|
|
Inhibitory effects of YCW and MOS from Saccharomyces cerevisiae on Escherichia coli and Salmonella pullorum adhesion to Caco-2 cells |
Xiaoqing Xu, Yu Qiao, Qing Peng, Long Gao, Bo Shi( ) |
Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
|
|
Abstract BACKGROUND: For many years, yeast cell walls (YCW) and mannan oligosaccharides (MOS) have been used as alternatives to antibiotics and health feed additives to enhance the growth performance and health of food animals. In the present study, the inhibitory effects of YCW and MOS on the adhesion of enteropathogenic bacteria to intestinal epithelial cells were tested. METHODS: YCW and MOS were extracted from Saccharomyces cerevisiae (XM 0315), and the morphology of YCW and MOS bound to pathogenic bacteria was observed by scanning electron microscopy (SEM). Real-time fluorescent quantitative PCR was used to quantitatively analyze the effects of YCW and MOS on the adhesion ofEscherichia coli (CVCC3367) and Salmonella pullorum (CVCC520) to Caco-2 cells. RESULTS: The results showed that YCW inhibited E. coli and S. pullorum binding to Caco-2 cells by 95% and 74%, respectively, whereas MOS prevented E. coli and S. pullorum binding by 67% and 50%, respectively. CONCLUSIONS: These data suggest that YCW has a stronger ability than MOS to inhibit pathogenic bacteria from adhering to Caco-2 cellsin vitro.
|
Keywords
YCW
MOS
Escherichia coli
Salmonella pullorum
Caco-2 cells
|
Corresponding Author(s):
Bo Shi
|
Online First Date: 31 October 2017
Issue Date: 20 November 2017
|
|
1 |
Baharaeen S, Vishniac H S (1982). A fixation method for visualization of yeast ultrastructure in the electron microscope. Mycopathologia, 77(1): 19–22
https://doi.org/10.1007/BF00588651
pmid: 6803162
|
2 |
Bauer C, Herzog V, Bauer M F (2001). Improved technique for electron microscope visualization of yeast membrane structure. Microsc Microanal, 7(6): 530–534
pmid: 12597798
|
3 |
Baurhoo B, Letellier A, Zhao X , Ruiz-Feria C A (2007). Cecal populations of lactobacilli and bifidobacteria and Escherichia coli populations after in vivo Escherichia coli challenge in birds fed diets with purified lignin or mannanoligosaccharides. Poult Sci, 86(12): 2509–2516
https://doi.org/10.3382/ps.2007-00136
pmid: 18029796
|
4 |
Becker P M, Galletti S, Roubos-van den Hil P J, van Wikselaar P G (2007). Validation of growth as measurand for bacterial adhesion to food and feed ingredients. J Appl Microbiol, 103(6): 2686–2696
https://doi.org/10.1111/j.1365-2672.2007.03524.x
pmid: 17850303
|
5 |
Bouckaert J, Mackenzie J, de Paz J L , Chipwaza B , Choudhury D , Zavialov A , Mannerstedt K , Anderson J , Piérard D , Wyns L, Seeberger P H, Oscarson S, De Greve H , Knight S D (2006). The affinity of the FimH fimbrial adhesin is receptor-driven and quasi-independent of Escherichia coli pathotypes. Mol Microbiol, 61(6): 1556–1568
https://doi.org/10.1111/j.1365-2958.2006.05352.x
pmid: 16930149
|
6 |
Bray D (2000). Critical Point Drying of Biological Specimens for Scanning Electron Microscopy, Humana Press, 235–243
|
7 |
Broadway P R, Carroll J A, Sanchez N C (2015). Live yeast and yeast cell wall supplements enhance immune function and performance in food-producing livestock: A review (†,)(‡). Microorganisms, 3(3): 417–427
https://doi.org/10.3390/microorganisms3030417
pmid: 27682097
|
8 |
Bychkov A L, Korolev K G, Lomovsky O I (2010). Obtaining mannanoligosaccharide preparations by means of the mechanoenzymatic hydrolysis of yeast biomass. Appl Biochem Biotechnol, 162(7): 2008–2014
https://doi.org/10.1007/s12010-010-8976-2
pmid: 20429042
|
9 |
Candela M, Seibold G, Vitali B , Lachenmaier S , Eikmanns B J , Brigidi P (2005). Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res Microbiol, 156(8): 887–895
https://doi.org/10.1016/j.resmic.2005.04.006
pmid: 16024231
|
10 |
Fernandez F, Hinton M, Van Gils B (2002). Dietary mannan-oligosaccharides and their effect on chicken caecal microflora in relation to Salmonella Enteritidis colonization. Avian Pathol, 31(1): 49–58
https://doi.org/10.1080/03079450120106000
pmid: 12425792
|
11 |
Ganan M, Carrascosa A V, de Pascual-Teresa S, Martinez-Rodriguez A J (2009). Inhibition by yeast-derived mannoproteins of adherence to and invasion of Caco-2 cells by Campylobacter jejuni. J Food Prot, 72(1): 55–59
https://doi.org/10.4315/0362-028X-72.1.55
pmid: 19205464
|
12 |
Ganan M, Carrascosa A V, de Pascual-Teresa S, Martinez-Rodriguez A J (2012). Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to Caco-2 cells of lactic acid bacteria. J Food Sci, 77(3): M176–M180
https://doi.org/10.1111/j.1750-3841.2011.02602.x
pmid: 22384965
|
13 |
Ganner A, Stoiber C, Uhlik J T , Dohnal I , Schatzmayr G (2013). Quantitative evaluation of E. coli F4 and Salmonella Typhimurium binding capacity of yeast derivatives. AMB Express, 3(1): 62
https://doi.org/10.1186/2191-0855-3-62
pmid: 24148308
|
14 |
Ganner A, Stoiber C, Wieder D , Schatzmayr G (2010). Quantitative in vitro assay to evaluate the capability of yeast cell wall fractions from Trichosporon mycotoxinivorans to selectively bind gram negative pathogens. J Microbiol Methods, 83(2): 168–174
https://doi.org/10.1016/j.mimet.2010.08.016
pmid: 20826190
|
15 |
Ganner A, Schatzmayr G (2012) . Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. Appl Microbiol Biotechnol, 95(2): 289–97
|
16 |
Jones C H, Pinkner J S, Roth R, Heuser J , Nicholes A V , Abraham S N , Hultgren S J (1995) . FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc Natl Acad Sci U S A, 92: 2081–2085
|
17 |
Kogan G, Kocher A (2007). Role of yeast cell wall polysaccharides in pig nutrition and health protection. Livest Sci, 109(1-3): 161–165
https://doi.org/10.1016/j.livsci.2007.01.134
|
18 |
Kogut M H (2000). Cytokines and prevention of infectious diseases in poultry: a review. Avian Pathol, 29: 395–404
|
19 |
Konkel M E, Corwin M D, Joens L A, Cieplak W (1992). Factors that influence the interaction of Campylobacter jejuni with cultured mammalian cells. J Med Microbiol, 37(1): 30–37
https://doi.org/10.1099/00222615-37-1-30
pmid: 1625313
|
20 |
Mirelman D, Altmann G, Eshdat Y (1980). Screening of bacterial isolates for mannose-specific lectin activity by agglutination of yeasts. J Clin Microbiol, 11(4): 328–331
pmid: 6989854
|
21 |
Ofek I, Beachey E H (1978). Mannose binding and epithelial cell adherence of Escherichia coli. Infect Immun, 22(1): 247–254
pmid: 365746
|
22 |
Ofek I, Hasty D L, Sharon N (2003). Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol, 38(3): 181–191 PMID:14522453
https://doi.org/10.1016/S0928-8244(03)00228-1
|
23 |
Ofek I, Mirelman D, Sharon N (1977). Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature, 265(5595): 623–625
https://doi.org/10.1038/265623a0
pmid: 323718
|
24 |
Oyofo B A, Droleskey R E, Norman J O, Mollenhauer H H, Ziprin R L, Corrier D E, DeLoach J R (1989). Inhibition by mannose of in vitro colonization of chicken small intestine by Salmonella typhimurium. Poult Sci, 68(10): 1351–1356
https://doi.org/10.3382/ps.0681351
pmid: 2685796
|
25 |
Rodrigues D F , Elimelech M (2009). Role of type 1 fimbriae and mannose in the development of Escherichia coli K12 biofilm: from initial cell adhesion to biofilm formation. Biofouling, 25(5): 401–411
https://doi.org/10.1080/08927010902833443
pmid: 19306144
|
26 |
Rosen D A, Pinkner J S, Walker J N, Elam J S, Jones J M, Hultgren S J (2008). Molecular variations in Klebsiella pneumoniae and Escherichia coli FimH affect function and pathogenesis in the urinary tract. Infect Immun, 76(7): 3346–3356
https://doi.org/10.1128/IAI.00340-08
pmid: 18474655
|
27 |
Sharon N, Ofek I (2000). Safe as mother’s milk: carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconj J, 17(7-9): 659–664
https://doi.org/10.1023/A:1011091029973
pmid: 11421356
|
28 |
Shashidhara R G , Devegowda G (2003). Effect of dietary mannan oligosaccharide on broiler breeder production traits and immunity. Poult Sci, 82(8): 1319–1325
https://doi.org/10.1093/ps/82.8.1319
pmid: 12943304
|
29 |
Shoaf-Sweeney K D , Hutkins R W (2009). Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. Adv Food Nutr Res, 55: 101–161
pmid: 18772103
|
30 |
Spring P, Wenk C, Dawson K A , Newman K E (2000). The effects of dietary mannaoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of salmonella-challenged broiler chicks. Poult Sci, 79(2): 205–211
https://doi.org/10.1093/ps/79.2.205
pmid: 10735748
|
31 |
Sweeney Shoaf K D , Hutkins R W (2008). Anti‐Adherence, and Oligosaccharides: Preventing Pathogens from Sticking to the Host. Adv Food Nutr Res, 55: 101–161
|
32 |
Tiago F C P , Martins F S , Souza E L , Pimenta P F , Araujo H R , Castro I M , Brandão R L , Nicoli J R (2012). Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol, 61(Pt 9): 1194–1207
https://doi.org/10.1099/jmm.0.042283-0
pmid: 22580913
|
33 |
Trevisi P, Priori D, Gandolfi G , Colombo M , Coloretti F , Goossens T , Bosi P (2012). In vitro test on the ability of a yeast cell wall based product to inhibit the Escherichia coli F4ac adhesion on the brush border of porcine intestinal villi1. J Anim Sci, 90: 275
|
34 |
Varelas V, Liouni M, Calokerinos A C , Nerantzis E T (2016). An evaluation study of different methods for the production of -D-glucan from yeast biomass. Drug Test Anal, 8(1): 46–55
https://doi.org/10.1002/dta.1833
pmid: 26190751
|
35 |
Vesterlund S, Paltta J, Karp M , Ouwehand A C (2005). Measurement of bacterial adhesion-in vitro evaluation of different methods. J Microbiol Methods, 60(2): 225–233
https://doi.org/10.1016/j.mimet.2004.09.013
pmid: 15590097
|
36 |
Vieira L Q, dos Santos L M, Neumann E, da Silva A P , Moura L N , Nicoli J R (2008). Probiotics protect mice against experimental infections. J Clin Gastroenterol, 42(Suppl 3 Pt 2): S168–S169
https://doi.org/10.1097/MCG.0b013e31818063d4
pmid: 18685501
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|