Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2010, Vol. 4 Issue (4) : 488-495    https://doi.org/10.1007/s11708-010-0007-z
RESEARCH ARTICLE
Numerical simulation and experiment research of radiation performance in a dish solar collector system
Yong SHUAI(), Xinlin XIA, Heping TAN()
Institute of Aeronautical and Astronautical Thermophysics, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(478 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Monte Carlo ray-tracing method is applied and coupled with optical properties to predict the radiation performance of solar concentrator/cavity receiver systems. Several different cavity geometries are compared on the radiation performance. A flux density distribution measurement system for dish parabolic concentrators is developed. The contours of the flux distribution for target placements at different distances from the dish vertex of a solar concentrator are taken by using an indirect method with a Lambert and a charge coupled device (CCD) camera. Further, the measured flux distributions are compared with a Monte Carlo-predicted distribution. The results can be a valuable reference for the design and assemblage of the solar collector system.

Keywords Monte Carlo method      solar energy      radiation performance      cavity receiver     
Corresponding Author(s): SHUAI Yong,Email:shuaiyong78@yahoo.com.cn; TAN Heping,Email:tanheping77@yahoo.com.cn   
Issue Date: 05 December 2010
 Cite this article:   
Yong SHUAI,Xinlin XIA,Heping TAN. Numerical simulation and experiment research of radiation performance in a dish solar collector system[J]. Front Energ Power Eng Chin, 2010, 4(4): 488-495.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0007-z
https://academic.hep.com.cn/fie/EN/Y2010/V4/I4/488
Fig.1  Schematic diagram of the solar concentrator system
Fig.2  Comparison of focal flux distributions for an ideal paraboloidal dish (=1 m, =45°, 60°)
f=1.5m?=45°
?=30°?=45°?=60°f=1.5 mf=2.5 mf=3.5 m
rnsfoc8.62911.57518.56811.57519.24426.995
rasfoc8.63211.55718.611.55719.26126.965
|rfocas-rfocas|rfocas×100%0.0350.1560.1720.1560.0880.111
Tab.1  Comparison of focal spot size between numerical and analytic solutions
kΔλk/μmρblack body function for the Sun Fb(λ1-λ2)
10-0.330.10.05876
20.33-0.400.50.07329
30.40-0.720.910.39203
40.72-0.970.860.18887
50.97-1.270.810.12108
61.27-1.630.850.07177
71.63-2.080.890.04225
82.08-2.400.870.01587
92.40-2.700.840.00954
Tab.2  The approximation parameters of spectral reflectivity of glass
Fig.3  Geometries of six classical cavities
Fig.4  Radiative flux distribution of focal region for a paraboloidal dish with a focal length of 3 m and a rim angle of 45°
Fig.5  Wall flux distribution of cavity receiver
(a) =100 mm, =160 mm; (b) =100 mm, =150 mm; (c) =80 mm, =100 mm, =100 mm, =50 mm, =80 mm, =100 mm; (d) =100 mm, =200 mm, =200 mm, 100 mm; (e) =80 mm, =100 mm, =160 mm; (f) =100 mm, =50 mm, =250 mm
Fig.6  Wall flux profile of different cavity receivers for a solar collector system with a focal length of 3 m and a rim angle of 45°
Fig.7  Sketch map of the measurement system
Fig.8  Actual picture of concentrator
Fig.9  Actual picture of Lambert target
Fig.10  Approximation of spectral reflectivity of glass with nine bands
Fig.11  Effect of reflectivity on concentration ratio
Fig.12  Flux image produced by dish concentrator
Fig.13  Infrared thermography of Lambert target
Fig.14  Contour plot of flux distribution in Lambert target
Fig.15  Comparison of experimental result and numerical result for =447 mm
Fig.16  Comparison of experimental and numerical result for the dimension of spot
1 Johnston G. Focal region measurements of the 20 m2 tiled dish at the Australian National University. Solar Energy , 1998, 63(2): 117–124
doi: 10.1016/S0038-092X(98)00041-3
2 Vittitoe C N, Biggs F. The HELIOS model for the optical behavior of reflecting solar concentrators. Sandia National Laboratories Report No. SAND76-0347 , 1976
3 Ratzel A C, Boughton B D, Mancini T R. CIRCE (Convolution of Incident Radiation with Concentrator Errors): A computer code for the analysis of point-focus solar concentrators. Sandia National Laboratories Report No. SAND-86-1172C . 1986
4 Leary P L, Hankins J D. A user’s guide for MIRVAL. Sandia National Laboratories Report No. SAND77-8280 . 1979
5 Daly J C. Solar concentrator flux distributions using backward ray tracing. Applied Optics , 1979, 18(15): 2696–2699
doi: 10.1364/AO.18.002696
6 Jeter S M. The distribution of concentrated solar radiation in paraboloidal collectors. Journal of Solar Energy Engineering , 1986, 108: 219–225
doi: 10.1115/1.3268096
7 Jones P D, Wang L L. Concentration distributions in cylindrical receiver/paraboloidal dish concentrator systems. Solar Energy , 1995, 54(2): 115–123
doi: 10.1016/0038-092X(94)00107-O
8 Johnston G. Flux mapping the 400 m2 “Big Dish” at the Australian National University. Journal of Solar Energy Engineering , 1995, 117(4): 290–293
doi: 10.1115/1.2847841
9 Johnston G, Lovegrove K, Luzzi A. Optical performance of spherical reflecting elements for use with paraboloidal dish concentrators. Solar Energy , 2003, 74(2): 133–140
doi: 10.1016/S0038-092X(03)00118-X
10 Imenes A G, Buie D, Mills D R, Schramek P, Bosi S G. A new strategy for improved spectral performance in solar power plants. Solar Energy , 2006, 80(10): 1263–1269
doi: 10.1016/j.solener.2005.04.021
11 Jaramillo O A, Perez-Rabago C A, Arancibia-Bulnes C A, Estrada C A. A flat-plate calorimeter for concentrated solar flux evaluation. Renewable Energy , 2008, 33(10): 2322–2328
doi: 10.1016/j.renene.2008.01.020
12 Doron P, Kribus A. The effect of irradiation directional distribution on absorption in volumetric solar receiver. Journal of Solar Energy Engineering , 1997, 119(1): 68–73
doi: 10.1115/1.2871849
13 Modest M F. Radiative Heat Transfer. 2nd ed. New York: Academic Press, 2003
14 Siegel R, Howell J R. Thermal Radiation Heat Transfer. 4th ed., New York/London: Taylor & Francis, 2002
15 Shuai Y, Xia X L, Tan H P. Radiation performance of dish solar concentrator/cavity receiver systems. Solar Energy , 2008, 82(1): 13–21
doi: 10.1016/j.solener.2007.06.005
16 Liu Y. Theoretical and experimental study on focal flux of solar concentrator. Dissertation for the Doctoral Degree. Harbin: Harbin Institute of Technology, 2008
[1] Bin ZHAO, Xianze AO, Nuo CHEN, Qingdong XUAN, Mingke HU, Gang PEI. A spectrally selective surface structure for combined photothermic conversion and radiative sky cooling[J]. Front. Energy, 2020, 14(4): 882-888.
[2] Honglun YANG, Qiliang WANG, Jingyu CAO, Gang PEI, Jing LI. Potential of performance improvement of concentrated solar power plants by optimizing the parabolic trough receiver[J]. Front. Energy, 2020, 14(4): 867-881.
[3] Y. YU, Q. W. PAN, L. W. WANG. A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by the recovery of solar energy[J]. Front. Energy, 2020, 14(2): 328-336.
[4] Feng CHEN, Changchun WU. A novel methodology for forecasting gas supply reliability of natural gas pipeline systems[J]. Front. Energy, 2020, 14(2): 213-223.
[5] Hu XIAO, Yanping ZHANG, Cong YOU, Chongzhe ZOU, Quentin FALCOZ. Effects of critical geometric parameters on the optical performance of a conical cavity receiver[J]. Front. Energy, 2019, 13(4): 673-683.
[6] Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran[J]. Front. Energy, 2019, 13(3): 539-550.
[7] Ravinder Kumar SAHDEV, Mahesh KUMAR, Ashwani Kumar DHINGRA. A comprehensive review of greenhouse shapes and its applications[J]. Front. Energy, 2019, 13(3): 427-438.
[8] Soheil RASHIDI, Akshay CARINGULA, Andy NGUYEN, Ijeoma OBI, Chioma OBI, Wei WEI. Recent progress in MoS2 for solar energy conversion applications[J]. Front. Energy, 2019, 13(2): 251-268.
[9] Chongzhe ZOU, Huayi FENG, Yanping ZHANG, Quentin FALCOZ, Cheng ZHANG, Wei GAO. Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation[J]. Front. Energy, 2019, 13(2): 284-295.
[10] Zhaorui ZHAO, Bao YANG, Ziwen XING. Modeling analysis on solar steam generator employed in multi-effect distillation (MED) system[J]. Front. Energy, 2019, 13(1): 193-203.
[11] Ershuai YIN, Qiang LI, Yimin XUAN. Effect of non-uniform illumination on performance of solar thermoelectric generators[J]. Front. Energy, 2018, 12(2): 239-248.
[12] Zhihua ZHOU, Shan HU, Xiaoyan ZHANG, Jian ZUO. Characteristics and application of road absorbing solar energy[J]. Front Energ, 2013, 7(4): 525-534.
[13] Yueshe WANG, Xunwei DONG, Jinjia WEI, Hui JIN. Numerical simulation of the heat flux distribution in a solar cavity receiver[J]. Front Energ, 2011, 5(1): 98-103.
[14] Haifeng LI, Yanjun DAI, Jianguo DAI, Xibo WANG, Lei WEI, . A solar assisted heat pump drying system for grain in-store drying[J]. Front. Energy, 2010, 4(3): 386-391.
[15] Ali HMIDET, Rachid DHIFAOUI, Driss SAIDANI, Othman HASNAOUI, . Development of an experimental platform for research in energy and electrical machine control[J]. Front. Energy, 2010, 4(3): 366-375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed