Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (3) : 183-189    https://doi.org/10.1007/s11515-011-1147-1
MINI-REVIEW
Systems level analysis of lipidome
Guanghou SHUI()
Life Science Institute, National University of Singapore, Singapore 117456, Singapore
 Download: PDF(328 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Lipids, once thought to be mainly for energy-storage and structural purpose, have now gained immense recognition as a class of critical metabolites with versatile functions. The diversity and complexity of the cellular lipids are the main challenge for the comprehensive analysis of a lipidome. Lipidomics, which aims at mapping all of the lipids in a cell, is expanded rapidly in recent years, mainly attributed to recent advances in mass spectrometry (MS). MS-based lipidomic approaches developed recently allow the quick profiling of hundreds of lipids in a crude lipid extract. With the aid of latest computational tools/software (chemometrics), aberrant lipid metabolites or important signaling lipid(s) could be easily identified using unbiased lipid profiling approaches. Further tandem MS (MS/MS)-based lipidomic approaches, known as targeted approaches and able to convey structural information, hold the promise for high-throughput lipidome analysis. In this review, I discussed the basic strategy for systems level analysis of lipidome in biomedical study.

Keywords lipidomics      lipid      mass spectrometry      metabolite     
Corresponding Author(s): SHUI Guanghou,Email:lsisgh@nus.edu.sg, bchsgh@nus.edu.sg   
Issue Date: 01 June 2011
 Cite this article:   
Guanghou SHUI. Systems level analysis of lipidome[J]. Front Biol, 2011, 6(3): 183-189.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1147-1
https://academic.hep.com.cn/fib/EN/Y2011/V6/I3/183
Fig.1  Typical structure of major membrane lipids. DAG, diacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; PG, phosphatidylglycerol; SM, sphingomyelins; Cer, ceramides; Chol, cholesterol.
Fig.1  Typical structure of major membrane lipids. DAG, diacylglycerol; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PS, phosphatidylserine; PG, phosphatidylglycerol; SM, sphingomyelins; Cer, ceramides; Chol, cholesterol.
Fig.2  Mass spectrometry-based analysis of lipidome in biological samples. Flow chart illustrating quantitative and comparative lipidomic approaches.
Fig.2  Mass spectrometry-based analysis of lipidome in biological samples. Flow chart illustrating quantitative and comparative lipidomic approaches.
Fig.3  Non-targeted lipidomic analysis (modified from Shui et al. ()). (A) Normalized lipid profile for lipid extract from the wild type cell of yeast ; (B) normalized lipid profile for the mutant; (C) differential plot (log ratio) of the mutant compared to wild type.
Fig.3  Non-targeted lipidomic analysis (modified from Shui et al. ()). (A) Normalized lipid profile for lipid extract from the wild type cell of yeast ; (B) normalized lipid profile for the mutant; (C) differential plot (log ratio) of the mutant compared to wild type.
Fig.4  Tandem mass spectrometric (MS/MS) strategies for lipidomics. (A) various MS/MS techniques: PIS, product ion scan; PreIS, precursor ion scan; NLS, neutral loss scan; MRM, multiple reaction monitoring. (B) NLS scan of 87 to detect specific PS species in yeast mutant (unpublished data).
Fig.4  Tandem mass spectrometric (MS/MS) strategies for lipidomics. (A) various MS/MS techniques: PIS, product ion scan; PreIS, precursor ion scan; NLS, neutral loss scan; MRM, multiple reaction monitoring. (B) NLS scan of 87 to detect specific PS species in yeast mutant (unpublished data).
1 Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A (2007). SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem , 282(42): 30845–30855
doi: 10.1074/jbc.M702719200 pmid:17675291
2 Bligh E G, Dyer W J (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol , 37(8): 911–917
pmid:13671378
3 Di Paolo G, Moskowitz H S, Gipson K, Wenk M R, Voronov S, Obayashi M, Flavell R, Fitzsimonds R M, Ryan T A, De Camilli P (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature , 431(7007): 415–422
doi: 10.1038/nature02896 pmid:15386003
4 Ejsing C S, Sampaio J L, Surendranath V, Duchoslav E, Ekroos K, Klemm R W, Simons K, Shevchenko A (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci USA , 106(7): 2136–2141
doi: 10.1073/pnas.0811700106 pmid:19174513
5 Fahy E, Subramaniam S, Brown H A, Glass C K, Merrill A H Jr, Murphy R C, Raetz C R, Russell D W, Seyama Y, Shaw W, Shimizu T, Spener F, van Meer G, VanNieuwenhze M S, White S H, Witztum J L, Dennis E A (2005). A comprehensive classification system for lipids. J Lipid Res , 46(5): 839–861
doi: 10.1194/jlr.E400004-JLR200 pmid:15722563
6 Fahy E, Subramaniam S, Murphy R C, Nishijima M, Raetz C R, Shimizu T, Spener F, van Meer G, Wakelam M J, Dennis E A (2009). Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res , 50(Suppl): S9–S14
doi: 10.1194/jlr.R800095-JLR200 pmid:19098281
7 Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science , 246(4926): 64–71
doi: 2675315" target="_blank">10.1126/science. pmid:2675315 pmid:2675315
8 Fernandis A Z, Wenk M R (2009). Lipid-based biomarkers for cancer. J Chromatogr B Analyt Technol Biomed Life Sci , 877(26): 2830–2835
doi: 10.1016/j.jchromb.2009.06.015 pmid:19570730
9 Folch J, Lees M, Sloane Stanley G H (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem , 226(1): 497–509
pmid:13428781
10 Fuchs B, Süss R, Schiller J (2010). An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res , 49(4): 450–475
doi: 10.1016/j.plipres.2010.07.001 pmid:20643161
11 Gangoiti P, Camacho L, Arana L, Ouro A, Granado M H, Brizuela L, Casas J, Fabriás G, Abad J L, Delgado A, Gómez-Mu?oz A (2010). Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res , 49(4): 316–334
doi: 10.1016/j.plipres.2010.02.004 pmid:20193711
12 Griffiths W J, Wang Y, Alvelius G, Liu S, Bodin K, Sj?vall J (2006). Analysis of oxysterols by electrospray tandem mass spectrometry. J Am Soc Mass Spectrom , 17(3): 341–362
doi: 10.1016/j.jasms.2005.10.012 pmid:16442307
13 Guan X L, He X, Ong W Y, Yeo W K, Shui G, Wenk M R (2006). Non-targeted profiling of lipids during kainate-induced neuronal injury. FASEB J , 20(8): 1152–1161
doi: 10.1096/fj.05-5362com pmid:16770014
14 Han X, Gross R W (1994). Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA , 91(22): 10635–10639
doi: 10.1073/pnas.91.22.10635 pmid:7938005
15 Han X, Gross R W (2005). Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev , 24(3): 367–412
doi: 10.1002/mas.20023 pmid:15389848
16 Huang Q, Shen H M, Shui G, Wenk M R, Ong C N (2006). Emodin inhibits tumor cell adhesion through disruption of the membrane lipid Raft-associated integrin signaling pathway. Cancer Res , 66(11): 5807–5815
doi: 10.1158/0008-5472.CAN-06-0077 pmid:16740720
17 Jackson S N, Wang H Y, Woods A S (2005). Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal Chem , 77(14): 4523–4527
doi: 10.1021/ac050276v pmid:16013869
18 Karas M, Hillenkamp F (1988). Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem , 60(20): 2299–2301
doi: 10.1021/ac00171a028 pmid:3239801
19 Karu K, Hornshaw M, Woffendin G, Bodin K, Hamberg M, Alvelius G, Sj?vall J, Turton J, Wang Y, Griffiths W J (2007). Liquid chromatography-mass spectrometry utilizing multi-stage fragmentation for the identification of oxysterols. J Lipid Res , 48(4): 976–987
doi: 10.1194/jlr.M600497-JLR200 pmid:17251593
20 Merrill A H Jr, Sullards M C, Allegood J C, Kelly S, Wang E (2005). Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods , 36(2): 207–224
doi: 10.1016/j.ymeth.2005.01.009 pmid:15894491
21 Niemel? P S, Castillo S, Sysi-Aho M, Oresic M (2009). Bioinformatics and computational methods for lipidomics. J Chromatogr B Analyt Technol Biomed Life Sci , 877(26): 2855–2862
doi: 10.1016/j.jchromb.2009.01.025 pmid:19200789
22 Pulfer M, Murphy R C (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev , 22(5): 332–364
doi: 10.1002/mas.10061 pmid:12949918
23 Raith K, Brenner C, Farwanah H, Müller G, Eder K, Neubert R H (2005). A new LC/APCI-MS method for the determination of cholesterol oxidation products in food. J Chromatogr A , 1067(1-2): 207–211
doi: 10.1016/j.chroma.2004.12.053 pmid:15844526
24 Shui G, Bendt A K, Pethe K, Dick T, Wenk M R (2007). Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res , 48(9): 1976–1984
doi: 10.1194/jlr.M700060-JLR200 pmid:17565170
25 Shui G, Guan X L, Gopalakrishnan P, Xue Y, Goh J S, Yang H, Wenk M R (2010a). Characterization of substrate preference for Slc1p and Cst26p in Saccharomyces cerevisiae using lipidomic approaches and an LPAAT activity assay. PLoS One , 5(8): e11956
doi: 10.1371/journal.pone.0011956 pmid:20694142
26 Shui G, Guan X L, Low C P, Chua G H, Goh J S, Yang H, Wenk M R (2010b). Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol Biosyst , 6(6): 1008–1017
doi: 10.1039/b913353d pmid:20485745
27 Stubiger G, Belgacem O (2007). Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal Chem , 79(8): 3206–3213
doi: 10.1021/ac062236c pmid:17367115
28 Taguchi R, Houjou T, Nakanishi H, Yamazaki T, Ishida M, Imagawa M, Shimizu T (2005). Focused lipidomics by tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci , 823(1): 26–36
doi: 10.1016/j.jchromb.2005.06.005 pmid:15990370
29 Taguchi R, Ishikawa M (2010). Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search. J Chromatogr A , 1217(25): 4229–4239
doi: 10.1016/j.chroma.2010.04.034 pmid:20452604
30 Wenk M R (2005). The emerging field of lipidomics. Nat Rev Drug Discov , 4(7): 594–610
doi: 10.1038/nrd1776 pmid:16052242
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[2] Syed Baker, Svetlana V. Prudnikova, Tatiana Volova. Siberian plants: untapped repertoire of bioactive endosymbionts[J]. Front. Biol., 2018, 13(3): 157-167.
[3] Karim Mowla, Elham Rajaei, Mohammad Taha Jalali, Zeinab Deris Zayeri. Threatening biomarkers in lupus pregnancy: Biochemistry and genetic challenges[J]. Front. Biol., 2018, 13(1): 28-35.
[4] Kumar Gaurav, Yasha Hasija. Comparative analysis of metabolic network of pathogens[J]. Front. Biol., 2017, 12(2): 139-150.
[5] Anatoly I. Bozhkov,Natalia G. Menzyanova,Vadim V. Davydov,Natalia I. Kurguzova,Vadim I. Sidorov,Anastasia S. Vasilieva. Liver regeneration is associated with lipid reorganization in membranes of the endoplasmic reticulum[J]. Front. Biol., 2016, 11(5): 396-403.
[6] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[7] James M. Arnold,William T. Choi,Arun Sreekumar,Mirjana Maletić-Savatić. Analytical strategies for studying stem cell metabolism[J]. Front. Biol., 2015, 10(2): 141-153.
[8] Nazmul H. A. Mamun,Ulrika Egertsdotter,Cyrus K. Aidun. Bioreactor technology for clonal propagation of plants and metabolite production[J]. Front. Biol., 2015, 10(2): 177-193.
[9] Donald L. PUPPIONE, Julian P. WHITELEGGE. Proteogenomic review of the changes in primate apoC-I during evolution[J]. Front Biol, 2013, 8(5): 533-548.
[10] FoSheng HSU, Yuxin MAO. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease[J]. Front Biol, 2013, 8(4): 395-407.
[11] Liang XUE, W. Andy TAO. Current technologies to identify protein kinase substrates in high throughput[J]. Front Biol, 2013, 8(2): 216-227.
[12] Xiao-Shan YUE, Amanda B. HUMMON. Mass spectrometry-based phosphoproteomics in cancer research[J]. Front Biol, 2012, 7(6): 566-586.
[13] Robert CUNNINGHAM, Di MA, Lingjun LI. Mass spectrometry-based proteomics and peptidomics for systems biology and biomarker discovery[J]. Front Biol, 2012, 7(4): 313-335.
[14] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
[15] Karlheinz GRILLITSCH, Günther DAUM. Triacylglycerol lipases of the yeast[J]. Front Biol, 2011, 6(3): 219-230.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed