Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 367-375    https://doi.org/10.1007/s11515-014-1330-2
REVIEW
Regulation and function of stimulus-induced phosphorylation of MeCP2
Hongda LI1,2,Qiang CHANG1,2,3,*()
1. Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
2. Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705,USA
3. Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
 Download: PDF(569 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

DNA methylation-dependent epigenetic regulation plays important roles in the development and function of the mammalian nervous system. MeCP2 is a key player in recognizing methylated DNA and interpreting the epigenetic information encoded in different DNA methylation patterns. Mutations in the MECP2 gene cause Rett syndrome, a devastating neurological disease that shares many features with autism. One interesting aspect of MeCP2 function is that it can be phosphorylated in response to diverse stimuli. Insights into the regulation and function of MeCP2 phosphorylation will help improve our understanding of how MeCP2 integrates environmental stimuli in neuronal nuclei to generate adaptive responses and may eventually lead to treatments for patients.

Keywords MeCP2      phosphorylation      Rett syndrome     
Corresponding Author(s): Qiang CHANG   
Just Accepted Date: 13 August 2014   Online First Date: 22 September 2014    Issue Date: 11 October 2014
 Cite this article:   
Hongda LI,Qiang CHANG. Regulation and function of stimulus-induced phosphorylation of MeCP2[J]. Front. Biol., 2014, 9(5): 367-375.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1330-2
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/367
Fig.1  Distribution of known phosphorylation sites on the MeCP2 protein. Neuronal activity-induced phosphorylation sites are marked in red. MBD, methyl-CpG binding domain; TRD, transcriptional repression domain.
Fig.2  Neuronal activity-induced phosphorylation and dephosphorylation modify MeCP2 function. Stimulation of NMDA receptors, DA receptors and 5-HT receptors, as well as membrane depolarization, activates L-type calcium channels on the cellular membrane and induces calcium influx. Specific kinases and phosphatases in the nucleus are subsequently activated and modify the phosphorylation status of MeCP2. Phosphoprylation of S421, together with dephosphorylation of S80, may modulate the binding of MeCP2 to the promoters of specific genes. Dephosphorylation of S80 releases DGCR8 from MeCP2 to regulate microRNA processing. Phosphorylation of T308 interrupts the association between MeCP2 and NCoR co-repressor complex. NMDA receptors, N-methyl-D-aspartate receptors; DA receptors, Dopamine receptors; 5-HT receptors, 5-hydroxytryptamine receptors or serotonin receptors.
1 Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188
https://doi.org/10.1038/13810 pmid: 10508514
2 Asaka Y, Jugloff D G, Zhang L, Eubanks J H, Fitzsimonds R M (2006). Hippocampal synaptic plasticity is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol Dis, 21(1): 217–227
https://doi.org/10.1016/j.nbd.2005.07.005 pmid: 16087343
3 Ballas N, Lioy D T, Grunseich C, Mandel G (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci, 12(3): 311–317
https://doi.org/10.1038/nn.2275 pmid: 19234456
4 Bracaglia G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg M E, Landsberger N, Soddu S, Kilstrup-Nielsen C (2009). Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep, 10(12): 1327–1333
https://doi.org/10.1038/embor.2009.217 pmid: 19820693
5 Buchthal B, Lau D, Weiss U, Weislogel J M, Bading H (2012). Nuclear calcium signaling controls methyl-CpG-binding protein 2 (MeCP2) phosphorylation on serine 421 following synaptic activity. J Biol Chem, 287(37): 30967–30974
https://doi.org/10.1074/jbc.M112.382507 pmid: 22822052
6 Chahrour M, Jung S Y, Shaw C, Zhou X, Wong S T, Qin J, Zoghbi H Y (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science, 320(5880): 1224–1229
https://doi.org/10.1126/science.1153252 pmid: 18511691
7 Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437
https://doi.org/10.1016/j.neuron.2007.10.001 pmid: 17988628
8 Chao H T, Zoghbi H Y, Rosenmund C (2007). MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number. Neuron, 56(1): 58–65
https://doi.org/10.1016/j.neuron.2007.08.018 pmid: 17920015
9 Chen W G, Chang Q, Lin Y, Meissner A, West A E, Griffith E C, Jaenisch R, Greenberg M E (2003). Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science, 302(5646): 885–889
https://doi.org/10.1126/science.1086446 pmid: 14593183
10 Cheng T L, Wang Z, Liao Q, Zhu Y, Zhou W H, Xu W, Qiu Z (2014). MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating the DGCR8/Drosha complex. Dev Cell, 28(5): 547–560
https://doi.org/10.1016/j.devcel.2014.01.032 pmid: 24636259
11 Cohen S, Gabel H W, Hemberg M, Hutchinson A N, Sadacca L A, Ebert D H, Harmin D A, Greenberg R S, Verdine V K, Zhou Z, Wetsel W C, West A E, Greenberg M E (2011). Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function. Neuron, 72(1): 72–85
https://doi.org/10.1016/j.neuron.2011.08.022 pmid: 21982370
12 Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689
https://doi.org/10.1093/hmg/ddh282 pmid: 15351775
13 Deng J V, Rodriguiz R M, Hutchinson A N, Kim I H, Wetsel W C, West A E (2010). MeCP2 in the nucleus accumbens contributes to neural and behavioral responses to psychostimulants. Nat Neurosci, 13(9): 1128–1136
https://doi.org/10.1038/nn.2614 pmid: 20711186
14 Deng J V, Wan Y, Wang X, Cohen S, Wetsel W.C, Greenberg M E, Kenny P J, Calakos N, West A E (2014). MeCP2 phosphorylation limits psychostimulant-induced behavioral and neuronal plasticity. J Neurosci, 34: 4519–4527
15 Derecki N C, Cronk J C, Lu Z, Xu E, Abbott S B, Guyenet P G, Kipnis J (2012). Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature, 484(7392): 105–109
https://doi.org/10.1038/nature10907 pmid: 22425995
16 Ebert D H, Gabel H W, Robinson N D, Kastan N R, Hu L S, Cohen S, Navarro A J, Lyst M J, Ekiert R, Bird A P, Greenberg M E (2013). Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature, 499(7458): 341–345
pmid: 23770587
17 Fyffe S L, Neul J L, Samaco R C, Chao H T, Ben-Shachar S, Moretti P, McGill B E, Goulding E H, Sullivan E, Tecott L H, Zoghbi H Y (2008). Deletion of Mecp2 in Sim1-expressing neurons reveals a critical role for MeCP2 in feeding behavior, aggression, and the response to stress. Neuron, 59(6): 947–958
https://doi.org/10.1016/j.neuron.2008.07.030 pmid: 18817733
18 Géranton S M, Fratto V, Tochiki K K, Hunt S P (2008). Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Mol Pain, 4(1): 35
https://doi.org/10.1186/1744-8069-4-35 pmid: 18793388
19 Géranton S M, Morenilla-Palao C, Hunt S P (2007). A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. J Neurosci, 27: 6163–6173
20 Gonzales M L, Adams S, Dunaway K W, LaSalle J M (2012). Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation. Mol Cell Biol, 32(14): 2894–2903
https://doi.org/10.1128/MCB.06728-11 pmid: 22615490
21 Hagberg B (1985). Rett’s syndrome: prevalence and impact on progressive severe mental retardation in girls. Acta Paediatr Scand, 74(3): 405–408
https://doi.org/10.1111/j.1651-2227.1985.tb10993.x pmid: 4003065
22 Hutchinson A N, Deng J V, Aryal D K, Wetsel W C, West A E (2012a). Differential regulation of MeCP2 phosphorylation in the CNS by dopamine and serotonin. Neuropsychopharmacology, 37: 321–337
23 Hutchinson A N, Deng, J V, Cohen S, West A E (2012b). Phosphorylation of MeCP2 at Ser421 contributes to chronic antidepressant action. J Neurosci, 32: 14355–14363
24 Jones P L, Veenstra G J, Wade P A, Vermaak D, Kass S U, Landsberger N, Strouboulis J, Wolffe A P (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet, 19(2): 187–191
https://doi.org/10.1038/561 pmid: 9620779
25 Lewis J D, Meehan R R, Henzel W J, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69(6): 905–914
https://doi.org/10.1016/0092-8674(92)90610-O pmid: 1606614
26 Li H, Zhong X, Chau K F, Williams E C, Chang Q (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nat Neurosci, 14(8): 1001–1008
https://doi.org/10.1038/nn.2866 pmid: 21765426
27 Lioy D T, Garg S K, Monaghan C E, Raber J, Foust K D, Kaspar B K, Hirrlinger P G, Kirchhoff F, Bissonnette J M, Ballas N, Mandel G (2011). A role for glia in the progression of Rett’s syndrome. Nature, 475(7357): 497–500
https://doi.org/10.1038/nature10214 pmid: 21716289
28 Lyst M J, Ekiert R, Ebert D H, Merusi C, Nowak J, Selfridge J, Guy J, Kastan N R, Robinson N D, de Lima Alves F, Rappsilber J, Greenberg M E, Bird A (2013). Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci, 16(7): 898–902
https://doi.org/10.1038/nn.3434 pmid: 23770565
29 Mao L M, Horton E, Guo M L, Xue B, Jin D Z, Fibuch E E, Wang J Q (2011). Cocaine increases phosphorylation of MeCP2 in the rat striatum in vivo: a differential role of NMDA receptors. Neurochem Int, 59(5): 610–617
https://doi.org/10.1016/j.neuint.2011.04.013 pmid: 21704097
30 Miyake K, Nagai K (2007). Phosphorylation of methyl-CpG binding protein 2 (MeCP2) regulates the intracellular localization during neuronal cell differentiation. Neurochem Int, 50(1): 264–270
https://doi.org/10.1016/j.neuint.2006.08.018 pmid: 17052801
31 Moretti P, Levenson J.M, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y(2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26: 319–327
32 Murgatroyd C, Patchev A V, Wu Y, Micale V, Bockmühl Y, Fischer D, Holsboer F, Wotjak C T, Almeida O F, Spengler D (2009). Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci, 12(12): 1559–1566
https://doi.org/10.1038/nn.2436 pmid: 19898468
33 Nagarajan R P, Hogart A R, Gwye Y, Martin M R, LaSalle J M (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics: official journal of the DNA Methylation Society, 1: e1–11
34 Nagarajan R P, Patzel K A, Martin M, Yasui D H, Swanberg S E, Hertz-Picciotto I, Hansen R L, Van de Water J, Pessah I N, Jiang R, Robinson W P, LaSalle J M (2008). MECP2 promoter methylation and X chromosome inactivation in autism. Autism Res, 1: 169–178
35 Nan X, Campoy F J, Bird A (1997). MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell, 88(4): 471–481
https://doi.org/10.1016/S0092-8674(00)81887-5 pmid: 9038338
36 Nan X, Ng H H, Johnson C A, Laherty C D, Turner B M, Eisenman R N, Bird A (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393(6683): 386–389
https://doi.org/10.1038/30764 pmid: 9620804
37 Nguyen M V, Felice C A, Du F, Covey M V, Robinson J K, Mandel G, Ballas N (2013). Oligodendrocyte lineage cells contribute unique features to Rett syndrome neuropathology. J Neurosci, 33: 18764–18774
38 Qiu Z, Sylwestrak E L, Lieberman D N, Zhang Y, Liu X Y, Ghosh A (2012). The Rett syndrome protein MeCP2 regulates synaptic scaling. J Neurosci, 32: 989–994
39 Ramocki M B, Peters S U, Tavyev Y J, Zhang F, Carvalho C M, Schaaf C P, Richman R, Fang P, Glaze D G, Lupski J R, Zoghbi H Y (2009). Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome. Ann Neurol, 66(6): 771–782
https://doi.org/10.1002/ana.21715 pmid: 20035514
40 Rexach J E, Rogers C J, Yu S H, Tao J, Sun Y E, Hsieh-Wilson L C (2010). Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat Chem Biol, 6(9): 645–651
https://doi.org/10.1038/nchembio.412 pmid: 20657584
41 Skene P J, Illingworth R S, Webb S, Kerr A R, James K D, Turner D J, Andrews R, Bird A P (2010). Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell, 37(4): 457–468
https://doi.org/10.1016/j.molcel.2010.01.030 pmid: 20188665
42 Szulwach K E, Li X, Li Y, Song C X, Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14(12): 1607–1616
https://doi.org/10.1038/nn.2959 pmid: 22037496
43 Tao J, Hu K, Chang Q, Wu H, Sherman N E, Martinowich K, Klose R J, Schanen C, Jaenisch R, Wang W, Sun Y E (2009). Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc Natl Acad Sci USA, 106(12): 4882–4887
https://doi.org/10.1073/pnas.0811648106 pmid: 19225110
44 Xi C Y, Ma H W, Lu Y, Zhao Y J, Hua T Y, Zhao Y, Ji Y H (2007). MeCP2 gene mutation analysis in autistic boys with developmental regression. Psychiatr Genet, 17(2): 113–116
https://doi.org/10.1097/YPG.0b013e3280114a5c pmid: 17413451
45 Zhong X, Li H, Chang Q (2012). MeCP2 phosphorylation is required for modulating synaptic scaling through mGluR5. J Neurosci, 32: 12841–12847
46 Zhou Z, Hong E J, Cohen S, Zhao W N, Ho H Y, Schmidt L, Chen W G, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269
https://doi.org/10.1016/j.neuron.2006.09.037 pmid: 17046689
[1] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[2] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[3] Liang XUE, W. Andy TAO. Current technologies to identify protein kinase substrates in high throughput[J]. Front Biol, 2013, 8(2): 216-227.
[4] Darren GOFFIN, Zhaolan (Joe) ZHOU. The neural circuit basis of Rett syndrome[J]. Front Biol, 2012, 7(5): 428-435.
[5] Richard D. Smrt, Xinyu Zhao, . Epigenetic regulation of neuronal dendrite and dendritic spine development[J]. Front. Biol., 2010, 5(4): 304-323.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed