Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front Energ Power Eng Chin    2010, Vol. 4 Issue (4) : 496-506    https://doi.org/10.1007/s11708-010-0020-2
RESEARCH ARTICLE
A way to explain the thermal boundary effects on laminar convection through a square duct
Liangbi WANG(), Xiaoping GAI, Kun HUANG, Yongheng ZHANG, Xiang YANG, Xiang WU
Department of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
 Download: PDF(771 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A way using the reformulation of the energy conservation equation in terms of heat flux to explain the thermal boundary effects on laminar convective heat transfer through a square duct is presented. For a laminar convection through a square duct, it explains that on the wall surface, the velocity is zero, but convection occurs for uniform wall heat flux (UWHF) boundary in the developing region due to the velocity gradient term; for uniform wall temperature (UWT) boundary, only diffusion process occurs on the wall surface because both velocity and velocity gradient do not contribute to convection; for UWHF, the largest term of the gradient of velocity components (the main flow velocity) on the wall surface takes a role in the convection of the heat flux normal to the wall surface, and this role exists in the fully developed region. Therefore, a stronger convection process occurs for UWHF than for UWT on the wall surface. The thermal boundary effects on the laminar convection inside the flow are also detailed.

Keywords convective transport      heat transfer      mass transfer      laminar flow      thermal boundary effects     
Corresponding Author(s): WANG Liangbi,Email:lbwang@mail.lzjtu.cn   
Issue Date: 05 December 2010
 Cite this article:   
Liangbi WANG,Xiaoping GAI,Kun HUANG, et al. A way to explain the thermal boundary effects on laminar convection through a square duct[J]. Front Energ Power Eng Chin, 2010, 4(4): 496-506.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-010-0020-2
https://academic.hep.com.cn/fie/EN/Y2010/V4/I4/496
1 Shah R K, London A L. Laminar flow forced convection in ducts. In: Hartnett J P, Irvine T F. eds. Advances in Heat Transfer , New York: Academic Press, 1978, 78-384
2 Kays W M, Crawford M E, Weigand B. Convection Heat and Mass Transfer. 4th ed. New York: Mc Graw Hill, 2005
3 Schlichting H. Boundary Layer Theory. 6th ed. New York: McGraw-Hill, 1968
4 Wang L B, Li X X, Lin Z M, Yang X, Wang X H. Additional description of laminar heat convection in tube with uniform wall temperature. Journal of Thermalphysics and Heat Transfer , 2009, 23: 200-205
doi: 10.2514/1.37067
5 Li Z Y, Tao W Q. A new stability-guaranteed second-order difference scheme. Numerical Heat Transfer, Part B , 2002, 42: 349-365
doi: 10.1080/10407790190053987
6 Patankar S V. Numerical Heat Transfer and Fluid Flow. Washington: Hemisphere, 1981
[1] Yanxing ZHAO, Maoqiong GONG, Haocheng WANG, Hao GUO, Xueqiang DONG. Development of mobile miniature natural gas liquefiers[J]. Front. Energy, 2020, 14(4): 667-682.
[2] Bojie WANG, Wen WANG, Chao QI, Yiwu KUANG, Jiawei XU. Simulation of performance of intermediate fluid vaporizer under wide operation conditions[J]. Front. Energy, 2020, 14(3): 452-462.
[3] Shaozhi ZHANG, Xiao NIU, Yang LI, Guangming CHEN, Xiangguo XU. Numerical simulation and experimental research on heat transfer and flow resistance characteristics of asymmetric plate heat exchangers[J]. Front. Energy, 2020, 14(2): 267-282.
[4] Wenchi GONG, Jun SHEN, Wei DAI, Zeng DENG, Xueqiang DONG, Maoqiong GONG. Effects of slip length and hydraulic diameter on hydraulic entrance length of microchannels with superhydrophobic surfaces[J]. Front. Energy, 2020, 14(1): 127-138.
[5] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[6] Yang YU, Guoliang AN, Liwei WANG. Major applications of heat pipe and its advances coupled with sorption system: a review[J]. Front. Energy, 2019, 13(1): 172-184.
[7] Xiao-Hu YANG, Jing LIU. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling[J]. Front. Energy, 2018, 12(2): 259-275.
[8] Vishal TALARI, Prakhar BEHAR, Yi LU, Evan HARYADI, Dong LIU. Leidenfrost drops on micro/nanostructured surfaces[J]. Front. Energy, 2018, 12(1): 22-42.
[9] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[10] Anil Singh YADAV,J. L. BHAGORIA. Heat transfer and fluid flow analysis of an artificially roughened solar air heater: a CFD based investigation[J]. Front. Energy, 2014, 8(2): 201-211.
[11] Foued CHABANE,Nesrine HATRAF,Noureddine MOUMMI. Experimental study of heat transfer coefficient with rectangular baffle fin of solar air heater[J]. Front. Energy, 2014, 8(2): 160-172.
[12] Manli LUO, Jing LIU. Experimental investigation of liquid metal alloy based mini-channel heat exchanger for high power electronic devices[J]. Front Energ, 2013, 7(4): 479-486.
[13] Qingqing SHEN, Wensheng LIN, Anzhong GU, Yonglin JU. A simplified model of direct-contact heat transfer in desalination system utilizing LNG cold energy[J]. Front Energ, 2012, 6(2): 122-128.
[14] Jing HUANG, Yuwen ZHANG, J. K. CHEN, Mo YANG. Ultrafast solid-liquid-vapor phase change of a thin gold film irradiated by femtosecond laser pulses and pulse trains[J]. Front Energ, 2012, 6(1): 1-11.
[15] Xianbiao BU, Weibin MA, Huashan LI. Heat and mass transfer of ammonia-water in falling film evaporator[J]. Front Energ, 2011, 5(4): 358-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed