Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (5) : 370-375    https://doi.org/10.1007/s11515-017-1464-0
RESEARCH ARTICLE
Inhibitory effects of YCW and MOS from Saccharomyces cerevisiae on Escherichia coli and Salmonella pullorum adhesion to Caco-2 cells
Xiaoqing Xu, Yu Qiao, Qing Peng, Long Gao, Bo Shi()
Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
 Download: PDF(405 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: For many years, yeast cell walls (YCW) and mannan oligosaccharides (MOS) have been used as alternatives to antibiotics and health feed additives to enhance the growth performance and health of food animals. In the present study, the inhibitory effects of YCW and MOS on the adhesion of enteropathogenic bacteria to intestinal epithelial cells were tested.

METHODS: YCW and MOS were extracted from Saccharomyces cerevisiae (XM 0315), and the morphology of YCW and MOS bound to pathogenic bacteria was observed by scanning electron microscopy (SEM). Real-time fluorescent quantitative PCR was used to quantitatively analyze the effects of YCW and MOS on the adhesion ofEscherichia coli (CVCC3367) and Salmonella pullorum (CVCC520) to Caco-2 cells.

RESULTS: The results showed that YCW inhibited E. coli and S. pullorum binding to Caco-2 cells by 95% and 74%, respectively, whereas MOS prevented E. coli and S. pullorum binding by 67% and 50%, respectively.

CONCLUSIONS: These data suggest that YCW has a stronger ability than MOS to inhibit pathogenic bacteria from adhering to Caco-2 cellsin vitro.

Keywords YCW      MOS      Escherichia coli      Salmonella pullorum      Caco-2 cells     
Corresponding Author(s): Bo Shi   
Online First Date: 31 October 2017    Issue Date: 20 November 2017
 Cite this article:   
Xiaoqing Xu,Yu Qiao,Qing Peng, et al. Inhibitory effects of YCW and MOS from Saccharomyces cerevisiae on Escherichia coli and Salmonella pullorum adhesion to Caco-2 cells[J]. Front. Biol., 2017, 12(5): 370-375.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1464-0
https://academic.hep.com.cn/fib/EN/Y2017/V12/I5/370
Primer Sequence Specificity
fimYf 5’-TCGTCATTCCATTACCTACC-3’ Salmonella
fimYr 5’-AAACGTTGAAAAACTGAGGA-3’ Salmonella
27f 5’-AGAGTTTGATCCTGGCTCAG-3’ Escherichia?coli ?
338r 5’-TGCTGCCTCCCGTAGGAGT-3’ Escherichia?coli ?
Tab.1  Genus- and species-specific primers used for quantification of bacterial cells in adhesion assays
Fig.1  Morphology of YCW, MOS and adhesion assays from SEM. A: YCW; A1: The adhesion of YCW and E. coli(10.0k×); A2: The adhesion of YCW and Salmonella pullorum (10.0k×); B: yeast MOS; B1: The adhesive microstructure between yeast MOS and E. coli (20.0k×); B2:The adhesion of yeast MOS and Salmonella pullorum (10.0k×)
Fig.2  The amount of E. coli and Salmonella pullorum adhesion to Caco-2 cells after treatment of YCW and MOS. neg- negative control; blank–blank control. Results shown are average±SD of three replicates. a,b,c,d–values labeled with different letters are significantly different (p<0.05).
1 Baharaeen S, Vishniac  H S (1982). A fixation method for visualization of yeast ultrastructure in the electron microscope. Mycopathologia, 77(1): 19–22 
https://doi.org/10.1007/BF00588651 pmid: 6803162
2 Bauer C, Herzog  V, Bauer M F  (2001). Improved technique for electron microscope visualization of yeast membrane structure. Microsc Microanal, 7(6): 530–534
pmid: 12597798
3 Baurhoo B, Letellier  A, Zhao X ,  Ruiz-Feria C A  (2007). Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci, 86(12): 2509–2516
https://doi.org/10.3382/ps.2007-00136 pmid: 18029796
4 Becker P M, Galletti  S, Roubos-van den Hil  P J, van Wikselaar  P G (2007). Validation of growth as measurand for bacterial adhesion to food and feed ingredients. J Appl Microbiol, 103(6): 2686–2696
https://doi.org/10.1111/j.1365-2672.2007.03524.x pmid: 17850303
5 Bouckaert J, Mackenzie  J, de Paz J L ,  Chipwaza B ,  Choudhury D ,  Zavialov A ,  Mannerstedt K ,  Anderson J ,  Piérard D ,  Wyns L, Seeberger  P H, Oscarson  S, De Greve H ,  Knight S D  (2006). The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol Microbiol, 61(6): 1556–1568 
https://doi.org/10.1111/j.1365-2958.2006.05352.x pmid: 16930149
6 Bray D (2000). Critical Point Drying of Biological Specimens for Scanning Electron Microscopy, Humana Press, 235–243
7 Broadway P R, Carroll  J A, Sanchez  N C (2015). Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: A review (†,)(‡). Microorganisms, 3(3): 417–427
https://doi.org/10.3390/microorganisms3030417 pmid: 27682097
8 Bychkov A L, Korolev  K G, Lomovsky  O I (2010). Obtaining mannanoligosaccharide preparations by means of the mechanoenzymatic hydrolysis of yeast biomass. Appl Biochem Biotechnol, 162(7): 2008–2014
https://doi.org/10.1007/s12010-010-8976-2 pmid: 20429042
9 Candela M, Seibold  G, Vitali B ,  Lachenmaier S ,  Eikmanns B J ,  Brigidi P  (2005). Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res Microbiol, 156(8): 887–895
https://doi.org/10.1016/j.resmic.2005.04.006 pmid: 16024231
10 Fernandez F, Hinton  M, Van Gils B  (2002). Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathol, 31(1): 49–58
https://doi.org/10.1080/03079450120106000 pmid: 12425792
11 Ganan M, Carrascosa  A V, de Pascual-Teresa  S, Martinez-Rodriguez A J (2009). Inhibition by yeast-derived mannoproteins of adherence to and invasion of Caco-2 cells by Campylobacter jejuni. J Food Prot, 72(1): 55–59 
https://doi.org/10.4315/0362-028X-72.1.55 pmid: 19205464
12 Ganan M, Carrascosa  A V, de Pascual-Teresa  S, Martinez-Rodriguez A J (2012). Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to Caco-2 cells of lactic acid bacteria. J Food Sci, 77(3): M176–M180 
https://doi.org/10.1111/j.1750-3841.2011.02602.x pmid: 22384965
13 Ganner A, Stoiber  C, Uhlik J T ,  Dohnal I ,  Schatzmayr G  (2013). Quantitative evaluation of E. coli F4 and Salmonella Typhimurium binding capacity of yeast derivatives. AMB Express, 3(1): 62 
https://doi.org/10.1186/2191-0855-3-62 pmid: 24148308
14 Ganner A, Stoiber  C, Wieder D ,  Schatzmayr G  (2010). Quantitative in vitro assay to evaluate the capability of yeast cell wall fractions from Trichosporon mycotoxinivorans to selectively bind gram negative pathogens. J Microbiol Methods, 83(2): 168–174 
https://doi.org/10.1016/j.mimet.2010.08.016 pmid: 20826190
15 Ganner A, Schatzmayr  G (2012) . Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. Appl Microbiol Biotechnol, 95(2): 289–97
16 Jones C H, Pinkner  J S, Roth  R, Heuser J ,  Nicholes A V ,  Abraham S N ,  Hultgren S J  (1995) . FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci U S A, 92: 2081–2085
17 Kogan G, Kocher  A (2007). Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livest Sci, 109(1-3): 161–165
https://doi.org/10.1016/j.livsci.2007.01.134
18 Kogut M H (2000). Cytokines and prevention of infectious diseases in poultry: a review. Avian Pathol, 29: 395–404
19 Konkel M E, Corwin  M D, Joens  L A, Cieplak  W (1992). Factors that influence the interaction of Campylobacter jejuni with cultured mammalian cells. J Med Microbiol, 37(1): 30–37 
https://doi.org/10.1099/00222615-37-1-30 pmid: 1625313
20 Mirelman D, Altmann  G, Eshdat Y  (1980). Screening of bacterial isolates for mannose-specific lectin activity by agglutination of yeasts. J Clin Microbiol, 11(4): 328–331
pmid: 6989854
21 Ofek I, Beachey  E H (1978). Mannose binding and epithelial cell adherence of Escherichia coli. Infect Immun, 22(1): 247–254
pmid: 365746
22 Ofek I, Hasty  D L, Sharon  N (2003). Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol, 38(3): 181–191 PMID:14522453
https://doi.org/10.1016/S0928-8244(03)00228-1
23 Ofek I, Mirelman  D, Sharon N (1977). Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature, 265(5595): 623–625 
https://doi.org/10.1038/265623a0 pmid: 323718
24 Oyofo B A, Droleskey  R E, Norman  J O, Mollenhauer  H H, Ziprin  R L, Corrier  D E, DeLoach  J R (1989). Inhibition by mannose of in vitro colonization of chicken small intestine by Salmonella typhimurium. Poult Sci, 68(10): 1351–1356 
https://doi.org/10.3382/ps.0681351 pmid: 2685796
25 Rodrigues D F ,  Elimelech M  (2009). Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm:  from initial cell adhesion to biofilm formation. Biofouling, 25(5): 401–411 
https://doi.org/10.1080/08927010902833443 pmid: 19306144
26 Rosen D A, Pinkner  J S, Walker  J N, Elam  J S, Jones  J M, Hultgren  S J (2008). Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect Immun, 76(7): 3346–3356
https://doi.org/10.1128/IAI.00340-08 pmid: 18474655
27 Sharon N, Ofek  I (2000). Safe as mother’s milk: carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj J, 17(7-9): 659–664
https://doi.org/10.1023/A:1011091029973 pmid: 11421356
28 Shashidhara R G ,  Devegowda G  (2003). Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult Sci, 82(8): 1319–1325
https://doi.org/10.1093/ps/82.8.1319 pmid: 12943304
29 Shoaf-Sweeney K D ,  Hutkins R W  (2009). Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. Adv Food Nutr Res, 55: 101–161
pmid: 18772103
30 Spring P, Wenk  C, Dawson K A ,  Newman K E  (2000). The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci, 79(2): 205–211 
https://doi.org/10.1093/ps/79.2.205 pmid: 10735748
31 Sweeney Shoaf K D ,  Hutkins R W  (2008). Anti‐Adherence, and Oligosaccharides: Preventing Pathogens from Sticking to the Host. Adv Food Nutr Res, 55: 101–161
32 Tiago F C P ,  Martins F S ,  Souza E L ,  Pimenta P F ,  Araujo H R ,  Castro I M ,  Brandão R L ,  Nicoli J R  (2012). Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol, 61(Pt 9): 1194–1207 
https://doi.org/10.1099/jmm.0.042283-0 pmid: 22580913
33 Trevisi P, Priori  D, Gandolfi G ,  Colombo M ,  Coloretti F ,  Goossens T ,  Bosi P (2012). In vitro test on the ability of a yeast cell wall based product to inhibit the Escherichia coli F4ac adhesion on the brush border of porcine intestinal villi1. J Anim Sci, 90: 275
34 Varelas V, Liouni  M, Calokerinos A C ,  Nerantzis E T  (2016). An evaluation study of different methods for the production of -D-glucan from yeast biomass. Drug Test Anal, 8(1): 46–55
https://doi.org/10.1002/dta.1833 pmid: 26190751
35 Vesterlund S, Paltta  J, Karp M ,  Ouwehand A C  (2005). Measurement of bacterial adhesion-in vitro evaluation of different methods. J Microbiol Methods, 60(2): 225–233 
https://doi.org/10.1016/j.mimet.2004.09.013 pmid: 15590097
36 Vieira L Q, dos Santos  L M, Neumann  E, da Silva A P ,  Moura L N ,  Nicoli J R  (2008). Probiotics protect mice against experimental infections. J Clin Gastroenterol, 42(Suppl 3 Pt 2): S168–S169 
https://doi.org/10.1097/MCG.0b013e31818063d4 pmid: 18685501
[1] Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins[J]. Front. Biol., 2016, 11(4): 285-304.
[2] Simon HIPPENMEYER. Dissection of gene function at clonal level using mosaic analysis with double markers[J]. Front Biol, 2013, 8(6): 557-568.
[3] Joana BARBOSA, Ana Vanessa NASCIMENTO, Juliana FARIA, Patrícia SILVA, Hassan BOUSBAA. The spindle assembly checkpoint: perspectives in tumorigenesis and cancer therapy[J]. Front Biol, 2011, 6(2): 147-155.
[4] Aichun LIU, Yun ZHAO, Songlin RUAN, Guozheng SHEN. Quantitative detection of Cymbidium mosaic virus by real time PCR[J]. Front Biol Chin, 2009, 4(3): 314-320.
[5] Hong SHI, Bing SU. Origin of modern humans in East Asia: clues from the Y chromosome[J]. Front Biol Chin, 2009, 4(3): 241-247.
[6] Jiancheng ZHAO, Yunpu ZHENG, Bingchang ZHANG, Ying CHEN, Yuanming ZHANG. Progress in the study of algae and mosses in biological soil crusts[J]. Front Biol Chin, 2009, 4(2): 143-150.
[7] HUANG Shiliang, LI Min, ZHAO Jiancheng, WANG Zhenjie, ZHANG Yuanming. Characteristics of spore germination and protonemal development in Hypnum pacleseens[J]. Front. Biol., 2006, 1(3): 225-229.
[8] Tian Guiquan, Xu Jie, Bai Xueliang, Wang Xiandao. Experimental Studies on the Natural Restoration and the Artificial Culture of the Moss Crusts on Fixed Dunes in the Tengger Desert, China[J]. Front. Biol., 2006, 1(1): 13-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed