 31(14): 3147-3156 doi: 10.1038/emboj.2012.156 pmid: 22643219
|
| 43 |
KwanP, BrodieM J (2000). Epilepsy after the first drug fails: substitution or add-on? Seizure, 9(7): 464-468 doi: 10.1053/seiz.2000.0442 pmid: 11034869
|
| 44 |
LaiH C, JanL Y (2006). The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci, 7(7): 548-562 doi: 10.1038/nrn1938 pmid: 16791144
|
| 45 |
LargeC H, SokalD M, NehligA, GunthorpeM J, SankarR, CreanC S, VanlandinghamK E, WhiteH S (2012). The spectrum of anticonvulsant efficacy of retigabine (ezogabine) in animal models: implications for clinical use. Epilepsia, 53(3): 425-436 doi: 10.1111/j.1528-1167.2011.03364.x pmid: 22221318
|
| 46 |
LercheH, BiervertC, AlekovA K, SchleithoffL, LindnerM, KlingerW, BretschneiderF, MitrovicN, Jurkat-RottK, BodeH, Lehmann-HornF, SteinleinO K (1999). A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol, 46(3): 305-312 doi: 10.1002/1531-8249(199909)46:3<305::AID-ANA5>3.0.CO;2-5 pmid: 10482260
|
| 47 |
LiY, GamperN, HilgemannDW, ShapiroMS (2005). Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate. J Neurosci, 25: 9825-9835
|
| 48 |
LiuW, DevauxJ J (2014). Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. Mol Cell Neurosci, 58: 40-52 pmid: 24333508
|
| 49 |
MaljevicS, WuttkeT V, LercheH (2008). Nervous system KV7 disorders: breakdown of a subthreshold brake. J Physiol, 586(7): 1791-1801 doi: 10.1113/jphysiol.2008.150656 pmid: 18238816
|
| 50 |
MartireM, CastaldoP, D'AmicoM, PreziosiP, AnnunziatoL, TaglialatelaM (2004). M channels containing KCNQ2 subunits modulate norepinephrine, aspartate, and GABA release from hippocampal nerve terminals. J Neurosci, 24: 592-597
|
| 51 |
MoulardB, PicardF, le HellardS, AgulhonC, WeilandS, FavreI, BertrandS, MalafosseA, BertrandD (2001). Ion channel variation causes epilepsies. Brain Res Brain Res Rev, 36(2-3): 275-284 doi: 10.1016/S0165-0173(01)00104-7 pmid: 11690625
|
| 52 |
OhtaharaS, YamatogiY (2006). Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res, 70(Suppl 1): S58-S67 doi: 10.1016/j.eplepsyres.2005.11.021 pmid: 16829045
|
| 53 |
OrhanG, BockM, SchepersD, IlinaE I, ReichelS N, LofflerH, JezutkovicN, WeckhuysenS, MandelstamS, SulsA, DankerT, GuentherE, SchefferI E, JongheP D, LercheH, MaljevicS (2013). Dominant-negative Effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol, 75(3): 382-394
|
| 54 |
PanZ, KaoT, HorvathZ, LemosJ, SulJ Y, CranstounS D, BennettV, SchererS S, CooperE C (2006). A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci, 26: 2599-2613
|
| 55 |
PassmoreG M, SelyankoA A, MistryM, Al-QatariM, MarshS J, MatthewsE A, DickensonAH, BrownT A, BurbidgeS A, MainM, BrownD A (2003). KCNQ/M currents in sensory neurons: significance for pain therapy. J Neurosci, 23: 7227-7236
|
| 56 |
PeretzA, SheininA, YueC, Degani-KatzavN, GiborG, NachmanR, GopinA, TamE, ShabatD, YaariY, AttaliB (2007). Pre- and postsynaptic activation of M-channels by a novel opener dampens neuronal firing and transmitter release. J Neurophysiol, 97(1): 283-295 doi: 10.1152/jn.00634.2006 pmid: 17050829
|
| 57 |
PetersH C, HuH, PongsO, StormJ F, IsbrandtD (2005). Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci, 8(1): 51-60 doi: 10.1038/nn1375 pmid: 15608631
|
| 58 |
PsenkaT M, HoldenK R (1996). Benign familial neonatal convulsions; psychosocial adjustment to the threat of recurrent seizures. Seizure, 5(3): 243-245 doi: 10.1016/S1059-1311(96)80044-6 pmid: 8902929
|
| 59 |
RasmussenH B, Frøkjaer-JensenC, JensenC S, JensenH S, JørgensenN K, MisonouH, TrimmerJ S, OlesenS P, SchmittN (2007). Requirement of subunit co-assembly and ankyrin-G for M-channel localization at the axon initial segment. J Cell Sci, 120(Pt 6): 953-963 doi: 10.1242/jcs.03396 pmid: 17311847
|
| 60 |
RegevN, Degani-KatzavN, KorngreenA, EtzioniA, SiloniS, AlaimoA, ChikvashviliD, VillarroelA, AttaliB, LotanI (2009). Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity. PLoS One, 4(8): e6586 doi: 10.1371/journal.pone.0006586 pmid: 19675672
|
| 61 |
RichardsM C, HeronS E, SpendloveH E, SchefferI E, GrintonB, BerkovicS F, MulleyJ C, DavyA (2004). Novel mutations in the KCNQ2 gene link epilepsy to a dysfunction of the KCNQ2-calmodulin interaction. J Med Genet, 41(3): e35 doi: 10.1136/jmg.2003.013938 pmid: 14985406
|
| 62 |
RobbinsJ (2001). KCNQ potassium channels: physiology, pathophysiology, and pharmacology. Pharmacol Ther, 90(1): 1-19 doi: 10.1016/S0163-7258(01)00116-4 pmid: 11448722
|
| 63 |
RocheJ P, WestenbroekR, SoromA J, HilleB, MackieK, ShapiroM S (2002). Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Br J Pharmacol, 137(8): 1173-1186 doi: 10.1038/sj.bjp.0704989 pmid: 12466226
|
| 64 |
RostockA, ToberC, RundfeldtC, BartschR, EngelJ, PolymeropoulosE E, KutscherB, LöscherW, HönackD, WhiteH S, WolfH H (1996). D-23129: a new anticonvulsant with a broad spectrum activity in animal models of epileptic seizures. Epilepsy Res, 23(3): 211-223 doi: 10.1016/0920-1211(95)00101-8 pmid: 8739124
|
| 65 |
SaitsuH, KatoM, KoideA, GotoT, FujitaT, NishiyamaK, TsurusakiY, DoiH, MiyakeN, HayasakaK, MatsumotoN (2012). Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol, 72(2): 298-300 doi: 10.1002/ana.23620 pmid: 22926866
|
| 66 |
SchmittB, WohlrabG, SanderT, SteinleinO K, HajnalB L (2005). Neonatal seizures with tonic clonic sequences and poor developmental outcome. Epilepsy Res, 65(3): 161-168 doi: 10.1016/j.eplepsyres.2005.05.009 pmid: 16039833
|
| 67 |
SchroederB C, KubischC, SteinV, JentschT J (1998). Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature, 396(6712): 687-690 doi: 10.1038/25367 pmid: 9872318
|
| 68 |
SchwakeM, AthanasiaduD, BeimgrabenC, BlanzJ, BeckC, JentschTJ, SaftigP, FriedrichT (2006). Structural determinants of M-type KCNQ (Kv7) K+ channel assembly. J Neurosci, 26: 3757-3766
|
| 69 |
SchwakeM, JentschT J, FriedrichT (2003). A carboxy-terminal domain determines the subunit specificity of KCNQ K+ channel assembly. EMBO Rep, 4(1): 76-81 doi: 10.1038/sj.embor.embor715 pmid: 12524525
|
| 70 |
SchwakeM, PuschM, KharkovetsT, JentschT J (2000). Surface expression and single channel properties of KCNQ2/KCNQ3, M-type K+ channels involved in epilepsy. J Biol Chem, 275(18): 13343-13348 doi: 10.1074/jbc.275.18.13343 pmid: 10788442
|
| 71 |
SchwarzJ R, GlassmeierG, CooperE C, KaoT C, NoderaH, TabuenaD, KajiR, BostockH (2006). KCNQ channels mediate IKs, a slow K+ current regulating excitability in the rat node of Ranvier. J Physiol, 573(Pt 1): 17-34 doi: 10.1113/jphysiol.2006.106815 pmid: 16527853
|
| 72 |
SelyankoA A, BrownD A (1996). Intracellular calcium directly inhibits potassium M channels in excised membrane patches from rat sympathetic neurons. Neuron, 16(1): 151-162 doi: 10.1016/S0896-6273(00)80032-X pmid: 8562079
|
| 73 |
ShahM M, MiglioreM, BrownD A (2011). Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons. J Physiol, 589(Pt 24): 6029-6038 pmid: 22041186
|
| 74 |
ShahM M, MiglioreM, ValenciaI, CooperE C, BrownD A (2008). Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons. Proc Natl Acad Sci U S A, 105(22): 7869-7874 doi: 10.1073/pnas.0802805105 pmid: 18515424
|
| 75 |
ShahM, MistryM, MarshS J, BrownD A, DelmasP (2002). Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol, 544(Pt 1): 29-37 doi: 10.1113/jphysiol.2002.028571 pmid: 12356878
|
| 76 |
ShahidullahM, SantarelliL C, WenH, LevitanI B (2005). Expression of a calmodulin-binding KCNQ2 potassium channel fragment modulates neuronal M-current and membrane excitability. Proc Natl Acad Sci U S A, 102(45): 16454-16459 doi: 10.1073/pnas.0503966102 pmid: 16263935
|
| 77 |
SinghNA, WestenskowP, CharlierC, PappasC, LeslieJ, DillonJ, AndersonVE, SanguinettiMC, LeppertMF (2003) KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain, 126: 2726-2737
|
| 78 |
SoldovieriM V, Boutry-KryzaN, MilhM, DoummarD, HeronB, BourelE, AmbrosinoP, MiceliF, De MariaM, DorisonN, AuvinS, EchenneB, OertelJ, RiquetA, LambertL, GerardM, RoubergueA, CalenderA, MignotC, TaglialatelaM, LescaG (2014). Novel KCNQ2 and KCNQ3 mutations in a large cohort of families with benign neonatal epilepsy: first evidence for an altered channel regulation by syntaxin-1A. Hum Mutat, 35(3): 356-367 doi: 10.1002/humu.22500 pmid: 24375629
|
| 79 |
SoldovieriM V, CastaldoP, IodiceL, MiceliF, BarreseV, BelliniG, Miraglia del GiudiceE, PascottoA, BonattiS, AnnunziatoL, TaglialatelaM (2006). Decreased subunit stability as a novel mechanism for potassium current impairment by a KCNQ2 C terminus mutation causing benign familial neonatal convulsions. J Biol Chem, 281(1): 418-428 doi: 10.1074/jbc.M510980200 pmid: 16260777
|
| 80 |
SoldovieriM V, MiceliF, TaglialatelaM (2011). Driving with no brakes: molecular pathophysiology of Kv7 potassium channels. Physiology (Bethesda), 26(5): 365-376 doi: 10.1152/physiol.00009.2011 pmid: 22013194
|
| 81 |
SongA H, WangD, ChenG, LiY, LuoJ, DuanS, PooM M (2009). A selective filter for cytoplasmic transport at the axon initial segment. Cell, 136(6): 1148-1160 doi: 10.1016/j.cell.2009.01.016 pmid: 19268344
|
| 82 |
SuhB C, HilleB (2002). Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis. Neuron, 35(3): 507-520 doi: 10.1016/S0896-6273(02)00790-0 pmid: 12165472
|
| 83 |
SuhB C, HilleB (2007). Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol, 582(Pt 3): 911-916 doi: 10.1113/jphysiol.2007.132647 pmid: 17412763
|
| 84 |
SuhB C, HorowitzL F, HirdesW, MackieK, HilleB (2004). Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol, 123(6): 663-683 doi: 10.1085/jgp.200409029 pmid: 15173220
|
| 85 |
SurtiT S, JanL Y (2005). A potassium channel, the M-channel, as a therapeutic target. Curr Opin Investig Drugs, 6(7): 704-711 pmid: 16044666
|
| 86 |
ToberC, RostockA, RundfeldtC, BartschR (1996). D-23129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol, 303(3): 163-169 doi: 10.1016/0014-2999(96)00073-8 pmid: 8813562
|
| 87 |
TzingounisA V, HeidenreichM, KharkovetsT, SpitzmaulG, JensenH S, NicollR A, JentschT J (2010). The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus. Proc Natl Acad Sci U S A, 107(22): 10232-10237 doi: 10.1073/pnas.1004644107 pmid: 20534576
|
| 88 |
TzingounisA V, NicollR A (2008). Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A, 105(50): 19974-19979 doi: 10.1073/pnas.0810535105 pmid: 19060215
|
| 89 |
WangH S, PanZ, ShiW, BrownB S, WymoreR S, CohenI S, DixonJ E, McKinnonD (1998). KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science, 282(5395): 1890-1893 doi: 10.1126/science.282.5395.1890 pmid: 9836639
|
| 90 |
WatanabeH, NagataE, KosakaiA, NakamuraM, YokoyamaM, TanakaK, SasaiH (2000). Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem, 75(1): 28-33 doi: 10.1046/j.1471-4159.2000.0750028.x pmid: 10854243
|
| 91 |
WeckhuysenS, MandelstamS, SulsA, AudenaertD, DeconinckT, ClaesL R, DeprezL, SmetsK, HristovaD, YordanovaI, JordanovaA, CeulemansB, JansenA, HasaertsD, RoelensF, LagaeL, YendleS, StanleyT, HeronS E, MulleyJ C, BerkovicS F, SchefferI E, de JongheP (2012). KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol, 71(1): 15-25 doi: 10.1002/ana.22644 pmid: 22275249
|
| 92 |
WenH, LevitanIB (2002) Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci, 22: 7991-8001
|
| 93 |
WinksJS, HughesS, FilippovA K, TatulianL, AbogadieF C, BrownD A, MarshS J (2005). Relationship between membrane phosphatidylinositol-4,5-bisphosphate and receptor-mediated inhibition of native neuronal M channels. J Neurosci, 25: 3400-3413
|
| 94 |
WongW, ScottJ D (2004). AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol, 5(12): 959-970 doi: 10.1038/nrm1527 pmid: 15573134
|
| 95 |
WuttkeT V, Jurkat-RottK, PaulusW, GarncarekM, Lehmann-HornF, LercheH (2007). Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology, 69(22): 2045-2053 doi: 10.1212/01.wnl.0000275523.95103.36 pmid: 17872363
|
| 96 |
XuQ, ChangA, ToliaA, MinorD L Jr (2013). Structure of a Ca(2+)/CaM:Kv7.4 (KCNQ4) B-helix complex provides insight into M current modulation. J Mol Biol, 425(2): 378-394 doi: 10.1016/j.jmb.2012.11.023 pmid: 23178170
|
| 97 |
YueC, YaariY (2004) KCNQ/M channels control spike afterdepolarization and burst generation in hippocampal neurons. J Neurosci, 24: 4614-4624
|
| 98 |
YueC, YaariY (2006) Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells. J Neurophysiol, 95(6): 3480-3495
|
| 99 |
Yus-NajeraE, Santana-CastroI, VillarroelA (2002). The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem, 277(32): 28545-28553 doi: 10.1074/jbc.M204130200 pmid: 12032157
|
| 100 |
ZaikaO, TolstykhG P, JaffeD B, ShapiroM S (2007) Inositol triphosphate-mediated Ca2+ signals direct purinergic P2Y receptor regulation of neuronal ion channels. J Neurosci, 27: 8914-8926
|
| 101 |
ZhangH, CraciunL C, MirshahiT, RohácsT, LopesC M, JinT, LogothetisD E (2003). PIP(2) activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron, 37(6): 963-975 doi: 10.1016/S0896-6273(03)00125-9 pmid: 12670425
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|