Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (2) : 216-227    https://doi.org/10.1007/s11515-013-1257-z
REVIEW
Current technologies to identify protein kinase substrates in high throughput
Liang XUE1, W. Andy TAO1,2,3,4()
1. Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; 2. Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; 3. Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; 4. Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
 Download: PDF(562 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Since the discovery of protein phosphorylation as an important modulator of many cellular processes, the involvement of protein kinases in diseases, such as cancer, diabetes, cardiovascular diseases, and central nervous system pathologies, has been extensively documented. Our understanding of many disease pathologies at the molecular level, therefore, requires the comprehensive identification of substrates targeted by protein kinases. In this review, we focus on recent techniques for kinase substrate identification in high throughput, in particular on genetic and proteomic approaches. Each method with its inherent advantages and limitations is discussed.

Keywords phosphorylation      kinase substrate      in vitro kinase assay      high throughput screening      mass spectrometry      phosphoproteomics     
Corresponding Author(s): TAO W. Andy,Email:watao@purdue.edu   
Issue Date: 01 April 2013
 Cite this article:   
Liang XUE,W. Andy TAO. Current technologies to identify protein kinase substrates in high throughput[J]. Front Biol, 2013, 8(2): 216-227.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1257-z
https://academic.hep.com.cn/fib/EN/Y2013/V8/I2/216
Fig.1  High throughput strategies to identify kinase substrates. ASKA, analog sensitive kinase allele; MS, mass spectrometry; AP-MS, affinity purification-mass spectrometry.
Fig.2  Kinase assay based on protein array or peptide array. Protein/peptide collections are spotted on the microarray, followed by the incubation with a purified active kinase under the reaction condition. Phosphorylation is detected by various methods.
Fig.3  Workflow for phage display-based substrate screening. From a large population of phages, phosphorylated phage can be either identified by autoradiography or phosphorylation-specific antibodies.
Fig.4  Application of the classical yeast-two-hybrid approach for the kinase substrate identification. Each candidate is paired with the kinase of interest. Putative substrates showing positive interaction must be examined by alternative experimental strategies.
Fig.5  Brief illustration of analog sensitive kinase allele strategy (ASKA). (A)The bulky-ATP analog can be only up taken by engineered kinase. (B) Proposed application of ASKA to identify direct kinase substrates both and .
Fig.6  Flow chart for the Kinase Assay Linked with Phosphoproteomics (KALIP) approach to identify direct kinase substrates.
AssayWorking conditionAdvantagesLimitation
Protein arrayIn vitroSensitiveDirect substrate identificationArtifact proneNo phosphosite information
Phage displayIn vitroDirect substrate identificationProtein misfolding by bacteria
Peptide array/Synthetic peptide libraryIn vitroKinase specificity identificationPseudo-unbiased motif screeningRequire bioinformatics for substrate prediction
Protein extractIn vitroFast, cheap, convenientEndogenous kinase contamination
PhosphoproteomicsIn vivoNative phosphorylation monitoring, including phosphosites, quantity, etc.Do not indicate direct relation of kinase and substrate
Kinase assay linked phosphoproteomics (KALIP)in vitro, in vivoFast, cheap, convenientDirect substrate identificationLoss of motifs due to enzymatic digestionLoss of protein structure for kinase reaction
Analog sensitive kinase assay (ASKA)In vitro, in vivoDirect substrate identificationNative reaction conditionMethod optimization for individual kinaseNot yet demonstrated in vivo
Yeast two hybridAP-MSIn vivoNo knowledge required for kinasesFast to make decisionRequire other techniques to provide phosphorylation information
Tab.1  Comparisons of kinase substrate screening techniques (See text for more details)
1 Amanchy R, Zhong J, Molina H, Chaerkady R, Iwahori A, Kalume D E, Gr?nborg M, Joore J, Cope L, Pandey A (2008). Identification of c-Src tyrosine kinase substrates using mass spectrometry and peptide microarrays. J Proteome Res , 7(9): 3900–3910
doi: 10.1021/pr800198w pmid:18698806
2 Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, Kaibuchi K (2010). A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS ONE , 5(1): e8704
doi: 10.1371/journal.pone.0008704 pmid:20090853
3 Belozerov V E, Lin Z Y, Gingras A C, McDermott J C, Michael Siu K W (2012). High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol Cell Biol , 32(18): 3695–3706
doi: 10.1128/MCB.00232-12 pmid:22801366
4 Blethrow J, Zhang C, Shokat K M, Weiss E L (2004). Design and use of analog-sensitive protein kinases. Curr Protoc Mol Biol, Chapter 18, Unit 18 11 .
5 Blume-Jensen P, Hunter T (2001). Oncogenic kinase signalling. Nature , 411(6835): 355–365
doi: 10.1038/35077225 pmid:11357143
6 Breitkreutz A, Choi H, Sharom J R, Boucher L, Neduva V, Larsen B, Lin Z Y, Breitkreutz B J, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin Z S, Pawson T, Gingras A C, Nesvizhskii A I, Tyers M (2010). A global protein kinase and phosphatase interaction network in yeast. Science , 328(5981): 1043–1046
doi: 10.1126/science.1176495 pmid:20489023
7 Buss H, D?rrie A, Schmitz M L, Frank R, Livingstone M, Resch K, Kracht M (2004). Phosphorylation of serine 468 by GSK-3β negatively regulates basal p65 NF-κB activity. J Biol Chem , 279(48): 49571–49574
doi: 10.1074/jbc.C400442200 pmid:15465828
8 Ca?as B, López-Ferrer D, Ramos-Fernández A, Camafeita E, Calvo E (2006). Mass spectrometry technologies for proteomics. Brief Funct Genomics Proteomics , 4(4): 295–320
doi: 10.1093/bfgp/eli002 pmid:17202122
9 Clark I E, Dodson M W, Jiang C, Cao J H, Huh J R, Seol J H, Yoo S J, Hay B A, Guo M (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature , 441(7097): 1162–1166
doi: 10.1038/nature04779 pmid:16672981
10 Coba M P, Pocklington A J, Collins M O, Kopanitsa M V, Uren R T, Swamy S, Croning M D, Choudhary J S, Grant S G (2009). Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal , 2(68): ra19
doi: 10.1126/scisignal.2000102 pmid:19401593
11 Cohen P (2001). The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur J Biochem , 268(19): 5001–5010
doi: 10.1046/j.0014-2956.2001.02473.x pmid:11589691
12 Cohen P (2002). Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov , 1(4): 309–315
doi: 10.1038/nrd773 pmid:12120282
13 Cohen P, Knebel A (2006). KESTREL: a powerful method for identifying the physiological substrates of protein kinases. Biochem J , 393(Pt 1): 1–6
doi: 10.1042/BJ20051545 pmid:16336195
14 Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear E D, Sevier C S, Ding H, Koh J L, Toufighi K, Mostafavi S, Prinz J, St Onge R P, VanderSluis B, Makhnevych T, Vizeacoumar F J, Alizadeh S, Bahr S, Brost R L, Chen Y, Cokol M, Deshpande R, Li Z, Lin Z Y, Liang W, Marback M, Paw J, San Luis B J, Shuteriqi E, Tong A H, van Dyk N, Wallace I M, Whitney J A, Weirauch M T, Zhong G, Zhu H, Houry W A, Brudno M, Ragibizadeh S, Papp B, Pál C, Roth F P, Giaever G, Nislow C, Troyanskaya O G, Bussey H, Bader G D, Gingras A C, Morris Q D, Kim P M, Kaiser C A, Myers C L, Andrews B J, Boone C (2010). The genetic landscape of a cell. Science , 327(5964): 425–431
doi: 10.1126/science.1180823 pmid:20093466
15 Daub H, Olsen J V, Bairlein M, Gnad F, Oppermann F S, K?rner R, Greff Z, Kéri G, Stemmann O, Mann M (2008). Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell , 31(3): 438–448
doi: 10.1016/j.molcel.2008.07.007 pmid:18691976
16 Delom F, Chevet E (2006). Phosphoprotein analysis: from proteins to proteomes. Proteome Sci , 4(1): 15
doi: 10.1186/1477-5956-4-15 pmid:16854217
17 Dente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci P G, Cesareni G (1997). Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J Mol Biol , 269(5): 694–703
doi: 10.1006/jmbi.1997.1073 pmid:9223634
18 Dephoure N, Howson R W, Blethrow J D, Shokat K M, O’Shea E K (2005). Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci USA , 102(50): 17940–17945
doi: 10.1073/pnas.0509080102 pmid:16330754
19 Fiedler D, Braberg H, Mehta M, Chechik G, Cagney G, Mukherjee P, Silva A C, Shales M, Collins S R, van Wageningen S, Kemmeren P, Holstege F C, Weissman J S, Keogh M C, Koller D, Shokat K M, Krogan N J (2009). Functional organization of the S. cerevisiae phosphorylation network. Cell , 136(5): 952–963
doi: 10.1016/j.cell.2008.12.039 pmid:19269370
20 Fujii K, Zhu G, Liu Y, Hallam J, Chen L, Herrero J, Shaw S (2004). Kinase peptide specificity: improved determination and relevance to protein phosphorylation. Proc Natl Acad Sci USA , 101(38): 13744–13749
doi: 10.1073/pnas.0401881101 pmid:15356339
21 Fukunaga R, Hunter T (1997). MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J , 16(8): 1921–1933
doi: 10.1093/emboj/16.8.1921 pmid:9155018
22 Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen L J, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier M A, Hoffman V, Hoefert C, Klein K, Hudak M, Michon A M, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick J M, Kuster B, Bork P, Russell R B, Superti-Furga G (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature , 440(7084): 631–636
doi: 10.1038/nature04532 pmid:16429126
23 Gavin A C, B?sche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick J M, Michon A M, Cruciat C M, Remor M, H?fert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M A, Copley R R, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature , 415(6868): 141–147
doi: 10.1038/415141a pmid:11805826
24 Habelhah H, Shah K, Huang L, Burlingame A L, Shokat K M, Ronai Z (2001). Identification of new JNK substrate using ATP pocket mutant JNK and a corresponding ATP analogue. J Biol Chem , 276(21): 18090–18095
doi: 10.1074/jbc.M011396200 pmid:11259409
25 Huang S Y, Tsai M L, Chen G Y, Wu C J, Chen S H (2007). A systematic MS-based approach for identifying invitro substrates of PKA and PKG in rat uteri. J Proteome Res , 6(7): 2674–2684
doi: 10.1021/pr070134c pmid:17564427
26 Huang Y, Houston N L, Tovar-Mendez A, Stevenson S E, Miernyk J A, Randall D D, Thelen J J (2010). A quantitative mass spectrometry-based approach for identifying protein kinase clients and quantifying kinase activity. Anal Biochem , 402(1): 69–76
doi: 10.1016/j.ab.2010.03.028 pmid:20346904
27 Hunter T (2000). Signaling—2000 and beyond. Cell , 100(1): 113–127
doi: 10.1016/S0092-8674(00)81688-8 pmid:10647936
28 Iliuk A B, Martin V A, Alicie B M, Geahlen R L, Tao W A (2010). In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics , 9(10): 2162–2172
doi: 10.1074/mcp.M110.000091 pmid:20562096
29 Jeong J S, Jiang L Z, Albino E, Marrero J, Rho H S, Hu J F, Hu S H, Vera C, Bayron-Poueymiroy D, Rivera-Pacheco Z A, Ramos L, Torres-Castro C, Qian J, Bonaventura J, Boeke J D, Yap W Y, Pino I, Eichinger D J, Zhu H, Blackshaw S (2012). Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics , 11(6): 016253
doi: 10.1074/mcp.O111.016253 pmid:22307071
30 Jiang W, Jimenez G, Wells N J, Hope T J, Wahl G M, Hunter T, Fukunaga R (1998). PRC1: a human mitotic spindle-associated CDK substrate protein required for cytokinesis. Mol Cell , 2(6): 877–885
doi: 10.1016/S1097-2765(00)80302-0 pmid:9885575
31 Jin L L, Tong J F, Prakash A, Peterman S M, St-Germain J R, Taylor P, Trudel S, Moran M F (2010). Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res , 9(5): 2752–2761
doi: 10.1021/pr100024a pmid:20205385
32 Johnson S A, Hunter T (2005). Kinomics: methods for deciphering the kinome. Nat Methods , 2(1): 17–25
doi: 10.1038/nmeth731 pmid:15789031
33 Kettenbach A N, Schweppe D K, Faherty B K, Pechenick D, Pletnev A A, Gerber S A (2011). Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal , 4(179): rs5
doi: 10.1126/scisignal.2001497 pmid:21712546
34 Khati M, Pillay T S (2004). Phosphotyrosine phosphoepitopes can be rapidly analyzed by coexpression of a tyrosine kinase in bacteria with a T7 bacteriophage display library. Anal Biochem , 325(1): 164–167
doi: 10.1016/j.ab.2003.09.042 pmid:14715298
35 Kim M, Shin D S, Kim J, Lee Y S (2010). Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers , 94(6): 753–762
doi: 10.1002/bip.21506 pmid:20564046
36 Kim Y G, Shin D S, Kim E M, Park H Y, Lee C S, Kim J H, Lee B S, Lee Y S, Kim B G (2007). High-throughput identification of substrate specificity for protein kinase by using an improved one-bead-one-compound library approach. Angew Chem Int Ed Engl , 46(28): 5408–5411
doi: 10.1002/anie.200700195 pmid:17554743
37 Knebel A, Morrice N, Cohen P (2001). A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38delta. EMBO J , 20(16): 4360–4369
doi: 10.1093/emboj/20.16.4360 pmid:11500363
38 Kosako H, Nagano K (2011). Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways. Expert Rev Proteomics , 8(1): 81–94
doi: 10.1586/epr.10.104 pmid:21329429
39 Kreegipuu A, Blom N, Brunak S, J?rv J (1998). Statistical analysis of protein kinase specificity determinants. FEBS Lett , 430(1-2): 45–50
doi: 10.1016/S0014-5793(98)00503-1 pmid:9678592
40 Krogan N J, Cagney G, Yu H Y, Zhong G Q, Guo X H, Ignatchenko A, Li J, Pu S Y, Datta N, Tikuisis A P, Punna T, Peregrín-Alvarez J M, Shales M, Zhang X, Davey M, Robinson M D, Paccanaro A, Bray J E, Sheung A, Beattie B, Richards D P, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete M M, Vlasblom J, Wu S, Orsi C, Collins S R, Chandran S, Haw R, Rilstone J J, Gandi K, Thompson N J, Musso G, St Onge P, Ghanny S, Lam M H, Butland G, Altaf-Ul A M, Kanaya S, Shilatifard A, O’Shea E, Weissman J S, Ingles C J, Hughes T R, Parkinson J, Gerstein M, Wodak S J, Emili A, Greenblatt J F (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature , 440(7084): 637–643
doi: 10.1038/nature04670 pmid:16554755
41 Lam K S, Wu J Z, Lou Q (1995). Identification and characterization of a novel synthetic peptide substrate specific for Src-family protein tyrosine kinases. Int J Pept Protein Res , 45(6): 587–592
doi: 10.1111/j.1399-3011.1995.tb01323.x pmid:7558590
42 Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov J P, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin J C, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston R H, Wilson R K, Hillier L W, McPherson J D, Marra M A, Mardis E R, Fulton L A, Chinwalla A T, Pepin K H, Gish W R, Chissoe S L, Wendl M C, Delehaunty K D, Miner T L, Delehaunty A, Kramer J B, Cook L L, Fulton R S, Johnson D L, Minx P J, Clifton S W, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng J F, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs R A, Muzny D M, Scherer S E, Bouck J B, Sodergren E J, Worley K C, Rives C M, Gorrell J H, Metzker M L, Naylor S L, Kucherlapati R S, Nelson D L, Weinstock G M, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith D R, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee H M, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis R W, Federspiel N A, Abola A P, Proctor M J, Myers R M, Schmutz J, Dickson M, Grimwood J, Cox D R, Olson M V, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans G A, Athanasiou M, Schultz R, Roe B A, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W R, de la Bastide M, Dedhia N, Bl?cker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey J A, Bateman A, Batzoglou S, Birney E, Bork P, Brown D G, Burge C B, Cerutti L, Chen H C, Church D, Clamp M, Copley R R, Doerks T, Eddy S R, Eichler E E, Furey T S, Galagan J, Gilbert J G, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson L S, Jones T A, Kasif S, Kaspryzk A, Kennedy S, Kent W J, Kitts P, Koonin E V, Korf I, Kulp D, Lancet D, Lowe T M, McLysaght A, Mikkelsen T, Moran J V, Mulder N, Pollara V J, Ponting C P, Schuler G, Schultz J, Slater G, Smit A F, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf Y I, Wolfe K H, Yang S P, Yeh R F, Collins F, Guyer M S, Peterson J, Felsenfeld A, Wetterstrand K A, Patrinos A, Morgan M J, de Jong P, Catanese J J, Osoegawa K, Shizuya H, Choi S, Chen Y J, and the International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature , 409(6822): 860–921
doi: 10.1038/35057062 pmid:11237011
43 Leberer E, Thomas D Y, Whiteway M (1997). Pheromone signalling and polarized morphogenesis in yeast. Curr Opin Genet Dev , 7(1): 59–66
doi: 10.1016/S0959-437X(97)80110-4 pmid:9024634
44 Lesaicherre M L, Uttamchandani M, Chen G Y J, Yao S Q (2002). Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg Med Chem Lett , 12(16): 2085–2088
doi: 10.1016/S0960-894X(02)00378-5 pmid:12127509
45 Linding R, Jensen L J, Ostheimer G J, van Vugt M A, J?rgensen C, Miron I M, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park J G, Samson L D, Woodgett J R, Russell R B, Bork P, Yaffe M B, Pawson T (2007). Systematic discovery of in vivo phosphorylation networks. Cell , 129(7): 1415–1426
doi: 10.1016/j.cell.2007.05.052 pmid:17570479
46 Lou Q, Leftwich M E, Lam K S (1996). Identification of GIYWHHY as a novel peptide substrate for human p60c-src protein tyrosine kinase. Bioorg Med Chem , 4(5): 677–682
doi: 10.1016/0968-0896(96)00063-6 pmid:8804533
47 Mah A S, Elia A E, Devgan G, Ptacek J, Schutkowski M, Snyder M, Yaffe M B, Deshaies R J (2005). Substrate specificity analysis of protein kinase complex Dbf2-Mob1 by peptide library and proteome array screening. BMC Biochem , 6(1): 22
doi: 10.1186/1471-2091-6-22 pmid:16242037
48 Manning B D, Cantley L C (2002). Hitting the target: emerging technologies in the search for kinase substrates. Sci STKE , 2002(162): pe49
doi: 10.1126/stke.2002.162.pe49 pmid:12475999
49 Manning B D, Tee A R, Logsdon M N, Blenis J, Cantley L C (2002a). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell , 10(1): 151–162
doi: 10.1016/S1097-2765(02)00568-3 pmid:12150915
50 Manning G, Whyte D B, Martinez R, Hunter T, Sudarsanam S (2002b). The protein kinase complement of the human genome. Science , 298(5600): 1912–1934
doi: 10.1126/science.1075762 pmid:12471243
51 Morandell S, Grosstessner-Hain K, Roitinger E, Hudecz O, Lindhorst T, Teis D, Wrulich O A, Mazanek M, Taus T, Ueberall F, Mechtler K, Huber L A (2010). QIKS—Quantitative identification of kinase substrates. Proteomics , 10(10): 2015–2025
doi: 10.1002/pmic.200900749 pmid:20217869
52 Neville D C, Rozanas C R, Price E M, Gruis D B, Verkman A S, Townsend R R (1997). Evidence for phosphorylation of serine 753 in CFTR using a novel metal-ion affinity resin and matrix-assisted laser desorption mass spectrometry. Protein Sci , 6(11): 2436–2445
doi: 10.1002/pro.5560061117 pmid:9385646
53 Obenauer J C, Cantley L C, Yaffe M B (2003). Scansite 2.0: Proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res , 31(13): 3635–3641
doi: 10.1093/nar/gkg584 pmid:12824383
54 Paradis S, Ruvkun G (1998). Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev , 12(16): 2488–2498
doi: 10.1101/gad.12.16.2488 pmid:9716402
55 Pawson T (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell , 116(2): 191–203
doi: 10.1016/S0092-8674(03)01077-8 pmid:14744431
56 Pillay T S (2004). A fisherman’s tale: Phage display as a discovery tool. Discov Med , 4(23): 315–318
pmid:20704967
57 Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J (2004). Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem , 76(14): 3935–3943
doi: 10.1021/ac0498617 pmid:15253627
58 Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney R R, Schmidt M C, Rachidi N, Lee S J, Mah A S, Meng L, Stark M J, Stern D F, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki P F, Snyder M (2005). Global analysis of protein phosphorylation in yeast. Nature , 438(7068): 679–684
doi: 10.1038/nature04187 pmid:16319894
59 Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, Apweiler R, Fleischmann W, Cherry J M, Henikoff S, Skupski M P, Misra S, Ashburner M, Birney E, Boguski M S, Brody T, Brokstein P, Celniker S E, Chervitz S A, Coates D, Cravchik A, Gabrielian A, Galle R F, Gelbart W M, George R A, Goldstein L S, Gong F, Guan P, Harris N L, Hay B A, Hoskins R A, Li J, Li Z, Hynes R O, Jones S J, Kuehl P M, Lemaitre B, Littleton J T, Morrison D K, Mungall C, O’Farrell P H, Pickeral O K, Shue C, Vosshall L B, Zhang J, Zhao Q, Zheng X H, Lewis S (2000). Comparative genomics of the eukaryotes. Science , 287(5461): 2204–2215
doi: 10.1126/science.287.5461.2204 pmid:10731134
60 Schmitz R, Baumann G, Gram H (1996). Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c-Src and Syk as assessed by phage display. J Mol Biol , 260(5): 664–677
doi: 10.1006/jmbi.1996.0429 pmid:8709147
61 Sha D, Chin L S, Li L (2010). Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-κB signaling. Hum Mol Genet , 19(2): 352–363
doi: 10.1093/hmg/ddp501 pmid:19880420
62 Shah K, Liu Y, Deirmengian C, Shokat K M (1997). Engineering unnatural nucleotide specificity for Rous sarcoma virus tyrosine kinase to uniquely label its direct substrates. Proc Natl Acad Sci USA , 94(8): 3565–3570
doi: 10.1073/pnas.94.8.3565 pmid:9108016
63 Shin D S, Kim Y G, Kim E M, Kim M, Park H Y, Kim J H, Lee B S, Kim B G, Lee Y S (2008). Solid-phase peptide library synthesis on HiCore resin for screening substrate specificity of Brk protein tyrosine kinase. J Comb Chem , 10(1): 20–23
doi: 10.1021/cc7001217 pmid:18052331
64 Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H (2012). Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics , 11(10): 1070–1083
doi: 10.1074/mcp.M111.012625 pmid:22798277
65 Songyang Z, Carraway K L 3rd, Eck M J, Harrison S C, Feldman R A, Mohammadi M, Schlessinger J, Hubbard S R, Smith D P, Eng C, Lorenzo M J, Ponder B A J, Mayer B J, Cantley L C (1995). Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature , 373(6514): 536–539
doi: 10.1038/373536a0 pmid:7845468
66 Songyang Z, Lu K P, Kwon Y T, Tsai L H, Filhol O, Cochet C, Brickey D A, Soderling T R, Bartleson C, Graves D J, DeMaggio A J, Hoekstra M F, Blenis J, Hunter T, Cantley L C (1996). A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol Cell Biol , 16(11): 6486–6493
pmid:8887677
67 Sopko R, Huang D, Preston N, Chua G, Papp B, Kafadar K, Snyder M, Oliver S G, Cyert M, Hughes T R, Boone C, Andrews B (2006). Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell , 21(3): 319–330
doi: 10.1016/j.molcel.2005.12.011 pmid:16455487
68 Staudinger J, Zhou J, Burgess R, Elledge S J, Olson E N (1995). PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol , 128(3): 263–271
doi: 10.1083/jcb.128.3.263 pmid:7844141
69 Tien A C, Lin M H, Su L J, Hong Y R, Cheng T S, Lee Y C, Lin W J, Still I H, Huang C Y (2004). Identification of the substrates and interaction proteins of aurora kinases from a protein-protein interaction model. Mol Cell Proteomics , 3(1): 93–104
doi: 10.1074/mcp.M300072-MCP200 pmid:14602875
70 Troiani S, Uggeri M, Moll J, Isacchi A, Kalisz H M, Rusconi L, Valsasina B (2005). Searching for biomarkers of Aurora-A kinase activity: identification of in vitro substrates through a modified KESTREL approach. J Proteome Res , 4(4): 1296–1303
doi: 10.1021/pr050018e pmid:16083279
71 Vadlamudi R K, Li F, Adam L, Nguyen D, Ohta Y, Stossel T P, Kumar R (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat Cell Biol , 4(9): 681–690
doi: 10.1038/ncb838 pmid:12198493
72 Witze E S, Old W M, Resing K A, Ahn N G (2007). Mapping protein post-translational modifications with mass spectrometry. Nat Methods , 4(10): 798–806
doi: 10.1038/nmeth1100 pmid:17901869
73 Wu R H, Haas W, Dephoure N, Huttlin E L, Zhai B, Sowa M E, Gygi S P (2011). A large-scale method to measure absolute protein phosphorylation stoichiometries. Nat Methods , 8(8): 677–683
doi: 10.1038/nmeth.1636 pmid:21725298
74 Xue L, Wang W H, Iliuk A, Hu L, Galan J A, Yu S, Hans M, Geahlen R L, Tao W A (2012). Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates. Proc Natl Acad Sci USA , 109(15): 5615–5620
doi: 10.1073/pnas.1119418109 pmid:22451900
75 Yaffe M B, Leparc G G, Lai J, Obata T, Volinia S, Cantley L C (2001). A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol , 19(4): 348–353
doi: 10.1038/86737 pmid:11283593
76 Yang X, Hubbard E J, Carlson M (1992). A protein kinase substrate identified by the two-hybrid system. Science , 257(5070): 680–682
doi: 1496382" target="_blank">10.1126/science. pmid:1496382 pmid:1496382
77 Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean R A, Gerstein M, Snyder M (2001). Global analysis of protein activities using proteome chips. Science , 293(5537): 2101–2105
doi: 10.1126/science.1062191 pmid:11474067
[1] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[2] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[3] James M. Arnold,William T. Choi,Arun Sreekumar,Mirjana Maletić-Savatić. Analytical strategies for studying stem cell metabolism[J]. Front. Biol., 2015, 10(2): 141-153.
[4] Hongda LI,Qiang CHANG. Regulation and function of stimulus-induced phosphorylation of MeCP2[J]. Front. Biol., 2014, 9(5): 367-375.
[5] Donald L. PUPPIONE, Julian P. WHITELEGGE. Proteogenomic review of the changes in primate apoC-I during evolution[J]. Front Biol, 2013, 8(5): 533-548.
[6] Xiao-Shan YUE, Amanda B. HUMMON. Mass spectrometry-based phosphoproteomics in cancer research[J]. Front Biol, 2012, 7(6): 566-586.
[7] Robert CUNNINGHAM, Di MA, Lingjun LI. Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery[J]. Front Biol, 2012, 7(4): 313-335.
[8] Guanghou SHUI. Systems level analysis of lipidome[J]. Front Biol, 2011, 6(3): 183-189.
[9] Yuguang WANG, Haiying LI, Sixue CHEN. Advances in quantitative proteomics[J]. Front Biol, 2010, 5(3): 195-203.
[10] ZHAO Xiaofeng, WANG Shu, SHI Xuemin, WEN Jingrong. Proteomics analysis of cerebral cortex in Wistar rats[J]. Front. Biol., 2008, 3(4): 419-427.
[11] RUAN Songlin, MA Huasheng, WANG Shiheng, XIN Ya, QIAN Lihua, TONG Jianxing, WANG Jie. Advances in plant proteomics-key techniques of proteome[J]. Front. Biol., 2008, 3(3): 245-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed