|
|
Regulation of Hedgehog signaling by ubiquitination |
Elaine Y. C. Hsia,Yirui Gui,Xiaoyan Zheng( ) |
Department of Anatomy and Regenerative Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA |
|
|
Abstract The Hedgehog (Hh) signaling pathway plays crucial roles both in embryonic development and in adult stem cell function. The timing, duration and location of Hh signaling activity need to be tightly controlled. Abnormalities of Hh signal transduction lead to birth defects or malignant tumors. Recent data point to ubiquitination-related posttranslational modifications of several key Hh pathway components as an important mechanism of regulation of the Hh pathway. Here we review how ubiquitination regulates the localization, stability and activity of the key Hh signaling components.
|
Keywords
Hedgehog signaling
ubiquitination
|
Corresponding Author(s):
Xiaoyan Zheng
|
Just Accepted Date: 06 January 2015
Online First Date: 04 February 2015
Issue Date: 23 June 2015
|
|
1 |
Agyeman A, Mazumdar T, Houghton J A (2012). Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Oncotarget, 3(8): 854–868
pmid: 23097684
|
2 |
Allen B L, Song J Y, Izzi L, Althaus I W, Kang J S, Charron F, Krauss R S, McMahon A P (2011). Overlapping roles and collective requirement for the coreceptors GAS1, CDO, and BOC in SHH pathway function. Dev Cell, 20(6): 775–787
https://doi.org/10.1016/j.devcel.2011.04.018
pmid: 21664576
|
3 |
Apionishev S, Katanayeva N M, Marks S A, Kalderon D, Tomlinson A (2005). Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol, 7(1): 86–92
https://doi.org/10.1038/ncb1210
pmid: 15592457
|
4 |
Aza-Blanc P, Lin H Y, Ruiz i Altaba A, Kornberg T B (2000). Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development, 127(19): 4293–4301
pmid: 10976059
|
5 |
Aza-Blanc P, Ramírez-Weber F A, Laget M P, Schwartz C, Kornberg T B (1997). Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell, 89(7): 1043–1053
https://doi.org/10.1016/S0092-8674(00)80292-5
pmid: 9215627
|
6 |
Bai C B, Auerbach W, Lee J S, Stephen D, Joyner A L (2002). Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development, 129(20): 4753–4761
pmid: 12361967
|
7 |
Bai C B, Stephen D, Joyner A L (2004). All mouse ventral spinal cord patterning by hedgehog is Gli dependent and involves an activator function of Gli3. Dev Cell, 6(1): 103–115
https://doi.org/10.1016/S1534-5807(03)00394-0
pmid: 14723851
|
8 |
Barakat B, Yu L, Lo C, Vu D, De Luca E, Cain J E, Martelotto L G, Dedhar S, Sadler A J, Wang D, Watkins D N, Hannigan G E (2013). Interaction of smoothened with integrin-linked kinase in primary cilia mediates Hedgehog signalling. EMBO Rep, 14(9): 837–844
https://doi.org/10.1038/embor.2013.110
pmid: 23877428
|
9 |
Baumeister W, Walz J, Zühl F, Seemüller E (1998). The proteasome: paradigm of a self-compartmentalizing protease. Cell, 92(3): 367–380
https://doi.org/10.1016/S0092-8674(00)80929-0
pmid: 9476896
|
10 |
Beachy P A, Hymowitz S G, Lazarus R A, Leahy D J, Siebold C (2010). Interactions between Hedgehog proteins and their binding partners come into view. Genes Dev, 24(18): 2001–2012
https://doi.org/10.1101/gad.1951710
pmid: 20844013
|
11 |
Beachy P A, Karhadkar S S, Berman D M (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature, 432(7015): 324–331
https://doi.org/10.1038/nature03100
pmid: 15549094
|
12 |
Bhatia N, Thiyagarajan S, Elcheva I, Saleem M, Dlugosz A, Mukhtar H, Spiegelman V S (2006). Gli2 is targeted for ubiquitination and degradation by beta-TrCP ubiquitin ligase. J Biol Chem, 281(28): 19320–19326
https://doi.org/10.1074/jbc.M513203200
pmid: 16651270
|
13 |
Bitgood MJ, Shen L, McMahon AP. 1996. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol, 6(3): 298–304
|
14 |
Briscoe J, Chen Y, Jessell T M, Struhl G (2001). A hedgehog-insensitive form of patched provides evidence for direct long-range morphogen activity of sonic hedgehog in the neural tube. Mol Cell, 7(6): 1279–1291
https://doi.org/10.1016/S1097-2765(01)00271-4
pmid: 11430830
|
15 |
Briscoe J, Thérond P P (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol, 14(7): 416–429
https://doi.org/10.1038/nrm3598
pmid: 23719536
|
16 |
Buttitta L, Mo R, Hui C C, Fan C M (2003). Interplays of Gli2 and Gli3 and their requirement in mediating Shh-dependent sclerotome induction. Development, 130(25): 6233–6243
https://doi.org/10.1242/dev.00851
pmid: 14602680
|
17 |
Canettieri G, Di Marcotullio L, Greco A, Coni S, Antonucci L, Infante P, Pietrosanti L, De Smaele E, Ferretti E, Miele E, Pelloni M, De Simone G, Pedone E M, Gallinari P, Giorgi A, Steinkühler C, Vitagliano L, Pedone C, Schinin M E, Screpanti I, Gulino A (2010). Histone deacetylase and Cullin3-REN(KCTD11) ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol, 12(2): 132–142
https://doi.org/10.1038/ncb2013
pmid: 20081843
|
18 |
Capdevila J, Estrada M P, Sánchez-Herrero E, Guerrero I (1994a). The Drosophila segment polarity gene patched interacts with decapentaplegic in wing development. EMBO J, 13(1): 71–82
pmid: 8306973
|
19 |
Capdevila J, Pariente F, Sampedro J, Alonso J L, Guerrero I (1994b). Subcellular localization of the segment polarity protein patched suggests an interaction with the wingless reception complex in Drosophila embryos. Development, 120(4): 987–998
pmid: 7600973
|
20 |
Chen C H, von Kessler D P, Park W, Wang B, Ma Y, Beachy P A (1999). Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell, 98(3): 305–316
https://doi.org/10.1016/S0092-8674(00)81960-1
pmid: 10458606
|
21 |
Chen M H, Wilson C W, Li Y J, Law K K, Lu C S, Gacayan R, Zhang X, Hui C C, Chuang P T (2009). Cilium-independent regulation of Gli protein function by Sufu in Hedgehog signaling is evolutionarily conserved. Genes Dev, 23(16): 1910–1928
https://doi.org/10.1101/gad.1794109
pmid: 19684112
|
22 |
Chen X L, Chinchilla P, Fombonne J, Ho L, Guix C, Keen J H, Mehlen P, Riobo N A (2014). Patched-1 proapoptotic activity is downregulated by modification of K1413 by the E3 ubiquitin-protein ligase Itchy homolog. Mol Cell Biol, 34(20): 3855–3866
https://doi.org/10.1128/MCB.00960-14
pmid: 25092867
|
23 |
Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J (2011a). Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol, 9(6): e1001083
https://doi.org/10.1371/journal.pbio.1001083
pmid: 21695114
|
24 |
Chen Y, Struhl G (1996). Dual roles for patched in sequestering and transducing Hedgehog. Cell, 87(3): 553–563
https://doi.org/10.1016/S0092-8674(00)81374-4
pmid: 8898207
|
25 |
Chen Y, Yue S, Xie L, Pu X H, Jin T, Cheng S Y (2011b). Dual phosphorylation of suppressor of fused (Sufu) by PKA and GSK3β regulates its stability and localization in the primary cilium. J Biol Chem, 286(15): 13502–13511
https://doi.org/10.1074/jbc.M110.217604
pmid: 21317289
|
26 |
Chen Z J (2012). Ubiquitination in signaling to and activation of IKK. Immunol Rev, 246(1): 95–106
https://doi.org/10.1111/j.1600-065X.2012.01108.x
pmid: 22435549
|
27 |
Cheng S Y, Bishop J M (2002). Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci U S A, 99(8): 5442–5447
https://doi.org/10.1073/pnas.082096999
pmid: 11960000
|
28 |
Chiang C, Litingtung Y, Lee E, Young K E, Corden J L, Westphal H, Beachy P A (1996). Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature, 383(6599): 407–413
https://doi.org/10.1038/383407a0
pmid: 8837770
|
29 |
Cooper A F, Yu K P, Brueckner M, Brailey L L, Johnson L, McGrath J M, Bale A E (2005). Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development, 132(19): 4407–4417
https://doi.org/10.1242/dev.02021
pmid: 16155214
|
30 |
Corbit K C, Aanstad P, Singla V, Norman A R, Stainier D Y, Reiter J F (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061): 1018–1021
https://doi.org/10.1038/nature04117
pmid: 16136078
|
31 |
Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S (1999). Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J Biol Chem, 274(12): 8143–8152
https://doi.org/10.1074/jbc.274.12.8143
pmid: 10075717
|
32 |
De Smaele E, Di Marcotullio L, Moretti M, Pelloni M, Occhione M A, Infante P, Cucchi D, Greco A, Pietrosanti L, Todorovic J, Coni S, Canettieri G, Ferretti E, Bei R, Maroder M, Screpanti I, Gulino A (2011). Identification and characterization of KCASH2 and KCASH3, 2 novel Cullin3 adaptors suppressing histone deacetylase and Hedgehog activity in medulloblastoma. Neoplasia, 13(4): 374–385
pmid: 21472142
|
33 |
Denef N, Neubüser D, Perez L, Cohen S M (2000). Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell, 102(4): 521–531
https://doi.org/10.1016/S0092-8674(00)00056-8
pmid: 10966113
|
34 |
Deshaies R J (1999). SCF and Cullin/Ring H2-based ubiquitin ligases. Annu Rev Cell Dev Biol, 15(1): 435–467
https://doi.org/10.1146/annurev.cellbio.15.1.435
pmid: 10611969
|
35 |
Dessaud E, Yang L L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch B G, Briscoe J (2007). Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature, 450(7170): 717–720
https://doi.org/10.1038/nature06347
pmid: 18046410
|
36 |
Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico M A, Alimandi M, Giannini G, Maroder M, Screpanti I, Gulino A (2006). Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol, 8(12): 1415–1423
https://doi.org/10.1038/ncb1510
pmid: 17115028
|
37 |
Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Screpanti I, Gulino A (2007). Multiple ubiquitin-dependent processing pathways regulate hedgehog/gli signaling: implications for cell development and tumorigenesis. Cell Cycle, 6(4): 390–393
https://doi.org/10.4161/cc.6.4.3809
pmid: 17312394
|
38 |
Di Marcotullio L, Greco A, Mazzà D, Canettieri G, Pietrosanti L, Infante P, Coni S, Moretti M, De Smaele E, Ferretti E, Screpanti I, Gulino A (2011). Numb activates the E3 ligase Itch to control Gli1 function through a novel degradation signal. Oncogene, 30(1): 65–76
https://doi.org/10.1038/onc.2010.394
pmid: 20818436
|
39 |
Ding Q, Fukami S, Meng X, Nishizaki Y, Zhang X, Sasaki H, Dlugosz A, Nakafuku M, Hui CC(1999). Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol, 9(19): 1119–1122
|
40 |
Ding Q, Motoyama J, Gasca S, Mo R, Sasaki H, Rossant J, Hui C C (1998). Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development, 125(14): 2533–2543
pmid: 9636069
|
41 |
Fan J, Jiang K, Liu Y, Jia J (2013). Hrs promotes ubiquitination and mediates endosomal trafficking of smoothened in Drosophila hedgehog signaling. PLoS One, 8(11): e79021
https://doi.org/10.1371/journal.pone.0079021
pmid: 24244405
|
42 |
Fan J, Liu Y, Jia J (2012). Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and position-dependent manner. Dev Biol, 366(2): 172–184
https://doi.org/10.1016/j.ydbio.2012.04.007
pmid: 22537496
|
43 |
Finley D (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem, 78(1): 477–513
https://doi.org/10.1146/annurev.biochem.78.081507.101607
pmid: 19489727
|
44 |
Fombonne J, Bissey P A, Guix C, Sadoul R, Thibert C, Mehlen P (2012). Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9. Proc Natl Acad Sci U S A, 109(26): 10510–10515
https://doi.org/10.1073/pnas.1200094109
pmid: 22679284
|
45 |
Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C, Betin V, Maire S, Brun C, Jacq B, Arpin M, Bellaiche Y, Bellusci S, Benaroch P, Bornens M, Chanet R, Chavrier P, Delattre O, Doye V, Fehon R, Faye G, Galli T, Girault J A, Goud B, de Gunzburg J, Johannes L, Junier M P, Mirouse V, Mukherjee A, Papadopoulo D, Perez F, Plessis A, Rossé C, Saule S, Stoppa-Lyonnet D, Vincent A, White M, Legrain P, Wojcik J, Camonis J, Daviet L (2005). Protein interaction mapping: a Drosophila case study. Genome Res, 15(3): 376–384
https://doi.org/10.1101/gr.2659105
pmid: 15710747
|
46 |
Gilder A S, Chen Y B, Jackson R J 3rd, Jiang J, Maher J F (2013). Fem1b promotes ubiquitylation and suppresses transcriptional activity of Gli1. Biochem Biophys Res Commun, 440(3): 431–436
https://doi.org/10.1016/j.bbrc.2013.09.090
pmid: 24076122
|
47 |
Goetz S C, Anderson K V (2010). The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet, 11(5): 331–344
https://doi.org/10.1038/nrg2774
pmid: 20395968
|
48 |
Goodrich L V, Johnson R L, Milenkovic L, McMahon J A, Scott M P (1996). Conservation of the hedgehog/patched signaling pathway from flies to mice: induction of a mouse patched gene by Hedgehog. Genes Dev, 10(3): 301–312
https://doi.org/10.1101/gad.10.3.301
pmid: 8595881
|
49 |
Goodrich L V, Milenkovi? L, Higgins K M, Scott M P (1997). Altered neural cell fates and medulloblastoma in mouse patched mutants. Science, 277(5329): 1109–1113
https://doi.org/10.1126/science.277.5329.1109
pmid: 9262482
|
50 |
Gradilla A C, Guerrero I (2013). Hedgehog on the move: a precise spatial control of Hedgehog dispersion shapes the gradient. Curr Opin Genet Dev, 23(4): 363–373
pmid: 23747033
|
51 |
Guerrero I, Chiang C (2007). A conserved mechanism of Hedgehog gradient formation by lipid modifications. Trends Cell Biol, 17(1): 1–5
https://doi.org/10.1016/j.tcb.2006.11.002
pmid: 17126548
|
52 |
Gulino A, Di Marcotullio L, Canettieri G, De Smaele E, Screpanti I (2012). Hedgehog/Gli control by ubiquitination/acetylation interplay. Vitam Horm, 88: 211–227
https://doi.org/10.1016/B978-0-12-394622-5.00009-2
pmid: 22391305
|
53 |
Haglund K, Dikic I (2005). Ubiquitylation and cell signaling. EMBO J, 24(19): 3353–3359
https://doi.org/10.1038/sj.emboj.7600808
pmid: 16148945
|
54 |
Harfe B D, Scherz P J, Nissim S, Tian H, McMahon A P, Tabin C J (2004). Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell, 118(4): 517–528
https://doi.org/10.1016/j.cell.2004.07.024
pmid: 15315763
|
55 |
Haycraft C J, Banizs B, Aydin-Son Y, Zhang Q, Michaud E J, Yoder B K (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet, 1(4): e53
https://doi.org/10.1371/journal.pgen.0010053
pmid: 16254602
|
56 |
Hayer A, Stoeber M, Ritz D, Engel S, Meyer H H, Helenius A (2010). Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation. J Cell Biol, 191(3): 615–629
https://doi.org/10.1083/jcb.201003086
pmid: 21041450
|
57 |
Hershko A, Ciechanover A (1998). The ubiquitin system. Annu Rev Biochem, 67(1): 425–479
https://doi.org/10.1146/annurev.biochem.67.1.425
pmid: 9759494
|
58 |
Hu J, Wittekind S G, Barr M M (2007). STAM and Hrs down-regulate ciliary TRP receptors. Mol Biol Cell, 18(9): 3277–3289
https://doi.org/10.1091/mbc.E07-03-0239
pmid: 17581863
|
59 |
Huang K, Diener D R, Rosenbaum J L (2009). The ubiquitin conjugation system is involved in the disassembly of cilia and flagella. J Cell Biol, 186(4): 601–613
https://doi.org/10.1083/jcb.200903066
pmid: 19704024
|
60 |
Huang S, Zhang Z, Zhang C, Lv X, Zheng X, Chen Z, Sun L, Wang H, Zhu Y, Zhang J, Yang S, Lu Y, Sun Q, Tao Y, Liu F, Zhao Y, Chen D (2013). Activation of Smurf E3 ligase promoted by smoothened regulates hedgehog signaling through targeting patched turnover. PLoS Biol, 11(11): e1001721
https://doi.org/10.1371/journal.pbio.1001721
pmid: 24302888
|
61 |
Huangfu D, Anderson K V (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A, 102(32): 11325–11330
https://doi.org/10.1073/pnas.0505328102
pmid: 16061793
|
62 |
Huangfu D, Anderson K V (2006). Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development, 133(1): 3–14
https://doi.org/10.1242/dev.02169
pmid: 16339192
|
63 |
Hui C C, Angers S (2011). Gli proteins in development and disease. Annu Rev Cell Dev Biol, 27(1): 513–537
https://doi.org/10.1146/annurev-cellbio-092910-154048
pmid: 21801010
|
64 |
Humke E W, Dorn K V, Milenkovic L, Scott M P, Rohatgi R (2010). The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev, 24(7): 670–682
https://doi.org/10.1101/gad.1902910
pmid: 20360384
|
65 |
Huntzicker E G, Estay I S, Zhen H, Lokteva L A, Jackson P K, Oro A E (2006). Dual degradation signals control Gli protein stability and tumor formation. Genes Dev, 20(3): 276–281
https://doi.org/10.1101/gad.1380906
pmid: 16421275
|
66 |
Ingham P W, Fietz M J (1995). Quantitative effects of hedgehog and decapentaplegic activity on the patterning of the Drosophila wing. Curr Biol, 5(4): 432–440
|
67 |
Ingham P W, Nakano Y, Seger C (2011). Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet, 12(6): 393–406
https://doi.org/10.1038/nrg2984
pmid: 21502959
|
68 |
Izzi L, Lévesque M, Morin S, Laniel D, Wilkes B C, Mille F, Krauss R S, McMahon A P, Allen B L, Charron F (2011). Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev Cell, 20(6): 788–801
https://doi.org/10.1016/j.devcel.2011.04.017
pmid: 21664577
|
69 |
Jackson P K, Eldridge A G, Freed E, Furstenthal L, Hsu J Y, Kaiser B K, Reimann J D R (2000). The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol, 10(10): 429–439
https://doi.org/10.1016/S0962-8924(00)01834-1
pmid: 10998601
|
70 |
Jékely G, R?rth P (2003). Hrs mediates downregulation of multiple signalling receptors in Drosophila. EMBO Rep, 4(12): 1163–1168
https://doi.org/10.1038/sj.embor.7400019
pmid: 14608370
|
71 |
Jeong J, McMahon A P (2005). Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development, 132(1): 143–154
https://doi.org/10.1242/dev.01566
pmid: 15576403
|
72 |
Jia J, Amanai K, Wang G, Tang J, Wang B, Jiang J (2002). Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature, 416(6880): 548–552
https://doi.org/10.1038/nature733
pmid: 11912487
|
73 |
Jia J, Tong C, Wang B, Luo L, Jiang J (2004). Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 432(7020): 1045–1050
https://doi.org/10.1038/nature03179
pmid: 15616566
|
74 |
Jia J, Zhang L, Zhang Q, Tong C, Wang B, Hou F, Amanai K, Jiang J (2005). Phosphorylation by double-time/CKIepsilon and CKIalpha targets cubitus interruptus for Slimb/β-TRCP-mediated proteolytic processing. Dev Cell, 9(6): 819–830
https://doi.org/10.1016/j.devcel.2005.10.006
pmid: 16326393
|
75 |
Jiang J (2006). Regulation of Hh/Gli signaling by dual ubiquitin pathways. Cell Cycle, 5(21): 2457–2463
https://doi.org/10.4161/cc.5.21.3406
pmid: 17102630
|
76 |
Jiang J, Hui C C (2008). Hedgehog signaling in development and cancer. Dev Cell, 15(6): 801–812
https://doi.org/10.1016/j.devcel.2008.11.010
pmid: 19081070
|
77 |
Kawamura S, Hervold K, Ramirez-Weber F A, Kornberg T B (2008). Two patched protein subtypes and a conserved domain of group I proteins that regulates turnover. J Biol Chem, 283(45): 30964–30969
https://doi.org/10.1074/jbc.M806242200
pmid: 18768465
|
78 |
Kent D, Bush E W, Hooper J E (2006). Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus. Development, 133(10): 2001–2010
https://doi.org/10.1242/dev.02370
pmid: 16651542
|
79 |
Kim J, Kato M, Beachy P A (2009). Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci U S A, 106(51): 21666–21671
https://doi.org/10.1073/pnas.0912180106
pmid: 19996169
|
80 |
Kise Y, Morinaka A, Teglund S, Miki H (2009). Sufu recruits GSK3beta for efficient processing of Gli3. Biochem Biophys Res Commun, 387(3): 569–574
https://doi.org/10.1016/j.bbrc.2009.07.087
pmid: 19622347
|
81 |
Kogerman P, Grimm T, Kogerman L, Krause D, Undén A B, Sandstedt B, Toftg?rd R, Zaphiropoulos P G (1999). Mammalian suppressor-of-fused modulates nuclear-cytoplasmic shuttling of Gli-1. Nat Cell Biol, 1(5): 312–319
https://doi.org/10.1038/13031
pmid: 10559945
|
82 |
Koudijs M J, den Broeder M J, Keijser A, Wienholds E, Houwing S, van Rooijen E M, Geisler R, van Eeden F J (2005). The zebrafish mutants dre, uki, and lep encode negative regulators of the hedgehog signaling pathway. PLoS Genet, 1(2): e19
https://doi.org/10.1371/journal.pgen.0010019
pmid: 16121254
|
83 |
Kovacs J J, Whalen E J, Liu R, Xiao K, Kim J, Chen M, Wang J, Chen W, Lefkowitz R J (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science, 320(5884): 1777–1781
https://doi.org/10.1126/science.1157983
pmid: 18497258
|
84 |
Lee J D, Amanai K, Shearn A, Treisman J E (2002). The ubiquitin ligase Hyperplastic discs negatively regulates hedgehog and decapentaplegic expression by independent mechanisms. Development, 129(24): 5697–5706
https://doi.org/10.1242/dev.00159
pmid: 12421709
|
85 |
Lee TA, Tyers M (2001 ). Ubiquitin junction, what’s your function? Genome Biol, 2(10): reports 4025.1–4025.3
|
86 |
Li S, Chen Y, Shi Q, Yue T, Wang B, Jiang J (2012). Hedgehog-regulated ubiquitination controls smoothened trafficking and cell surface expression in Drosophila. PLoS Biol, 10(1): e1001239
https://doi.org/10.1371/journal.pbio.1001239
pmid: 22253574
|
87 |
Liu A, Wang B, Niswander L A (2005). Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development, 132(13): 3103–3111
https://doi.org/10.1242/dev.01894
pmid: 15930098
|
88 |
Liu C, Zhou Z, Yao X, Chen P, Sun M, Su M, Chang C, Yan J, Jiang J, Zhang Q (2014a). Hedgehog signaling downregulates suppressor of fused through the HIB/SPOP-Crn axis in Drosophila. Cell Res, 24(5): 595–609
https://doi.org/10.1038/cr.2014.29
pmid: 24603360
|
89 |
Liu Z, Li T, Reinhold M I, Naski M C (2014b). MEK1-RSK2 contributes to Hedgehog signaling by stabilizing GLI2 transcription factor and inhibiting ubiquitination. Oncogene, 33(1): 65–73
https://doi.org/10.1038/onc.2012.544
pmid: 23208494
|
90 |
Lu X, Liu S, Kornberg T B (2006). The C-terminal tail of the Hedgehog receptor Patched regulates both localization and turnover. Genes Dev, 20(18): 2539–2551
https://doi.org/10.1101/gad.1461306
pmid: 16980583
|
91 |
Lum L, Beachy P A (2004). The Hedgehog response network: sensors, switches, and routers. Science, 304(5678): 1755–1759
https://doi.org/10.1126/science.1098020
pmid: 15205520
|
92 |
Marigo V, Davey R A, Zuo Y, Cunningham J M, Tabin C J (1996). Biochemical evidence that patched is the Hedgehog receptor. Nature, 384(6605): 176–179
https://doi.org/10.1038/384176a0
pmid: 8906794
|
93 |
Matise M P, Epstein D J, Park H L, Platt K A, Joyner A L (1998). Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development, 125(15): 2759–2770
pmid: 9655799
|
94 |
May S R, Ashique A M, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson A S (2005). Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol, 287(2): 378–389
https://doi.org/10.1016/j.ydbio.2005.08.050
pmid: 16229832
|
95 |
Mazumdar T, DeVecchio J, Shi T, Jones J, Agyeman A, Houghton J A (2011). Hedgehog signaling drives cellular survival in human colon carcinoma cells. Cancer Res, 71(3): 1092–1102
https://doi.org/10.1158/0008-5472.CAN-10-2315
pmid: 21135115
|
96 |
Mazzà D, Infante P, Colicchia V, Greco A, Alfonsi R, Siler M, Antonucci L, Po A, De Smaele E, Ferretti E, Capalbo C, Bellavia D, Canettieri G, Giannini G, Screpanti I, Gulino A, Di Marcotullio L (2013). PCAF ubiquitin ligase activity inhibits Hedgehog/Gli1 signaling in p53-dependent response to genotoxic stress. Cell Death Differ, 20(12): 1688–1697
https://doi.org/10.1038/cdd.2013.120
pmid: 24013724
|
97 |
McDermott A, Gustafsson M, Elsam T, Hui C C, Emerson C P Jr, Borycki A G (2005). Gli2 and Gli3 have redundant and context-dependent function in skeletal muscle formation. Development, 132(2): 345–357
https://doi.org/10.1242/dev.01537
pmid: 15604102
|
98 |
McGlinn E, Tabin C J (2006). Mechanistic insight into how Shh patterns the vertebrate limb. Curr Opin Genet Dev, 16(4): 426–432
https://doi.org/10.1016/j.gde.2006.06.013
pmid: 16806898
|
99 |
McLellan J S, Yao S, Zheng X, Geisbrecht B V, Ghirlando R, Beachy P A, Leahy D J (2006). Structure of a heparin-dependent complex of Hedgehog and Ihog. Proc Natl Acad Sci U S A, 103(46): 17208–17213
https://doi.org/10.1073/pnas.0606738103
pmid: 17077139
|
100 |
Méthot N, Basler K (1999). Hedgehog controls limb development by regulating the activities of distinct transcriptional activator and repressor forms of Cubitus interruptus. Cell, 96(6): 819–831
https://doi.org/10.1016/S0092-8674(00)80592-9
pmid: 10102270
|
101 |
Méthot N, Basler K (2000). Suppressor of fused opposes hedgehog signal transduction by impeding nuclear accumulation of the activator form of Cubitus interruptus. Development, 127(18): 4001–4010
pmid: 10952898
|
102 |
Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed J C, Mehlen P (2009). The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol, 11(6): 739–746
https://doi.org/10.1038/ncb1880
pmid: 19465923
|
103 |
Monnier V, Dussillol F, Alves G, Lamour-Isnard C, Plessis A. 1998. Suppressor of fused links fused and Cubitus interruptus on the hedgehog signalling pathway. Curr Biol, 8(10): 583–586
|
104 |
Motoyama J, Milenkovic L, Iwama M, Shikata Y, Scott M P, Hui C C (2003). Differential requirement for Gli2 and Gli3 in ventral neural cell fate specification. Dev Biol, 259(1): 150–161
https://doi.org/10.1016/S0012-1606(03)00159-3
pmid: 12812795
|
105 |
Nachury M V, Seeley E S, Jin H (2010). Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu Rev Cell Dev Biol, 26(1): 59–87
https://doi.org/10.1146/annurev.cellbio.042308.113337
pmid: 19575670
|
106 |
Nakano Y, Nystedt S, Shivdasani A A, Strutt H, Thomas C, Ingham P W (2004). Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech Dev, 121(6): 507–518
https://doi.org/10.1016/j.mod.2004.04.015
pmid: 15172682
|
107 |
Nieuwenhuis E, Hui C C (2005). Hedgehog signaling and congenital malformations. Clin Genet, 67(3): 193–208
https://doi.org/10.1111/j.1399-0004.2004.00360.x
pmid: 15691355
|
108 |
Nieuwenhuis E, Motoyama J, Barnfield P C, Yoshikawa Y, Zhang X, Mo R, Crackower M A, Hui C C (2006). Mice with a targeted mutation of patched2 are viable but develop alopecia and epidermal hyperplasia. Mol Cell Biol, 26(17): 6609–6622
https://doi.org/10.1128/MCB.00295-06
pmid: 16914743
|
109 |
Ohlmeyer J T, Kalderon D (1998). Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature, 396(6713): 749–753
https://doi.org/10.1038/25533
pmid: 9874371
|
110 |
Okada A, Charron F, Morin S, Shin D S, Wong K, Fabre P J, Tessier-Lavigne M, McConnell S K (2006). Boc is a receptor for sonic hedgehog in the guidance of commissural axons. Nature, 444(7117): 369–373
https://doi.org/10.1038/nature05246
pmid: 17086203
|
111 |
Oshiumi H, Matsumoto M, Seya T (2012). Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I. J Biochem, 151(1): 5–11
https://doi.org/10.1093/jb/mvr111
pmid: 21890623
|
112 |
Ou C Y, Wang C H, Jiang J, Chien C T (2007). Suppression of Hedgehog signaling by Cul3 ligases in proliferation control of retinal precursors. Dev Biol, 308(1): 106–119
https://doi.org/10.1016/j.ydbio.2007.05.008
pmid: 17559828
|
113 |
Paces-Fessy M, Boucher D, Petit E, Paute-Briand S, Blanchet-Tournier M F (2004). The negative regulator of Gli, Suppressor of fused (Sufu), interacts with SAP18, Galectin3 and other nuclear proteins. Biochem J, 378(Pt 2): 353–362
https://doi.org/10.1042/BJ20030786
pmid: 14611647
|
114 |
Pan Y, Wang C, Wang B (2009). Phosphorylation of Gli2 by protein kinase A is required for Gli2 processing and degradation and the Sonic Hedgehog-regulated mouse development. Dev Biol, 326(1): 177–189
https://doi.org/10.1016/j.ydbio.2008.11.009
pmid: 19056373
|
115 |
Park H L, Bai C, Platt K A, Matise M P, Beeghly A, Hui C C, Nakashima M, Joyner A L (2000). Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development, 127(8): 1593–1605
pmid: 10725236
|
116 |
Persson M, Stamataki D, te Welscher P, Andersson E, B?se J, Rüther U, Ericson J, Briscoe J (2002). Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev, 16(22): 2865–2878
https://doi.org/10.1101/gad.243402
pmid: 12435629
|
117 |
Petrova R, Joyner A L (2014). Roles for Hedgehog signaling in adult organ homeostasis and repair. Development, 141(18): 3445–3457
https://doi.org/10.1242/dev.083691
pmid: 25183867
|
118 |
Pickart C M (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem, 70(1): 503–533
https://doi.org/10.1146/annurev.biochem.70.1.503
pmid: 11395416
|
119 |
Pickart C M (2004). Back to the future with ubiquitin. Cell, 116(2): 181–190
https://doi.org/10.1016/S0092-8674(03)01074-2
pmid: 14744430
|
120 |
Pickart C M, Eddins M J (2004). Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 1695(1-3): 55–72
https://doi.org/10.1016/j.bbamcr.2004.09.019
pmid: 15571809
|
121 |
Polo S, Di Fiore P P (2006). Endocytosis conducts the cell signaling orchestra. Cell, 124(5): 897–900
https://doi.org/10.1016/j.cell.2006.02.025
pmid: 16530038
|
122 |
Préat T (1992). Characterization of Suppressor of fused, a complete suppressor of the fused segment polarity gene of Drosophila melanogaster. Genetics, 132(3): 725–736
pmid: 1468628
|
123 |
Price M A, Kalderon D (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108(6): 823–835
https://doi.org/10.1016/S0092-8674(02)00664-5
pmid: 11955435
|
124 |
Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A (2008). Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology, 378(1): 21–33
https://doi.org/10.1016/j.virol.2008.04.046
pmid: 18554681
|
125 |
Rohatgi R, Milenkovic L, Corcoran R B, Scott M P (2009). Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc Natl Acad Sci U S A, 106(9): 3196–3201
https://doi.org/10.1073/pnas.0813373106
pmid: 19218434
|
126 |
Rohatgi R, Milenkovic L, Scott M P (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science, 317(5836): 372–376
https://doi.org/10.1126/science.1139740
pmid: 17641202
|
127 |
Rohatgi R, Scott M P (2007). Patching the gaps in Hedgehog signalling. Nat Cell Biol, 9(9): 1005–1009
https://doi.org/10.1038/ncb435
pmid: 17762891
|
128 |
Sandvig K, Pust S, Skotland T, van Deurs B (2011). Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol, 23(4): 413–420
https://doi.org/10.1016/j.ceb.2011.03.007
pmid: 21466956
|
129 |
Santos N, Reiter J F (2014). A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. J Cell Sci, 127(Pt 7): 1500–1510
https://doi.org/10.1242/jcs.139253
pmid: 24463817
|
130 |
Sasaki H, Nishizaki Y, Hui C, Nakafuku M, Kondoh H (1999). Regulation of Gli2 and Gli3 activities by an amino-terminal repression domain: implication of Gli2 and Gli3 as primary mediators of Shh signaling. Development, 126(17): 3915–3924
pmid: 10433919
|
131 |
Scherz P J, McGlinn E, Nissim S, Tabin C J (2007). Extended exposure to Sonic hedgehog is required for patterning the posterior digits of the vertebrate limb. Dev Biol, 308(2): 343–354
https://doi.org/10.1016/j.ydbio.2007.05.030
pmid: 17610861
|
132 |
Sigismund S, Polo S, Di Fiore P P (2004). Signaling through monoubiquitination. Curr Top Microbiol Immunol, 286: 149–185
pmid: 15645713
|
133 |
Smelkinson MG, Kalderon D (2006 ). Processing of the Drosophila hedgehog signaling effector Ci-155 to the repressor Ci-75 is mediated by direct binding to the SCF component Slimb. Curr Biol, 16: 110–116
|
134 |
St-Jacques B, Hammerschmidt M, McMahon A P (1999). Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev, 13(16): 2072–2086
https://doi.org/10.1101/gad.13.16.2072
pmid: 10465785
|
135 |
Stamataki D, Ulloa F, Tsoni S V, Mynett A, Briscoe J (2005). A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev, 19(5): 626–641
https://doi.org/10.1101/gad.325905
pmid: 15741323
|
136 |
Sv?rd J, Heby-Henricson K, Persson-Lek M, Rozell B, Lauth M, Bergstr?m A, Ericson J, Toftg?rd R, Teglund S (2006). Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev Cell, 10(2): 187–197
https://doi.org/10.1016/j.devcel.2005.12.013
pmid: 16459298
|
137 |
Tabata T, Kornberg T B (1994). Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell, 76(1): 89–102
https://doi.org/10.1016/0092-8674(94)90175-9
pmid: 8287482
|
138 |
Taipale J, Beachy P A (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411(6835): 349–354
https://doi.org/10.1038/35077219
pmid: 11357142
|
139 |
Teglund S, Toftg?rd R (2010). Hedgehog beyond medulloblastoma and basal cell carcinoma. Biochim Biophys Acta, 1805(2): 181–208
pmid: 20085802
|
140 |
Tempé D, Casas M, Karaz S, Blanchet-Tournier M F, Concordet J P (2006). Multisite protein kinase A and glycogen synthase kinase 3βphosphorylation leads to Gli3 ubiquitination by SCFβTrCP. Mol Cell Biol, 26(11): 4316–4326
https://doi.org/10.1128/MCB.02183-05
pmid: 16705181
|
141 |
Tenzen T, Allen B L, Cole F, Kang J S, Krauss R S, McMahon A P (2006). The cell surface membrane proteins Cdo and Boc are components and targets of the Hedgehog signaling pathway and feedback network in mice. Dev Cell, 10(5): 647–656
https://doi.org/10.1016/j.devcel.2006.04.004
pmid: 16647304
|
142 |
Thibert C, Teillet M A, Lapointe F, , Mazelin L, Le Douarin N M, Mehlen P (2003). Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science, 301: 843–846
|
142 |
Torroja C, Gorfinkiel N, Guerrero I (2004). Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction. Development, 131(10): 2395–2408
https://doi.org/10.1242/dev.01102
pmid: 15102702
|
143 |
Torroja C, Gorfinkiel N, Guerrero I (2005). Mechanisms of Hedgehog gradient formation and interpretation. J Neurobiol, 64(4): 334–356
https://doi.org/10.1002/neu.20168
pmid: 16041759
|
144 |
Tukachinsky H, Lopez L V, Salic A (2010). A mechanism for vertebrate Hedgehog signaling: recruitment to cilia and dissociation of SuFu-Gli protein complexes. J Cell Biol, 191(2): 415–428
https://doi.org/10.1083/jcb.201004108
pmid: 20956384
|
145 |
Varjosalo M, Bj?rklund M, Cheng F, Syv?nen H, Kivioja T, Kilpinen S, Sun Z, Kallioniemi O, Stunnenberg H G, He W W, Ojala P, Taipale J (2008). Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell, 133(3): 537–548
https://doi.org/10.1016/j.cell.2008.02.047
pmid: 18455992
|
146 |
Varjosalo M, Taipale J (2008). Hedgehog: functions and mechanisms. Genes Dev, 22(18): 2454–2472
https://doi.org/10.1101/gad.1693608
pmid: 18794343
|
147 |
Verma R, Deshaies R J (2000). A proteasome howdunit: the case of the missing signal. Cell, 101(4): 341–344
https://doi.org/10.1016/S0092-8674(00)80843-0
pmid: 10830160
|
148 |
Voges D, Zwickl P, Baumeister W (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem, 68(1): 1015–1068
https://doi.org/10.1146/annurev.biochem.68.1.1015
pmid: 10872471
|
149 |
Wang B, Fallon J F, Beachy P A (2000a). Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell, 100(4): 423–434
https://doi.org/10.1016/S0092-8674(00)80678-9
pmid: 10693759
|
150 |
Wang B, Li Y (2006). Evidence for the direct involvement of βTrCP in Gli3 protein processing. Proc Natl Acad Sci U S A, 103(1): 33–38
https://doi.org/10.1073/pnas.0509927103
pmid: 16371461
|
151 |
Wang C, Pan Y, Wang B (2010). Suppressor of fused and Spop regulate the stability, processing and function of Gli2 and Gli3 full-length activators but not their repressors. Development, 137(12): 2001–2009
https://doi.org/10.1242/dev.052126
pmid: 20463034
|
152 |
Wang G, Amanai K, Wang B, Jiang J (2000b). Interactions with Costal2 and suppressor of fused regulate nuclear translocation and activity of cubitus interruptus. Genes Dev, 14(22): 2893–2905
https://doi.org/10.1101/gad.843900
pmid: 11090136
|
153 |
Wang G, Tang X, Chen Y, Cao J, Huang Q, Ling X, Ren W, Liu S, Wu Y, Ray L, Lin X (2014). Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mech Dev, 133: 117–125
https://doi.org/10.1016/j.mod.2014.05.002
pmid: 24854243
|
154 |
Wang G, Wang B, Jiang J (1999). Protein kinase A antagonizes Hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev, 13(21): 2828–2837
https://doi.org/10.1101/gad.13.21.2828
pmid: 10557210
|
155 |
Wang Q T, Holmgren R A (1999). The subcellular localization and activity of Drosophila cubitus interruptus are regulated at multiple levels. Development, 126(22): 5097–5106
pmid: 10529426
|
156 |
Wang Y, Zhou Z, Walsh C T, McMahon A P (2009). Selective translocation of intracellular Smoothened to the primary cilium in response to Hedgehog pathway modulation. Proc Natl Acad Sci U S A, 106(8): 2623–2628
https://doi.org/10.1073/pnas.0812110106
pmid: 19196978
|
157 |
Weissman A M (2001). Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol, 2(3): 169–178
https://doi.org/10.1038/35056563
pmid: 11265246
|
158 |
Wen X, Lai C K, Evangelista M, Hongo J A, de Sauvage F J, Scales S J (2010). Kinetics of hedgehog-dependent full-length Gli3 accumulation in primary cilia and subsequent degradation. Mol Cell Biol, 30(8): 1910–1922
https://doi.org/10.1128/MCB.01089-09
pmid: 20154143
|
159 |
Williams R L, Urbé S (2007). The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol, 8(5): 355–368
https://doi.org/10.1038/nrm2162
pmid: 17450176
|
160 |
Wilson C W, Chen M H, Chuang P T (2009). Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS One, 4(4): e5182
https://doi.org/10.1371/journal.pone.0005182
pmid: 19365551
|
161 |
Woelk T, Sigismund S, Penengo L, Polo S (2007). The ubiquitination code: a signalling problem. Cell Div, 2(1): 11
https://doi.org/10.1186/1747-1028-2-11
pmid: 17355622
|
162 |
Wolff C, Roy S, Ingham PW (2003 ). Multiple muscle cell identities induced by distinct levels and timing of hedgehog activity in the zebrafish embryo. Curr Biol, 13: 1169–1181
|
163 |
Xia R, Jia H, Fan J, Liu Y, Jia J (2012). USP8 promotes smoothened signaling by preventing its ubiquitination and changing its subcellular localization. PLoS Biol, 10(1): e1001238
https://doi.org/10.1371/journal.pbio.1001238
pmid: 22253573
|
164 |
Xu P, Duong D M, Seyfried N T, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 137(1): 133–145
https://doi.org/10.1016/j.cell.2009.01.041
pmid: 19345192
|
165 |
Yang X, Mao F, Lv X, Zhang Z, Fu L, Lu Y, Wu W, Zhou Z, Zhang L, Zhao Y (2013). Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J Cell Sci, 126(Pt 18): 4230–4238
https://doi.org/10.1242/jcs.128603
pmid: 23843610
|
166 |
Yao S, Lum L, Beachy P (2006). The ihog cell-surface proteins bind Hedgehog and mediate pathway activation. Cell, 125(2): 343–357
https://doi.org/10.1016/j.cell.2006.02.040
pmid: 16630821
|
167 |
Yue S, Chen Y, Cheng S Y (2009). Hedgehog signaling promotes the degradation of tumor suppressor Sufu through the ubiquitin-proteasome pathway. Oncogene, 28(4): 492–499
https://doi.org/10.1038/onc.2008.403
pmid: 18997815
|
168 |
Yue S, Tang LY, Tang Y, Tang Y, Shen QH, Ding J, Chen Y, Zhang Z, Yu TT, Zhang YE, Cheng S Y (2014). Requirement of Smurf-mediated endocytosis of Patched1 in Sonic Hedgehog signal reception. eLife, 3: e02555
|
169 |
Zeng H, Jia J, Liu A (2010). Coordinated translocation of mammalian Gli proteins and suppressor of fused to the primary cilium. PLoS One, 5(12): e15900
https://doi.org/10.1371/journal.pone.0015900
pmid: 21209912
|
170 |
Zhang C, Williams E H, Guo Y, Lum L, Beachy P A (2004). Extensive phosphorylation of Smoothened in Hedgehog pathway activation. Proc Natl Acad Sci U S A, 101(52): 17900–17907
https://doi.org/10.1073/pnas.0408093101
pmid: 15598741
|
171 |
Zhang Q, Zhang L, Wang B, Ou C Y, Chien C T, Jiang J (2006a). A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev Cell, 10(6): 719–729
https://doi.org/10.1016/j.devcel.2006.05.004
pmid: 16740475
|
172 |
Zhang W, Kang J S, Cole F, Yi M J, Krauss R S (2006b). Cdo functions at multiple points in the Sonic Hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly. Dev Cell, 10(5): 657–665
https://doi.org/10.1016/j.devcel.2006.04.005
pmid: 16647303
|
173 |
Zhang W, Zhao Y, Tong C, Wang G, Wang B, Jia J, Jiang J (2005). Hedgehog-regulated Costal2-kinase complexes control phosphorylation and proteolytic processing of Cubitus interruptus. Dev Cell, 8(2): 267–278
https://doi.org/10.1016/j.devcel.2005.01.001
pmid: 15691767
|
174 |
Zhang X M, Ramalho-Santos M, McMahon A P (2001). Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell, 106(2): 781–792
https://doi.org/10.1016/S0092-8674(01)00385-3
pmid: 11517919
|
175 |
Zhang Z, Lv X, Yin W C, Zhang X, Feng J, Wu W, Hui C C, Zhang L, Zhao Y (2013). Ter94 ATPase complex targets k11-linked ubiquitinated ci to proteasomes for partial degradation. Dev Cell, 25(6): 636–644
https://doi.org/10.1016/j.devcel.2013.05.006
pmid: 23747190
|
176 |
Zhao Y, Tong C, Jiang J (2007). Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 450(7167): 252–258
https://doi.org/10.1038/nature06225
pmid: 17960137
|
177 |
Zheng X, Mann R K, Sever N, Beachy P A (2010). Genetic and biochemical definition of the Hedgehog receptor. Genes Dev, 24(1): 57–71
https://doi.org/10.1101/gad.1870310
pmid: 20048000
|
178 |
Zhu A J, Zheng L, Suyama K, Scott M P (2003). Altered localization of Drosophila Smoothened protein activates Hedgehog signal transduction. Genes Dev, 17(10): 1240–1252
https://doi.org/10.1101/gad.1080803
pmid: 12730121
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|