Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2010, Vol. 4 Issue (3) : 306-312    https://doi.org/10.1007/s11708-009-0067-0
Research articles
Air-side heat transfer and friction characteristics of biofouled evaporator under wet conditions
Hui PU,Guoliang DING,Xiaokui MA,Haitao HU,Yifeng GAO,
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
 Download: PDF(327 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of biofouling on air-side heat transfer and friction characteristics under wet conditions of three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were investigated experimentally. Experimental results indicate that the biofouled fin efficiency of the evaporator decreases by 15.5% compared with the clean evaporator under the condition of the biofouled area ratio of 60% at the inlet air velocity of 2.0m/s; The ranges of friction fouling factor and heat transfer fouling factor are 19.8%―43.1% and ―15.6%―13.1%, respectively; a small quantity of biofouled particles can enhance heat transfer at low Reynolds number, and the enhancement effect decreases with the increase of Reynolds number.
Keywords finned tube      evaporator      fouling      heat transfer      friction      
Issue Date: 05 September 2010
 Cite this article:   
Yifeng GAO,Hui PU,Xiaokui MA, et al. Air-side heat transfer and friction characteristics of biofouled evaporator under wet conditions[J]. Front. Energy, 2010, 4(3): 306-312.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-009-0067-0
https://academic.hep.com.cn/fie/EN/Y2010/V4/I3/306
Yang L, Braun J E, Groll E A. Impact of fouling on the performanceof filter–evaporator combinations. International Journal of Refrigeration, 2007, 30(3): 489―498

doi: 10.1016/j.ijrefrig.2006.08.006
Yang L, Braun J E, Groll E A. The impact of evaporator fouling andfiltration on the performance of packaged air conditioners. International Journal of Refrigeration, 2007, 30(3): 506―514

doi: 10.1016/j.ijrefrig.2006.08.010
Mason D J, Heikal M R, Douch N. Air side fouling of compactheat exchangers. International Journalof Heat Exchangers, 2006, 1(7): 1―14
Haghighi-Khoshkhoo R, McCluskey F M J. Air-side fouling of compact heat exchangers for discrete particlesize ranges. Heat Transfer Engineering, 2007, 28(1): 58―64

doi: 10.1080/01457630600985675
Siegel J A, Nazaroff W W. Predicting particle deposition on HVAC heat exchangers. Atmospheric Environment, 2003, 37(30―40): 5587―5596
Zubair S M, Qureshi B A. A probabilistic fouling and cost model for plate-and-frame heat exchangers. International Journal of Energy Research, 2006, 30(1): 1―17

doi: 10.1002/er.1109
Radhakrishnan V R, Ramasamy M, Zabiri H, Do Thanh V, Tahir N M, Mukhtar H, Hamdi M R, Ramli N. Heat exchanger fouling modeland preventive maintenance scheduling tool. Applied Thermal Engineering, 2007, 27(17,18): 1791―2802
Min J C, Webb R L, Bemisderfer C H. Long-term hydraulic performanceof dehumidifying heat-exchangers with and without hydrophilic coatings. HVAC& R Research, 2000, 6(3): 257―272
Kim C N, Jeong J, Youn B. Evaluation of thermal contact conductanceusing a new experimental-numerical method in fin-tube heat exchangers. International Journal of Refrigeration, 2003, 26(8): 900―908

doi: 10.1016/S0140-7007(03)00075-6
American Society of Heating,Refrigerating and Air-Conditioning Engineers. ASHRAE Standard 41.2-1987 Standard Methods for Laboratory Air-flowMeasurement. Inc, Atlanta, 1987
Ma X Q, Ding G L, Zhang Y M, Wang K J. Effects of hydrophilic coating on air side heat transfer and frictioncharacteristics of wavy fin and tube heat exchangers under dehumidifyingconditions. Energy Conversion and Management, 2007, 48(9): 2525―2532

doi: 10.1016/j.enconman.2007.03.017
Moffat R J. Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1988, 1(1): 3―17

doi: 10.1016/0894-1777(88)90043-X
Chilton T H, Colburn A P. Mass transfer (absorption) coefficients. Industrial and Engineering Chemistry, 1934, 26(11): 1183―1187

doi: 10.1021/ie50299a012
Tu P, Inaba H, Horibe A, Li, Z M, Haruki N. Fin efficiency of an annularfin composed of a substrate metallic fin and a coating layer. Journal of Heat Transfer, 2006, 128(8): 851―854

doi: 10.1115/1.2227043
Kays W M, London A. CompactHeat Exchangers. 3rd ed. New York: Mcgraw-Hill, 1984
Kuvannarat T, Wang C C, Wongwises S. Effect of fin thickness onthe air-side performance of wavy fin-and-tube heat exchangers underdehumidifying conditions. InternationalJournal of Heat and Mass Transfer, 2006, 49(15,16): 2587―2596
Wang C C, Hsieh Y C, Lin Y T. Performance of plate finned tube heatexchangers under dehumidifying conditions. Journal of Heat Transfer, 1997, 119(1): 109―117

doi: 10.1115/1.2824075
[1] Yanxing ZHAO, Maoqiong GONG, Haocheng WANG, Hao GUO, Xueqiang DONG. Development of mobile miniature natural gas liquefiers[J]. Front. Energy, 2020, 14(4): 667-682.
[2] Ruixiang WANG, Yihao ZHANG, Yi LIAO. Performance of rolling piston type rotary compressor using fullerenes (C70) and NiFe2O4 nanocomposites as lubricants additives[J]. Front. Energy, 2020, 14(3): 644-648.
[3] Bojie WANG, Wen WANG, Chao QI, Yiwu KUANG, Jiawei XU. Simulation of performance of intermediate fluid vaporizer under wide operation conditions[J]. Front. Energy, 2020, 14(3): 452-462.
[4] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[5] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[6] Haizhu WANG, Gensheng LI, Bin ZHU, Kamy SEPEHRNOORI, Lujie SHI, Yong ZHENG, Xiaomei SHI. Key problems and solutions in supercritical CO2 fracturing technology[J]. Front. Energy, 2019, 13(4): 667-672.
[7] Yang YU, Guoliang AN, Liwei WANG. Major applications of heat pipe and its advances coupled with sorption system: a review[J]. Front. Energy, 2019, 13(1): 172-184.
[8] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
[9] Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU. Leidenfrost drops on micro/nanostructured surfaces[J]. Front. Energy, 2018, 12(1): 22-42.
[10] M. ARULPRAKASAJOTHI,K. ELANGOVAN,K. HEMA CHANDRA REDDY,S. SURESH. Experimental investigation on heat transfer effect of conical strip inserts in a circular tube under laminar flow[J]. Front. Energy, 2016, 10(2): 136-142.
[11] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[12] Anil Singh YADAV,J. L. BHAGORIA. Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation[J]. Front. Energy, 2014, 8(2): 201-211.
[13] Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater[J]. Front. Energy, 2014, 8(2): 160-172.
[14] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[15] Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Front Energ, 2012, 6(2): 122-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed