Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (1) : 1-6    https://doi.org/10.1007/s11515-016-1438-7
MINI-REVIEW
Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder
Ailing Zhou1,Song Han1,Zhaolan Joe Zhou2()
1. Jiaozhou People’s Hospital, Jiaozhou, Shangdong 266300, China
2. Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
 Download: PDF(105 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research.

METHODS: A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section.

RESULTS: On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage.

CONCLUSIONS: Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

Keywords CDKL5 disorder      childhood epilepsy      intellectual disability      mouse model      outcome measure     
Corresponding Author(s): Zhaolan Joe Zhou   
Just Accepted Date: 26 December 2016   Online First Date: 23 January 2017    Issue Date: 28 February 2017
 Cite this article:   
Ailing Zhou,Song Han,Zhaolan Joe Zhou. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder[J]. Front. Biol., 2017, 12(1): 1-6.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1438-7
https://academic.hep.com.cn/fib/EN/Y2017/V12/I1/1
1 Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C, Lonetti G, Silingardi D, Vyssotski A L, Farley D, Ciani E, Pizzorusso T, Giustetto M, Gross C T (2014). Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS One, 9(5): e91613–e12
https://doi.org/10.1371/journal.pone.0091613
2 Archer H L (2006). CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients. J Med Genet, 43(9): 729–734
https://doi.org/10.1136/jmg.2006.041467
3 Bahi-Buisson N, Nectoux J, Rosas-Vargas H, Milh M, Boddaert N, Girard B, Cances C, Ville D, Afenjar A, Rio M, Heron D, N’Guyen Morel M A, Arzimanoglou A, Philippe C, Jonveaux P, Chelly J, Bienvenu T (2008). Key clinical features to identify girls with CDKL5 mutations. Brain, 131(10): 2647–2661 doi:10.1093/brain/awn197
4 Bahi-Buisson N, Villeneuve N, Caietta E, Jacquette A, Maurey H, Matthijs G, Van Esch H, Delahaye A, Moncla A, Milh M, Zufferey F, Diebold B, Bienvenu T (2012). Recurrent mutations in the CDKL5 gene: Genotype-phenotype relationships. Am J Med Genet, 158A(7): 1612–1619
https://doi.org/10.1002/ajmg.a.35401
5 Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: From clinic to neurobiology. Neuron, 56(3): 422–437
https://doi.org/10.1016/j.neuron.2007.10.001
6 Chen Q, Zhu Y C, Yu J, Miao S, Zheng J, Xu L, Zhou Y, Li D, Zhang C, Tao J, Xiong Z Q (2010). CDKL5, a Protein associated with rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci, 30(38): 12777–12786
https://doi.org/10.1523/JNEUROSCI.1102-10.2010
7 Crino P B (2011). mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends Mol Med, 17(12): 734–742
https://doi.org/10.1016/j.molmed.2011.07.008
8 Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E, Michele Ratto G, Amendola E, Gross C T, Giustetto M, Pizzorusso T (2016). Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol Psychiatry, 80(4): 302–311
https://doi.org/10.1016/j.biopsych.2015.08.028
9 Diebold B, Delépine C, Gataullina S, Delahaye A, Nectoux J, Bienvenu T (2014). Mutations in the C-terminus of CDKL5: proceed with caution. Eur J Hum Genet, 22(2): 270–272
https://doi.org/10.1038/ejhg.2013.133
10 Fehr S, Downs J, Ho G, de Klerk N, Forbes D, Christodoulou J, Williams S, Leonard H (2016). Functional abilities in children and adults with the CDKL5 disorder. Am J Med Genet, 170(11): 1–10
11 Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, Vecchi M, Ho G, Polli R, Psoni S, Bao X, de Klerk N, Leonard H, Christodoulou J (2012). The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet, 21: 266–273
12 Fuchs C, Rimondini R, Viggiano R, Trazzi S, De Franceschi M, Bartesaghi R, Ciani E (2015). Inhibition of GSK3b rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Neurobiol Dis, 82: 298–310
https://doi.org/10.1016/j.nbd.2015.06.018
13 Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calzà L, Bartesaghi R, Ciani E (2014). Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AK/GSK-3b signaling. Neurobiol Dis, 70: 53–68
https://doi.org/10.1016/j.nbd.2014.06.006
14 Hanefeld F (1985). The clinical pattern of the rett syndrome. Brain Dev, 7(3): 320–325
https://doi.org/10.1016/S0387-7604(85)80037-1
15 Hector R D, Dando O, Landsberger N, Kilstrup-Nielsen C, Kind P C, Bailey M E, Cobb S R (2016). Characterisation of CDKL5 transcript isoforms in human and mouse. PLoS One. 11(6):e0157758.
https://doi.org/10.1371/journal.pone.0157758
16 Kalscheuer V M, Tao J, Donnelly A, Hollway G, Schwinger E, Kübart S, Menzel C, Hoeltzenbein M, Tommerup N, Eyre H, Harbord M, Haan E, Sutherland G R, Ropers H H, Gécz J (2003). Disruption of the serine/threonine kinase 9 gene causes severe X–linked infantile spasms and mental retardation. Am J Hum Genet, 72(6): 1401–1411
https://doi.org/10.1086/375538
17 Kameshita I, Sekiguchi M, Hamasaki D, Sugiyama Y, Hatano N, Suetake I, Tajima S, Sueyoshi N (2008). Cyclin-dependent kinase-like 5 binds and phosphorylates DNA methyltransferase 1. Biochem Biophys Res Commun, 377(4): 1162–1167
https://doi.org/10.1016/j.bbrc.2008.10.113
18 Lin C, Franco B, Rosner M R (2005). CDKL5/Stk9 kinase inactivation is associated with neuronal developmental disorders. Hum Mol Genet, 14(24): 3775–3786
https://doi.org/10.1093/hmg/ddi391
19 Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I, Grosso S, Pescucci C, Ariani F, Hayek G, Balestri P, Bergo A, Badaracco G, Zappella M, Broccoli V, Renieri A, Kilstrup-Nielsen C, Landsberger N (2005). CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet, 14(14): 1935–1946
https://doi.org/10.1093/hmg/ddi198
20 Mastrangelo M, Leuzzi V (2012). Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol, 46(1): 24–31
https://doi.org/10.1016/j.pediatrneurol.2011.11.003
21 Montini E, Andolfi G, Caruso A, Buchner G, Walpole S M, Mariani M, Consalez G, Trump D, Ballabio A, Franco B (1998). Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region. Genomics, 51(3): 427–433
https://doi.org/10.1006/geno.1998.5391
22 Nawaz M S, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, Alberio T, Landsberger N, Rusconi L, Kilstrup-Nielsen C (2016). CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization. PLoS One, 11(2): e0148634
https://doi.org/10.1371/journal.pone.0148634
23 Nemos C, Lambert L, Giuliano F, Doray B, Roubertie A, Goldenberg A, Delobel B, Layet V, N’guyen M A, Saunier A, Verneau F, Jonveaux P, Philippe C (2009). Mutational spectrum of CDKL5in early-onset encephalopathies: a study of a large collection of French patients and review of the literature. Clin Genet, 76(4): 357–371
https://doi.org/10.1111/j.1399-0004.2009.01194.x
24 Ricciardi S, Kilstrup-Nielsen C, Bienvenu T, Jacquette A, Landsberger N, Broccoli V (2009). CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery. Hum Mol Genet, 18(23): 4590–4602
https://doi.org/10.1093/hmg/ddp426
25 Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D, Sessa A, Magagnotti C, Bachi A, Giarda E, Verpelli C, Kilstrup-Nielsen C, Sala C, Kalscheuer V M, Broccoli V (2012). CDKL5 ensures excitatory synapse stability by reinforcing NGL-1–PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol, 14(9): 911–923
https://doi.org/10.1038/ncb2566
26 Rusconi L, Kilstrup-Nielsen C, Landsberger N (2011). Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation. J Biol Chem, 286(42): 36550–36558
https://doi.org/10.1074/jbc.M111.235630
27 Rusconi L, Salvatoni L, Giudici L, Bertani I, Kilstrup-Nielsen C, Broccoli V, Landsberger N (2008). CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail. J Biol Chem, 283(44): 30101–30111
https://doi.org/10.1074/jbc.M804613200
28 Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I (2013). Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys, 535(2): 257–267
https://doi.org/10.1016/j.abb.2013.04.012
29 Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M, Sperner J, Fryns J P, Schwinger E, Gécz J, Ropers H H, Kalscheuer V M (2004). Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet, 75(6): 1149–1154
https://doi.org/10.1086/426460
30 Wang I T, Allen M, Goffin D, Zhu X, Fairless A H, Brodkin E S, Siegel S J, Marsh E D, Blendy J A, Zhou Z (2012). Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci USA, 109(52): 21516–21521
https://doi.org/10.1073/pnas.1216988110
31 Weaving L S, Christodoulou J, Williamson S L, Friend K L, McKenzie O L D, Archer H, Evans J, Clarke A, Pelka G J, Tam P P L, Watson C, Lahooti H, Ellaway C J, Bennetts B, Leonard H, Gécz J (2004). Mutations of CDKL5 Cause a Severe Neurodevelopmental Disorder with Infantile Spasms and Mental Retardation. Am J Hum Genet, 75(6): 1079–1093
https://doi.org/10.1086/426462
32 Zhu Y C, Li D, Wang L, Lu B, Zheng J, Zhao S L, Zeng R, Xiong Z Q (2013). Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci USA, 110(22): 9118–9123
https://doi.org/10.1073/pnas.1300003110
[1] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[2] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed