Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (3) : 203-220    https://doi.org/10.1007/s11515-015-1343-5
REVIEW
Regulation of Hedgehog signaling by ubiquitination
Elaine Y. C. Hsia,Yirui Gui,Xiaoyan Zheng()
Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
 Download: PDF(654 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components.

Keywords Hedgehog signaling      ubiquitination     
Corresponding Author(s): Xiaoyan Zheng   
Just Accepted Date: 06 January 2015   Online First Date: 04 February 2015    Issue Date: 23 June 2015
 Cite this article:   
Elaine Y. C. Hsia,Yirui Gui,Xiaoyan Zheng. Regulation of Hedgehog signaling by ubiquitination[J]. Front. Biol., 2015, 10(3): 203-220.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1343-5
https://academic.hep.com.cn/fib/EN/Y2015/V10/I3/203
Fig.1  Regulation of Hedgehog signaling by ubiquitination. (A) In Drosophila, dPtc localized at the plasma membrane suppresses dSmo activity in the absence of Hh. An unknown E3 ligase (E3?) promotes internalization and degradation of dSmo. Sufu sequesters full-length Ci (CiFL) in the cytoplasm and protects CiFL from spurious Cul3-HIB-mediated degradation. CiFL is also targeted by Cul1-Slimb for partial degradation to the repressor form CiR leading to repression of pathway target genes. Nuclear export of the spliceosome factor Crn by an unknown substrate (S) allows functional Sufu mRNA to be translated. (B) Hh binding to dPtc releases its inhibition on dSmo. UBPY/USP8 reverses dSmo ubiquitination and promotes dSmo accumulation at the plasma membrane, although this can also occur in the absence of Hh. Activated dSmo recruits Smurf to the plasma membrane where Smurf mediates the internalization and degradation of dPtc. Cul1-Slimb-mediated CiR formation is inhibited, allowing for formation of the activator form CiA and activation of pathway target genes including hib. HIB functions in a negative feedback manner by promoting the degradation of CiFL. Cul3-HIB also targets the unknown substrate S for degradation, allowing Crn to accumulate in the nucleus where it inhibits formation of functional Sufu mRNA and leads to reduced Sufu protein synthesis. (C) In vertebrates, in the absence of Hh ligands, Ptch1 suppresses activation of vSmo, which is internalized and degraded by an unknown E3 ligase. Sufu protects full-length Gli2 and Gli3 (GliFL) from Cul3-Spop-mediated degradation. Sufu also promotes the partial degradation of GliFL to GliR by Cul1-βTrCP. (D) In the presence of Hh ligands, Ptch1 is internalized and degraded by Smurf1/2. An unknown deubiquitinase (DUB) decreases vSmo ubiquitination and degradation. Sufu is degraded in a Cul3-Spop-dependent manner, and GliR formation by Cul1-βTrCP is inhibited, allowing for GliA formation.
Hh pathway component Regulation E3 ligase-adaptor complex Ub Lys linkage Deubiquitinase Outcome of ubiquitination Reference
Ptc Unknown Smurf K48, K63 Unknown Complete degradation* Huang et al., 2013,
(dPtc, Ptch1) poly-ubiquitination Endocytosis Yue et al., 2014
dPtc Unknown Nedd4 Unknown Unknown Complete degradation Formstecher et al., 2005
Lu et al., 2006
Ptch1 Unknown Itchy Unknown Unknown Complete degradation and endocytosis Chen et al., 2014
Smo Inhibited by PKA and CK1 Unknown K48 USP8 Complete degradation Li et al., 2012
(dSmo, vSmo) dependent phosphorylation multi-mono and Endocytosis Xia et al., 2012
poly-ubiquitination Yang et al., 2013
Fan et al., 2013
Sufu Inhibited by PKA and GSK3 Unknown K48 mono- and Unknown Complete degradation Yue et al., 2009
dependent phosphorylation poly-ubiquitination Chen et al., 2011b
Indirect through Crn Cul3-HIB/SPOP Unknown Unknown Inhibit Sufu mRNA translation Liu et al., 2014a
Ci Promoted by PKA, GSK3, Cul1-Slimb/βTrCP K11, K48 Unknown Partial degradation** Jiang and Struhl, 1998
and CKI dependent Jia et al., 2002
phosphorylation Price and Kalderon, 2002
Ou et al., 2002
Jia et al., 2005
Smelkinson and Kalderon, 2006
Zhang et al., 2013
HIB expression induced by Cul3-HIB/SPOP K48 Unknown Complete degradation Ou et al., 2002
activated Hh signaling Zhang et al., 2006
Kent et al., 2006
Gli1 Unknown Itchy Unknown Complete degradation Di Marcotullio et al., 2006
Genotoxic stress via p53 PCAF Mazza et al., 2013
Unknown Cul2-Fem1b K48 Gilder et al., 2013
Gli2 PKA, GSK3, and CK1 Cul1-Slimb/βTrCP Unknown Partial degradation Pan et al., 2006
dependent phosphorylation
Gli3 PKA, GSK3, and CK1 Cul1-Slimb/βTrCP Unknown Partial degradation Wang and Li, 2006
dependent phosphorylation Tempe et al., 2006
Gli1, Gli2 Promoted by PKA, GSK3β, Cul1-Slimb/βTrCP Unknown Complete degradation Bhatia,et al., 2006
and CK1 dependent phosphorylation Huntzicker et al., 2006
Indirect through HDAC Cul3-KCASH Inhibits deacetylation and activation of Gli1 Canettieri et al., 2010
and Gli2 De Smaele et al., 2011
Gli2, Gli3 Induced by activated Hh Cul3-HIB/SPOP Unknown Complete degradation Zhang et al., 2006a
signaling Chen et al., 2009
Wang et al., 2010
Tab.1  Ubiquitination of Hedgehog pathway components
1 Agyeman A, Mazumdar T, Houghton J A (2012). Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Oncotarget, 3(8): 854–868
pmid: 23097684
2 Allen B L, Song J Y, Izzi L, Althaus I W, Kang J S, Charron F, Krauss R S, McMahon A P (2011). Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev Cell, 20(6): 775–787
https://doi.org/10.1016/j.devcel.2011.04.018 pmid: 21664576
3 Apionishev S, Katanayeva N M, Marks S A, Kalderon D, Tomlinson A (2005). Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol, 7(1): 86–92
https://doi.org/10.1038/ncb1210 pmid: 15592457
4 Aza-Blanc P, Lin H Y, Ruiz i Altaba A, Kornberg T B (2000). Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development, 127(19): 4293–4301
pmid: 10976059
5 Aza-Blanc P, Ramírez-Weber F A, Laget M P, Schwartz C, Kornberg T B (1997). Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell, 89(7): 1043–1053
https://doi.org/10.1016/S0092-8674(00)80292-5 pmid: 9215627
6 Bai C B, Auerbach W, Lee J S, Stephen D, Joyner A L (2002). Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development, 129(20): 4753–4761
pmid: 12361967
7 Bai C B, Stephen D, Joyner A L (2004). All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell, 6(1): 103–115
https://doi.org/10.1016/S1534-5807(03)00394-0 pmid: 14723851
8 Barakat B, Yu L, Lo C, Vu D, De Luca E, Cain J E, Martelotto L G, Dedhar S, Sadler A J, Wang D, Watkins D N, Hannigan G E (2013). Interaction of smoothened with integrin-linked kinase in primary cilia mediates Hedgehog signalling. EMBO Rep, 14(9): 837–844
https://doi.org/10.1038/embor.2013.110 pmid: 23877428
9 Baumeister W, Walz J, Zühl F, Seemüller E (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell, 92(3): 367–380
https://doi.org/10.1016/S0092-8674(00)80929-0 pmid: 9476896
10 Beachy P A, Hymowitz S G, Lazarus R A, Leahy D J, Siebold C (2010). Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev, 24(18): 2001–2012
https://doi.org/10.1101/gad.1951710 pmid: 20844013
11 Beachy P A, Karhadkar S S, Berman D M (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432(7015): 324–331
https://doi.org/10.1038/nature03100 pmid: 15549094
12 Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H, Spiegelman V S (2006). Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem, 281(28): 19320–19326
https://doi.org/10.1074/jbc.M513203200 pmid: 16651270
13 Bitgood MJ, Shen L, McMahon AP. 1996. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol, 6(3): 298–304
14 Briscoe J, Chen Y, Jessell T M, Struhl G (2001). A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell, 7(6): 1279–1291
https://doi.org/10.1016/S1097-2765(01)00271-4 pmid: 11430830
15 Briscoe J, Thérond P P (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol, 14(7): 416–429
https://doi.org/10.1038/nrm3598 pmid: 23719536
16 Buttitta L, Mo R, Hui C C, Fan C M (2003). Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development, 130(25): 6233–6243
https://doi.org/10.1242/dev.00851 pmid: 14602680
17 Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E, Ferretti E, Miele E, Pelloni M, De Simone G, Pedone E M, Gallinari P, Giorgi A, Steinkühler C, Vitagliano L, Pedone C, Schinin M E, Screpanti I, Gulino A (2010). Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol, 12(2): 132–142
https://doi.org/10.1038/ncb2013 pmid: 20081843
18 Capdevila J, Estrada M P, Sánchez-Herrero E, Guerrero I (1994a). The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J, 13(1): 71–82
pmid: 8306973
19 Capdevila J, Pariente F, Sampedro J, Alonso J L, Guerrero I (1994b). Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless reception complex in Drosophila embryos. Development, 120(4): 987–998
pmid: 7600973
20 Chen C H, von Kessler D P, Park W, Wang B, Ma Y, Beachy P A (1999). Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell, 98(3): 305–316
https://doi.org/10.1016/S0092-8674(00)81960-1 pmid: 10458606
21 Chen M H, Wilson C W, Li Y J, Law K K, Lu C S, Gacayan R, Zhang X, Hui C C, Chuang P T (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev, 23(16): 1910–1928
https://doi.org/10.1101/gad.1794109 pmid: 19684112
22 Chen X L, Chinchilla P, Fombonne J, Ho L, Guix C, Keen J H, Mehlen P, Riobo N A (2014). Patched-1 proapoptotic activity is downregulated by modification of K1413 by the E3 ubiquitin-protein ligase Itchy homolog. Mol Cell Biol, 34(20): 3855–3866
https://doi.org/10.1128/MCB.00960-14 pmid: 25092867
23 Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011a). Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol, 9(6): e1001083
https://doi.org/10.1371/journal.pbio.1001083 pmid: 21695114
24 Chen Y, Struhl G (1996). Dual roles for patched in sequestering and transducing Hedgehog. Cell, 87(3): 553–563
https://doi.org/10.1016/S0092-8674(00)81374-4 pmid: 8898207
25 Chen Y, Yue S, Xie L, Pu X H, Jin T, Cheng S Y (2011b). Dual phosphorylation of suppressor of fused (Sufu) by PKA and GSK3β regulates its stability and localization in the primary cilium. J Biol Chem, 286(15): 13502–13511
https://doi.org/10.1074/jbc.M110.217604 pmid: 21317289
26 Chen Z J (2012). Ubiquitination in signaling to and activation of IKK. Immunol Rev, 246(1): 95–106
https://doi.org/10.1111/j.1600-065X.2012.01108.x pmid: 22435549
27 Cheng S Y, Bishop J M (2002). Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci U S A, 99(8): 5442–5447
https://doi.org/10.1073/pnas.082096999 pmid: 11960000
28 Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, Beachy P A (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599): 407–413
https://doi.org/10.1038/383407a0 pmid: 8837770
29 Cooper A F, Yu K P, Brueckner M, Brailey L L, Johnson L, McGrath J M, Bale A E (2005). Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development, 132(19): 4407–4417
https://doi.org/10.1242/dev.02021 pmid: 16155214
30 Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021
https://doi.org/10.1038/nature04117 pmid: 16136078
31 Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S (1999). Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem, 274(12): 8143–8152
https://doi.org/10.1074/jbc.274.12.8143 pmid: 10075717
32 De Smaele E, Di Marcotullio L, Moretti M, Pelloni M, Occhione M A, Infante P, Cucchi D, Greco A, Pietrosanti L, Todorovic J, Coni S, Canettieri G, Ferretti E, Bei R, Maroder M, Screpanti I, Gulino A (2011). Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia, 13(4): 374–385
pmid: 21472142
33 Denef N, Neubüser D, Perez L, Cohen S M (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 102(4): 521–531
https://doi.org/10.1016/S0092-8674(00)00056-8 pmid: 10966113
34 Deshaies R J (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol, 15(1): 435–467
https://doi.org/10.1146/annurev.cellbio.15.1.435 pmid: 10611969
35 Dessaud E, Yang L L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch B G, Briscoe J (2007). Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 450(7170): 717–720
https://doi.org/10.1038/nature06347 pmid: 18046410
36 Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico M A, Alimandi M, Giannini G, Maroder M, Screpanti I, Gulino A (2006). Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol, 8(12): 1415–1423
https://doi.org/10.1038/ncb1510 pmid: 17115028
37 Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Screpanti I, Gulino A (2007). Multiple ubiquitin-dependent processing pathways regulate hedgehog/gli signaling: implications for cell development and tumorigenesis. Cell Cycle, 6(4): 390–393
https://doi.org/10.4161/cc.6.4.3809 pmid: 17312394
38 Di Marcotullio L, Greco A, Mazzà D, Canettieri G, Pietrosanti L, Infante P, Coni S, Moretti M, De Smaele E, Ferretti E, Screpanti I, Gulino A (2011). Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene, 30(1): 65–76
https://doi.org/10.1038/onc.2010.394 pmid: 20818436
39 Ding Q, Fukami S, Meng X, Nishizaki Y, Zhang X, Sasaki H, Dlugosz A, Nakafuku M, Hui CC(1999). Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol, 9(19): 1119–1122
40 Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui C C (1998). Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development, 125(14): 2533–2543
pmid: 9636069
41 Fan J, Jiang K, Liu Y, Jia J (2013). Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling. PLoS One, 8(11): e79021
https://doi.org/10.1371/journal.pone.0079021 pmid: 24244405
42 Fan J, Liu Y, Jia J (2012). Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and position-dependent manner. Dev Biol, 366(2): 172–184
https://doi.org/10.1016/j.ydbio.2012.04.007 pmid: 22537496
43 Finley D (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem, 78(1): 477–513
https://doi.org/10.1146/annurev.biochem.78.081507.101607 pmid: 19489727
44 Fombonne J, Bissey P A, Guix C, Sadoul R, Thibert C, Mehlen P (2012). Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9. Proc Natl Acad Sci U S A, 109(26): 10510–10515
https://doi.org/10.1073/pnas.1200094109 pmid: 22679284
45 Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C, Betin V, Maire S, Brun C, Jacq B, Arpin M, Bellaiche Y, Bellusci S, Benaroch P, Bornens M, Chanet R, Chavrier P, Delattre O, Doye V, Fehon R, Faye G, Galli T, Girault J A, Goud B, de Gunzburg J, Johannes L, Junier M P, Mirouse V, Mukherjee A, Papadopoulo D, Perez F, Plessis A, Rossé C, Saule S, Stoppa-Lyonnet D, Vincent A, White M, Legrain P, Wojcik J, Camonis J, Daviet L (2005). Protein interaction mapping: a Drosophila case study. Genome Res, 15(3): 376–384
https://doi.org/10.1101/gr.2659105 pmid: 15710747
46 Gilder A S, Chen Y B, Jackson R J 3rd, Jiang J, Maher J F (2013). Fem1b promotes ubiquitylation and suppresses transcriptional activity of Gli1. Biochem Biophys Res Commun, 440(3): 431–436
https://doi.org/10.1016/j.bbrc.2013.09.090 pmid: 24076122
47 Goetz S C, Anderson K V (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 11(5): 331–344
https://doi.org/10.1038/nrg2774 pmid: 20395968
48 Goodrich L V, Johnson R L, Milenkovic L, McMahon J A, Scott M P (1996). Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev, 10(3): 301–312
https://doi.org/10.1101/gad.10.3.301 pmid: 8595881
49 Goodrich L V, Milenkovi? L, Higgins K M, Scott M P (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science, 277(5329): 1109–1113
https://doi.org/10.1126/science.277.5329.1109 pmid: 9262482
50 Gradilla A C, Guerrero I (2013). Hedgehog on the move: a precise spatial control of Hedgehog dispersion shapes the gradient. Curr Opin Genet Dev, 23(4): 363–373
pmid: 23747033
51 Guerrero I, Chiang C (2007). A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol, 17(1): 1–5
https://doi.org/10.1016/j.tcb.2006.11.002 pmid: 17126548
52 Gulino A, Di Marcotullio L, Canettieri G, De Smaele E, Screpanti I (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitam Horm, 88: 211–227
https://doi.org/10.1016/B978-0-12-394622-5.00009-2 pmid: 22391305
53 Haglund K, Dikic I (2005). Ubiquitylation and cell signaling. EMBO J, 24(19): 3353–3359
https://doi.org/10.1038/sj.emboj.7600808 pmid: 16148945
54 Harfe B D, Scherz P J, Nissim S, Tian H, McMahon A P, Tabin C J (2004). Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell, 118(4): 517–528
https://doi.org/10.1016/j.cell.2004.07.024 pmid: 15315763
55 Haycraft C J, Banizs B, Aydin-Son Y, Zhang Q, Michaud E J, Yoder B K (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet, 1(4): e53
https://doi.org/10.1371/journal.pgen.0010053 pmid: 16254602
56 Hayer A, Stoeber M, Ritz D, Engel S, Meyer H H, Helenius A (2010). Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol, 191(3): 615–629
https://doi.org/10.1083/jcb.201003086 pmid: 21041450
57 Hershko A, Ciechanover A (1998). The ubiquitin system. Annu Rev Biochem, 67(1): 425–479
https://doi.org/10.1146/annurev.biochem.67.1.425 pmid: 9759494
58 Hu J, Wittekind S G, Barr M M (2007). STAM and Hrs down-regulate ciliary TRP receptors. Mol Biol Cell, 18(9): 3277–3289
https://doi.org/10.1091/mbc.E07-03-0239 pmid: 17581863
59 Huang K, Diener D R, Rosenbaum J L (2009). The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J Cell Biol, 186(4): 601–613
https://doi.org/10.1083/jcb.200903066 pmid: 19704024
60 Huang S, Zhang Z, Zhang C, Lv X, Zheng X, Chen Z, Sun L, Wang H, Zhu Y, Zhang J, Yang S, Lu Y, Sun Q, Tao Y, Liu F, Zhao Y, Chen D (2013). Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover. PLoS Biol, 11(11): e1001721
https://doi.org/10.1371/journal.pbio.1001721 pmid: 24302888
61 Huangfu D, Anderson K V (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A, 102(32): 11325–11330
https://doi.org/10.1073/pnas.0505328102 pmid: 16061793
62 Huangfu D, Anderson K V (2006). Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development, 133(1): 3–14
https://doi.org/10.1242/dev.02169 pmid: 16339192
63 Hui C C, Angers S (2011). Gli proteins in development and disease. Annu Rev Cell Dev Biol, 27(1): 513–537
https://doi.org/10.1146/annurev-cellbio-092910-154048 pmid: 21801010
64 Humke E W, Dorn K V, Milenkovic L, Scott M P, Rohatgi R (2010). The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev, 24(7): 670–682
https://doi.org/10.1101/gad.1902910 pmid: 20360384
65 Huntzicker E G, Estay I S, Zhen H, Lokteva L A, Jackson P K, Oro A E (2006). Dual degradation signals control Gli protein stability and tumor formation. Genes Dev, 20(3): 276–281
https://doi.org/10.1101/gad.1380906 pmid: 16421275
66 Ingham P W, Fietz M J (1995). Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr Biol, 5(4): 432–440
67 Ingham P W, Nakano Y, Seger C (2011). Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet, 12(6): 393–406
https://doi.org/10.1038/nrg2984 pmid: 21502959
68 Izzi L, Lévesque M, Morin S, Laniel D, Wilkes B C, Mille F, Krauss R S, McMahon A P, Allen B L, Charron F (2011). Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell, 20(6): 788–801
https://doi.org/10.1016/j.devcel.2011.04.017 pmid: 21664577
69 Jackson P K, Eldridge A G, Freed E, Furstenthal L, Hsu J Y, Kaiser B K, Reimann J D R (2000). The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 10(10): 429–439
https://doi.org/10.1016/S0962-8924(00)01834-1 pmid: 10998601
70 Jékely G, R?rth P (2003). Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep, 4(12): 1163–1168
https://doi.org/10.1038/sj.embor.7400019 pmid: 14608370
71 Jeong J, McMahon A P (2005). Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development, 132(1): 143–154
https://doi.org/10.1242/dev.01566 pmid: 15576403
72 Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002). Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature, 416(6880): 548–552
https://doi.org/10.1038/nature733 pmid: 11912487
73 Jia J, Tong C, Wang B, Luo L, Jiang J (2004). Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 432(7020): 1045–1050
https://doi.org/10.1038/nature03179 pmid: 15616566
74 Jia J, Zhang L, Zhang Q, Tong C, Wang B, Hou F, Amanai K, Jiang J (2005). Phosphorylation by double-time/CKIepsilon and CKIalpha targets cubitus interruptus for Slimb/β-TRCP-mediated proteolytic processing. Dev Cell, 9(6): 819–830
https://doi.org/10.1016/j.devcel.2005.10.006 pmid: 16326393
75 Jiang J (2006). Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle, 5(21): 2457–2463
https://doi.org/10.4161/cc.5.21.3406 pmid: 17102630
76 Jiang J, Hui C C (2008). Hedgehog signaling in development and cancer. Dev Cell, 15(6): 801–812
https://doi.org/10.1016/j.devcel.2008.11.010 pmid: 19081070
77 Kawamura S, Hervold K, Ramirez-Weber F A, Kornberg T B (2008). Two patched protein subtypes and a conserved domain of group I proteins that regulates turnover. J Biol Chem, 283(45): 30964–30969
https://doi.org/10.1074/jbc.M806242200 pmid: 18768465
78 Kent D, Bush E W, Hooper J E (2006). Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus. Development, 133(10): 2001–2010
https://doi.org/10.1242/dev.02370 pmid: 16651542
79 Kim J, Kato M, Beachy P A (2009). Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci U S A, 106(51): 21666–21671
https://doi.org/10.1073/pnas.0912180106 pmid: 19996169
80 Kise Y, Morinaka A, Teglund S, Miki H (2009). Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun, 387(3): 569–574
https://doi.org/10.1016/j.bbrc.2009.07.087 pmid: 19622347
81 Kogerman P, Grimm T, Kogerman L, Krause D, Undén A B, Sandstedt B, Toftg?rd R, Zaphiropoulos P G (1999). Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol, 1(5): 312–319
https://doi.org/10.1038/13031 pmid: 10559945
82 Koudijs M J, den Broeder M J, Keijser A, Wienholds E, Houwing S, van Rooijen E M, Geisler R, van Eeden F J (2005). The zebrafish mutants dre, uki, and lep encode negative regulators of the hedgehog signaling pathway. PLoS Genet, 1(2): e19
https://doi.org/10.1371/journal.pgen.0010019 pmid: 16121254
83 Kovacs J J, Whalen E J, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz R J (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science, 320(5884): 1777–1781
https://doi.org/10.1126/science.1157983 pmid: 18497258
84 Lee J D, Amanai K, Shearn A, Treisman J E (2002). The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development, 129(24): 5697–5706
https://doi.org/10.1242/dev.00159 pmid: 12421709
85 Lee TA, Tyers M (2001 ). Ubiquitin junction, what’s your function? Genome Biol, 2(10): reports 4025.1–4025.3
86 Li S, Chen Y, Shi Q, Yue T, Wang B, Jiang J (2012). Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol, 10(1): e1001239
https://doi.org/10.1371/journal.pbio.1001239 pmid: 22253574
87 Liu A, Wang B, Niswander L A (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132(13): 3103–3111
https://doi.org/10.1242/dev.01894 pmid: 15930098
88 Liu C, Zhou Z, Yao X, Chen P, Sun M, Su M, Chang C, Yan J, Jiang J, Zhang Q (2014a). Hedgehog signaling downregulates suppressor of fused through the HIB/SPOP-Crn axis in Drosophila. Cell Res, 24(5): 595–609
https://doi.org/10.1038/cr.2014.29 pmid: 24603360
89 Liu Z, Li T, Reinhold M I, Naski M C (2014b). MEK1-RSK2 contributes to Hedgehog signaling by stabilizing GLI2 transcription factor and inhibiting ubiquitination. Oncogene, 33(1): 65–73
https://doi.org/10.1038/onc.2012.544 pmid: 23208494
90 Lu X, Liu S, Kornberg T B (2006). The C-terminal tail of the Hedgehog receptor Patched regulates both localization and turnover. Genes Dev, 20(18): 2539–2551
https://doi.org/10.1101/gad.1461306 pmid: 16980583
91 Lum L, Beachy P A (2004). The Hedgehog response network: sensors, switches, and routers. Science, 304(5678): 1755–1759
https://doi.org/10.1126/science.1098020 pmid: 15205520
92 Marigo V, Davey R A, Zuo Y, Cunningham J M, Tabin C J (1996). Biochemical evidence that patched is the Hedgehog receptor. Nature, 384(6605): 176–179
https://doi.org/10.1038/384176a0 pmid: 8906794
93 Matise M P, Epstein D J, Park H L, Platt K A, Joyner A L (1998). Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development, 125(15): 2759–2770
pmid: 9655799
94 May S R, Ashique A M, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson A S (2005). Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol, 287(2): 378–389
https://doi.org/10.1016/j.ydbio.2005.08.050 pmid: 16229832
95 Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton J A (2011). Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res, 71(3): 1092–1102
https://doi.org/10.1158/0008-5472.CAN-10-2315 pmid: 21135115
96 Mazzà D, Infante P, Colicchia V, Greco A, Alfonsi R, Siler M, Antonucci L, Po A, De Smaele E, Ferretti E, Capalbo C, Bellavia D, Canettieri G, Giannini G, Screpanti I, Gulino A, Di Marcotullio L (2013). PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53-dependent response to genotoxic stress. Cell Death Differ, 20(12): 1688–1697
https://doi.org/10.1038/cdd.2013.120 pmid: 24013724
97 McDermott A, Gustafsson M, Elsam T, Hui C C, Emerson C P Jr, Borycki A G (2005). Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development, 132(2): 345–357
https://doi.org/10.1242/dev.01537 pmid: 15604102
98 McGlinn E, Tabin C J (2006). Mechanistic insight into how Shh patterns the vertebrate limb. Curr Opin Genet Dev, 16(4): 426–432
https://doi.org/10.1016/j.gde.2006.06.013 pmid: 16806898
99 McLellan J S, Yao S, Zheng X, Geisbrecht B V, Ghirlando R, Beachy P A, Leahy D J (2006). Structure of a heparin-dependent complex of Hedgehog and Ihog. Proc Natl Acad Sci U S A, 103(46): 17208–17213
https://doi.org/10.1073/pnas.0606738103 pmid: 17077139
100 Méthot N, Basler K (1999). Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell, 96(6): 819–831
https://doi.org/10.1016/S0092-8674(00)80592-9 pmid: 10102270
101 Méthot N, Basler K (2000). Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development, 127(18): 4001–4010
pmid: 10952898
102 Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed J C, Mehlen P (2009). The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol, 11(6): 739–746
https://doi.org/10.1038/ncb1880 pmid: 19465923
103 Monnier V, Dussillol F, Alves G, Lamour-Isnard C, Plessis A. 1998. Suppressor of fused links fused and Cubitus interruptus on the hedgehog signalling pathway. Curr Biol, 8(10): 583–586
104 Motoyama J, Milenkovic L, Iwama M, Shikata Y, Scott M P, Hui C C (2003). Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev Biol, 259(1): 150–161
https://doi.org/10.1016/S0012-1606(03)00159-3 pmid: 12812795
105 Nachury M V, Seeley E S, Jin H (2010). Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol, 26(1): 59–87
https://doi.org/10.1146/annurev.cellbio.042308.113337 pmid: 19575670
106 Nakano Y, Nystedt S, Shivdasani A A, Strutt H, Thomas C, Ingham P W (2004). Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech Dev, 121(6): 507–518
https://doi.org/10.1016/j.mod.2004.04.015 pmid: 15172682
107 Nieuwenhuis E, Hui C C (2005). Hedgehog signaling and congenital malformations. Clin Genet, 67(3): 193–208
https://doi.org/10.1111/j.1399-0004.2004.00360.x pmid: 15691355
108 Nieuwenhuis E, Motoyama J, Barnfield P C, Yoshikawa Y, Zhang X, Mo R, Crackower M A, Hui C C (2006). Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol, 26(17): 6609–6622
https://doi.org/10.1128/MCB.00295-06 pmid: 16914743
109 Ohlmeyer J T, Kalderon D (1998). Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature, 396(6713): 749–753
https://doi.org/10.1038/25533 pmid: 9874371
110 Okada A, Charron F, Morin S, Shin D S, Wong K, Fabre P J, Tessier-Lavigne M, McConnell S K (2006). Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature, 444(7117): 369–373
https://doi.org/10.1038/nature05246 pmid: 17086203
111 Oshiumi H, Matsumoto M, Seya T (2012). Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I. J Biochem, 151(1): 5–11
https://doi.org/10.1093/jb/mvr111 pmid: 21890623
112 Ou C Y, Wang C H, Jiang J, Chien C T (2007). Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol, 308(1): 106–119
https://doi.org/10.1016/j.ydbio.2007.05.008 pmid: 17559828
113 Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier M F (2004). The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J, 378(Pt 2): 353–362
https://doi.org/10.1042/BJ20030786 pmid: 14611647
114 Pan Y, Wang C, Wang B (2009). Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol, 326(1): 177–189
https://doi.org/10.1016/j.ydbio.2008.11.009 pmid: 19056373
115 Park H L, Bai C, Platt K A, Matise M P, Beeghly A, Hui C C, Nakashima M, Joyner A L (2000). Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development, 127(8): 1593–1605
pmid: 10725236
116 Persson M, Stamataki D, te Welscher P, Andersson E, B?se J, Rüther U, Ericson J, Briscoe J (2002). Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev, 16(22): 2865–2878
https://doi.org/10.1101/gad.243402 pmid: 12435629
117 Petrova R, Joyner A L (2014). Roles for Hedgehog signaling in adult organ homeostasis and repair. Development, 141(18): 3445–3457
https://doi.org/10.1242/dev.083691 pmid: 25183867
118 Pickart C M (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem, 70(1): 503–533
https://doi.org/10.1146/annurev.biochem.70.1.503 pmid: 11395416
119 Pickart C M (2004). Back to the future with ubiquitin. Cell, 116(2): 181–190
https://doi.org/10.1016/S0092-8674(03)01074-2 pmid: 14744430
120 Pickart C M, Eddins M J (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 1695(1-3): 55–72
https://doi.org/10.1016/j.bbamcr.2004.09.019 pmid: 15571809
121 Polo S, Di Fiore P P (2006). Endocytosis conducts the cell signaling orchestra. Cell, 124(5): 897–900
https://doi.org/10.1016/j.cell.2006.02.025 pmid: 16530038
122 Préat T (1992). Characterization of Suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics, 132(3): 725–736
pmid: 1468628
123 Price M A, Kalderon D (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108(6): 823–835
https://doi.org/10.1016/S0092-8674(02)00664-5 pmid: 11955435
124 Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A (2008). Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology, 378(1): 21–33
https://doi.org/10.1016/j.virol.2008.04.046 pmid: 18554681
125 Rohatgi R, Milenkovic L, Corcoran R B, Scott M P (2009). Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci U S A, 106(9): 3196–3201
https://doi.org/10.1073/pnas.0813373106 pmid: 19218434
126 Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376
https://doi.org/10.1126/science.1139740 pmid: 17641202
127 Rohatgi R, Scott M P (2007). Patching the gaps in Hedgehog signalling. Nat Cell Biol, 9(9): 1005–1009
https://doi.org/10.1038/ncb435 pmid: 17762891
128 Sandvig K, Pust S, Skotland T, van Deurs B (2011). Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol, 23(4): 413–420
https://doi.org/10.1016/j.ceb.2011.03.007 pmid: 21466956
129 Santos N, Reiter J F (2014). A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J Cell Sci, 127(Pt 7): 1500–1510
https://doi.org/10.1242/jcs.139253 pmid: 24463817
130 Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999). Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development, 126(17): 3915–3924
pmid: 10433919
131 Scherz P J, McGlinn E, Nissim S, Tabin C J (2007). Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. Dev Biol, 308(2): 343–354
https://doi.org/10.1016/j.ydbio.2007.05.030 pmid: 17610861
132 Sigismund S, Polo S, Di Fiore P P (2004). Signaling through monoubiquitination. Curr Top Microbiol Immunol, 286: 149–185
pmid: 15645713
133 Smelkinson MG, Kalderon D (2006 ). Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb. Curr Biol, 16: 110–116
134 St-Jacques B, Hammerschmidt M, McMahon A P (1999). Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev, 13(16): 2072–2086
https://doi.org/10.1101/gad.13.16.2072 pmid: 10465785
135 Stamataki D, Ulloa F, Tsoni S V, Mynett A, Briscoe J (2005). A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev, 19(5): 626–641
https://doi.org/10.1101/gad.325905 pmid: 15741323
136 Sv?rd J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstr?m A, Ericson J, Toftg?rd R, Teglund S (2006). Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell, 10(2): 187–197
https://doi.org/10.1016/j.devcel.2005.12.013 pmid: 16459298
137 Tabata T, Kornberg T B (1994). Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell, 76(1): 89–102
https://doi.org/10.1016/0092-8674(94)90175-9 pmid: 8287482
138 Taipale J, Beachy P A (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835): 349–354
https://doi.org/10.1038/35077219 pmid: 11357142
139 Teglund S, Toftg?rd R (2010). Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta, 1805(2): 181–208
pmid: 20085802
140 Tempé D, Casas M, Karaz S, Blanchet-Tournier M F, Concordet J P (2006). Multisite protein kinase A and glycogen synthase kinase 3βphosphorylation leads to Gli3 ubiquitination by SCFβTrCP. Mol Cell Biol, 26(11): 4316–4326
https://doi.org/10.1128/MCB.02183-05 pmid: 16705181
141 Tenzen T, Allen B L, Cole F, Kang J S, Krauss R S, McMahon A P (2006). The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell, 10(5): 647–656
https://doi.org/10.1016/j.devcel.2006.04.004 pmid: 16647304
142 Thibert C, Teillet M A, Lapointe F, , Mazelin L, Le Douarin N M, Mehlen P (2003). Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science, 301: 843–846
142 Torroja C, Gorfinkiel N, Guerrero I (2004). Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development, 131(10): 2395–2408
https://doi.org/10.1242/dev.01102 pmid: 15102702
143 Torroja C, Gorfinkiel N, Guerrero I (2005). Mechanisms of Hedgehog gradient formation and interpretation. J Neurobiol, 64(4): 334–356
https://doi.org/10.1002/neu.20168 pmid: 16041759
144 Tukachinsky H, Lopez L V, Salic A (2010). A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol, 191(2): 415–428
https://doi.org/10.1083/jcb.201004108 pmid: 20956384
145 Varjosalo M, Bj?rklund M, Cheng F, Syv?nen H, Kivioja T, Kilpinen S, Sun Z, Kallioniemi O, Stunnenberg H G, He W W, Ojala P, Taipale J (2008). Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell, 133(3): 537–548
https://doi.org/10.1016/j.cell.2008.02.047 pmid: 18455992
146 Varjosalo M, Taipale J (2008). Hedgehog: functions and mechanisms. Genes Dev, 22(18): 2454–2472
https://doi.org/10.1101/gad.1693608 pmid: 18794343
147 Verma R, Deshaies R J (2000). A proteasome howdunit: the case of the missing signal. Cell, 101(4): 341–344
https://doi.org/10.1016/S0092-8674(00)80843-0 pmid: 10830160
148 Voges D, Zwickl P, Baumeister W (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem, 68(1): 1015–1068
https://doi.org/10.1146/annurev.biochem.68.1.1015 pmid: 10872471
149 Wang B, Fallon J F, Beachy P A (2000a). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell, 100(4): 423–434
https://doi.org/10.1016/S0092-8674(00)80678-9 pmid: 10693759
150 Wang B, Li Y (2006). Evidence for the direct involvement of βTrCP in Gli3 protein processing. Proc Natl Acad Sci U S A, 103(1): 33–38
https://doi.org/10.1073/pnas.0509927103 pmid: 16371461
151 Wang C, Pan Y, Wang B (2010). Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development, 137(12): 2001–2009
https://doi.org/10.1242/dev.052126 pmid: 20463034
152 Wang G, Amanai K, Wang B, Jiang J (2000b). Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev, 14(22): 2893–2905
https://doi.org/10.1101/gad.843900 pmid: 11090136
153 Wang G, Tang X, Chen Y, Cao J, Huang Q, Ling X, Ren W, Liu S, Wu Y, Ray L, Lin X (2014). Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mech Dev, 133: 117–125
https://doi.org/10.1016/j.mod.2014.05.002 pmid: 24854243
154 Wang G, Wang B, Jiang J (1999). Protein kinase A antagonizes Hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev, 13(21): 2828–2837
https://doi.org/10.1101/gad.13.21.2828 pmid: 10557210
155 Wang Q T, Holmgren R A (1999). The subcellular localization and activity of Drosophila cubitus interruptus are regulated at multiple levels. Development, 126(22): 5097–5106
pmid: 10529426
156 Wang Y, Zhou Z, Walsh C T, McMahon A P (2009). Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci U S A, 106(8): 2623–2628
https://doi.org/10.1073/pnas.0812110106 pmid: 19196978
157 Weissman A M (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol, 2(3): 169–178
https://doi.org/10.1038/35056563 pmid: 11265246
158 Wen X, Lai C K, Evangelista M, Hongo J A, de Sauvage F J, Scales S J (2010). Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol, 30(8): 1910–1922
https://doi.org/10.1128/MCB.01089-09 pmid: 20154143
159 Williams R L, Urbé S (2007). The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol, 8(5): 355–368
https://doi.org/10.1038/nrm2162 pmid: 17450176
160 Wilson C W, Chen M H, Chuang P T (2009). Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS One, 4(4): e5182
https://doi.org/10.1371/journal.pone.0005182 pmid: 19365551
161 Woelk T, Sigismund S, Penengo L, Polo S (2007). The ubiquitination code: a signalling problem. Cell Div, 2(1): 11
https://doi.org/10.1186/1747-1028-2-11 pmid: 17355622
162 Wolff C, Roy S, Ingham PW (2003 ). Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol, 13: 1169–1181
163 Xia R, Jia H, Fan J, Liu Y, Jia J (2012). USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol, 10(1): e1001238
https://doi.org/10.1371/journal.pbio.1001238 pmid: 22253573
164 Xu P, Duong D M, Seyfried N T, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1): 133–145
https://doi.org/10.1016/j.cell.2009.01.041 pmid: 19345192
165 Yang X, Mao F, Lv X, Zhang Z, Fu L, Lu Y, Wu W, Zhou Z, Zhang L, Zhao Y (2013). Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J Cell Sci, 126(Pt 18): 4230–4238
https://doi.org/10.1242/jcs.128603 pmid: 23843610
166 Yao S, Lum L, Beachy P (2006). The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell, 125(2): 343–357
https://doi.org/10.1016/j.cell.2006.02.040 pmid: 16630821
167 Yue S, Chen Y, Cheng S Y (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28(4): 492–499
https://doi.org/10.1038/onc.2008.403 pmid: 18997815
168 Yue S, Tang LY, Tang Y, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE, Cheng S Y (2014). Requirement of Smurf-mediated endocytosis of Patched1 in Sonic Hedgehog signal reception. eLife, 3: e02555
169 Zeng H, Jia J, Liu A (2010). Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS One, 5(12): e15900
https://doi.org/10.1371/journal.pone.0015900 pmid: 21209912
170 Zhang C, Williams E H, Guo Y, Lum L, Beachy P A (2004). Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci U S A, 101(52): 17900–17907
https://doi.org/10.1073/pnas.0408093101 pmid: 15598741
171 Zhang Q, Zhang L, Wang B, Ou C Y, Chien C T, Jiang J (2006a). A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell, 10(6): 719–729
https://doi.org/10.1016/j.devcel.2006.05.004 pmid: 16740475
172 Zhang W, Kang J S, Cole F, Yi M J, Krauss R S (2006b). Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell, 10(5): 657–665
https://doi.org/10.1016/j.devcel.2006.04.005 pmid: 16647303
173 Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005). Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell, 8(2): 267–278
https://doi.org/10.1016/j.devcel.2005.01.001 pmid: 15691767
174 Zhang X M, Ramalho-Santos M, McMahon A P (2001). Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell, 106(2): 781–792
https://doi.org/10.1016/S0092-8674(01)00385-3 pmid: 11517919
175 Zhang Z, Lv X, Yin W C, Zhang X, Feng J, Wu W, Hui C C, Zhang L, Zhao Y (2013). Ter94 ATPase complex targets k11-linked ubiquitinated ci to proteasomes for partial degradation. Dev Cell, 25(6): 636–644
https://doi.org/10.1016/j.devcel.2013.05.006 pmid: 23747190
176 Zhao Y, Tong C, Jiang J (2007). Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 450(7167): 252–258
https://doi.org/10.1038/nature06225 pmid: 17960137
177 Zheng X, Mann R K, Sever N, Beachy P A (2010). Genetic and biochemical definition of the Hedgehog receptor. Genes Dev, 24(1): 57–71
https://doi.org/10.1101/gad.1870310 pmid: 20048000
178 Zhu A J, Zheng L, Suyama K, Scott M P (2003). Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev, 17(10): 1240–1252
https://doi.org/10.1101/gad.1080803 pmid: 12730121
[1] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[2] Kai Jiang,Jianhang Jia. Smoothened regulation in response to Hedgehog stimulation[J]. Front. Biol., 2015, 10(6): 475-486.
[3] Ying CAO, Ligeng MA. Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants[J]. Front Biol, 2011, 6(2): 109-117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed