Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    0, Vol. Issue () : 279-289    https://doi.org/10.1007/s11708-014-0312-z
RESEARCH ARTICLE
Analysis and characterization of wind-solar-constant torque spring hybridized model
Shantanu ACHARYA(),Subhadeep BHATTACHARJEE
Department of Electrical Engineering, National Institute of Technology Agartala, Tripura 799055, India
 Download: PDF(1247 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solar and wind are the most promising renewable energy resources. But their unpredictable and varying nature prevents them from being used as the sole resource for power generation. This paper presents a model of wind and solar thermal hybrid power plant with a spring storage system which is expected to play an efficient role in combating with the drawbacks related to renewable power generation. In the proposed scheme, wind energy is harnessed by a hybrid vertical axis wind turbine, solar energy is utilized by a Stirling engine, and the surplus energy is stored in a winding spring. The paper discusses the working methodologies and analyses the performance of such 2.6 kW hybrid power plant model. It has been observed that the plant is capable of consistently generating 50% of its rated capacity irrespective of limitations in solar and wind resources.

Keywords hybrid vertical axis wind turbine      Stirling engine      solar-thermal energy      wind energy      constant torque spring     
Corresponding Author(s): Shantanu ACHARYA   
Online First Date: 13 August 2014    Issue Date: 09 September 2014
 Cite this article:   
Shantanu ACHARYA,Subhadeep BHATTACHARJEE. Analysis and characterization of wind-solar-constant torque spring hybridized model[J]. Front. Energy, 0, (): 279-289.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-014-0312-z
https://academic.hep.com.cn/fie/EN/Y0/V/I/279
Fig.1  Block diagram of the hybrid plant
Fig.2  Aerodynamics of the turbine
Fig.3  Stirling engine with Fresnel lens capsule
Fig.4  Fresnel lens capsule with expansion chamber of Stirling engine
Fig.5  Contorque spring
Fig.6  Freewheel
Fig.7  Simulation block diagram of wind-solar thermal hybrid power plant
Fig.8  Different powers yield in hybrid plant
Fig.9  Starting torque of HVAWT
Fig.10  Phase angle vs. angle of attack
Fig.11  Power coefficient variation of H-blade with TSR at different wind speed
Fig.12  Temperature variation with different focal point area of Fresnel lens
Fig.13  Torque-speed characteristic of Stirling engine
tThe ratio of compression temperature (Tc) and expansion temperature (Te)
vRatio of swept volume of compression (Vsc) and swept volume of expansion (Vse)
XdeRatio of dead volume of expansion (Vde) and swept volume of expansion (Vse)
XdcRatio of dead volume of compression (Vdc) and swept volume of expansion (Vse)
XrRatio of regenerator volume (Vr) and swept volume of expansion (Vse)
a, b, c, SConstants of the Stirling engine
DxPhase angle
WeSolar energy
isSolar insolation
zTime
MgMass of working fluid
PmMean engine pressure
RfFluid constant
PeEngine pressure
WiTotal work done in one complete cycle
WeWork done during expansion
WcWork done during compression
PoOutput power of the engine
nSpeed of the engine
teStirling engine torque
TlTemperature at focal point of Fresnel lens
SStephen Boltzmann constant= 5.678 × 10-8 W/(m4·k4)
AFocal point area of lens
Tab.1  
1 Knoema. World reserves of fossil fuels. 2013–<month>06</month>–<day>27</day>, http://knoema.com/smsfgud
2 Rehman S, Alam M M, Meyer J P, Al-Hadhrami L M. Feasibility study of a wind-PV-diesel hybrid power system for a village. Renewable Energy, 2012, 38(1): 258–268
doi: 10.1016/j.renene.2011.06.028
3 Ye L, Sun H B, Song X R, Li L C. Dynamic modeling of a hybrid wind/solar/hydro microgrid in EMTP/ATP. Renewable Energy, 2012, 39(1): 96–106
doi: 10.1016/j.renene.2011.07.018
4 Tina G M, Gagliano S, Raiti S. Hybrid solar/wind power system probabilistic modeling for long-term performance assessment. Solar Energy, 2006, 80(5): 578–588
doi: 10.1016/j.solener.2005.03.013
5 Bhave A G. Hybrid solar-wind domestic power generating system —a case study. Renewable Energy, 1999, 17(3): 355–358
doi: 10.1016/S0960-1481(98)00123-2
6 Shun S, Ahmed N A. Utilizing wind and solar energy as power sources for a hybrid building ventilation device. Renewable Energy, 2008, 33(6): 1392–1397
doi: 10.1016/j.renene.2007.07.017
7 Panayiotou G, Kalogirou S, Tassou S. Design and simulation of a PV and a PV-wind standalone energy system to power a household application. Renewable Energy, 2012, 37(1): 355–363
doi: 10.1016/j.renene.2011.06.038
8 Tina G M, Gagliano S. Probabilistic modeling of hybrid solar/wind power system with solar tracking system. Renewable Energy, 2011, 36(6): 1719–1727
doi: 10.1016/j.renene.2010.12.001
9 Chen H H, Kang H Y, Lee A H I. Strategic selection of suitable projects for hybrid solar-wind power generation systems. Renewable & Sustainable Energy Reviews, 2010, 14(1): 413–421
doi: 10.1016/j.rser.2009.08.004
10 Chong W T, Naghavi M S, Poh S C, Mahlia T M I, Pan K C. Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Applied Energy, 2011, 88(11): 4067–4077
doi: 10.1016/j.apenergy.2011.04.042
11 Bekele G, Palm B. Feasibility study for a standalone solar–wind-based hybrid energy systemfor application in Ethiopia. Applied Energy, 2010, 87(2): 487–495
doi: 10.1016/j.apenergy.2009.06.006
12 Kalantar M, Mousavi G S M. Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. Applied Energy, 2010, 87(10): 3051–3064
doi: 10.1016/j.apenergy.2010.02.019
13 Catal?o J P S, Pousinho H M I, Mendes V M F. Hybrid intelligent approach for short-term wind power forecasting in Portugal. IET Renewable Power Generation, 2011, 5(3): 251–257:
doi: 10.1049/iet-rpg.2009.0155
14 Batista N C, Melício R, Matias J C O, Catal?o J P S. Self-Start evaluation in lift-type vertical axis wind turbines: Methodology and computational tool applied to asymmetrical airfoils. In: Proceedings of 2011 International Conference on Power Engineering, Energy and Electrical Drives. Torremolinos (Málaga), Spain, 2011, 1–6
15 Kou W, Shi X, Yuan B, Fan L. Modeling analysis and experimental research on a combined-type vertical axis wind turbine. In: Proceedings of 2011 International Conference on Electronics, Communications and Control. Hangzhou, China, 2011, 1537–1541
16 Alam M J, Iqbal M T. Design and development of hybrid vertical axis wind turbine. In: International Canadian Conference on Electrical and Computer Engineering. St John’s NL, Canada, 2009, 1178–1183
17 Aranda D, LaMott K, Wood S. Solar Stirling Engine for Remote Power and Disaster Relief Final Report. EML 4905 Senior Design Project, 2010
18 Kongtragool B, Wongwises S. A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renewable & Sustainable Energy Reviews, 2003, 7(2): 131–154
doi: 10.1016/S1364-0321(02)00053-9
19 Tavakolpour A R, Zomorodian A, Golneshan A A. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator. Renewable Energy, 2008, 33(1): 77–87
doi: 10.1016/j.renene.2007.03.004
20 Hirata K, Iwamoto S, Toda F, Hamaguchi K. Performance evaluation for a 100 W Stirling engine. In: Proceedings of 8th International Stirling Engine Conference. Hokkaido Polytechnic College, Japan, 1997, 19–28
21 Snyman H, Harms T M, Strauss J M. Design analysis methods for Stirling engines. Journal of Energy in Southern Africa, 2008, 19(3): 4–19
22 Puech P, Tishkova V. Thermodynamic analysis of a Stirling engine including regenerator dead volume. Renewable Energy, 2011, 36(2): 872–878
doi: 10.1016/j.renene.2010.07.013
23 Valmiki M M, Li P, Heyer J, Morgan M, Albinali A, Alhamidi K, Wagoner J. A novel application of a Fresnel lens for a solar stove and solar heating. Renewable Energy, 2011, 36(5): 1614–1620
doi: 10.1016/j.renene.2010.10.017
24 Miller D C, Kurtz S R. Durability of Fresnel lenses: A review specific to the concentrating photovoltaic application. Solar Energy Materials and Solar Cells, 2011, 95(8): 2037–2068
doi: 10.1016/j.solmat.2011.01.031
25 Kemmoku Y, Sakakibam T, Himmtsu M. Field test of a concentrator photovoltaic system with flat fresnel lens. In: 3rd World Conference on Photovoltaic Energy Conversion. Osaka, Japan, 2003
26 Hornung T, Steiner M, Nitz P. Estimation of the influence of Fresnel lens temperature on energy generation of a concentrator photovoltaic system. Solar Energy Materials and Solar Cells, 2012, 99: 333–338
doi: 10.1016/j.solmat.2011.12.024
27 Abedini A, Nikkhajoei H. Dynamic model and control of a wind-turbine generator with energy storage. IET Renewable Power Generation., 2011, 5(1): 67–78
doi: 10.1049/iet-rpg.2009.0123
28 Connolly D. A review of energy storage technologies for the integration of fluctuating renewable energy. Dissertation for the Doctoral Degree. University of Limerick, Limerick, Ireland, 2010
29 Hill F A, Havel T F, Hart A J, Livermore C. Storing elastic energy in carbon nanotubes. Journal of Micromechanics and Microengineering, 2009, 19(9): 094015
doi: 10.1088/0960-1317/19/9/094015
30 Vulcan Spring & Mfg. Co. Contorque constant torque spring. 2013–<month>06</month>–<day>12</day>, http://localautomation.com/featured/contorque-constant-torque-springs-vulcan-spring-and-mfg-co.html
[1] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
[2] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[3] M. A. SALAM, M. G. YAZDANI, Q. M. RAHMAN, Dk NURUL, S. F. MEI, Syeed HASAN. Investigation of wind energy potentials in Brunei Darussalam[J]. Front. Energy, 2019, 13(4): 731-741.
[4] Mostafa REZAEI, Ali MOSTAFAEIPOUR, Mojtaba QOLIPOUR, Mozhgan MOMENI. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran[J]. Front. Energy, 2019, 13(3): 539-550.
[5] S. SURENDER REDDY,Jae Young PARK,Chan Mook JUNG. Optimal operation of microgrid using hybrid differential evolution and harmony search algorithm[J]. Front. Energy, 2016, 10(3): 355-362.
[6] Mao CHEN,Yonglin JU. Simulation and experimental improvement on a small-scale Stirling thermo-acoustic engine[J]. Front. Energy, 2016, 10(1): 37-45.
[7] Deepak SANGROYA, Jogendra NAYAK. Effectiveness of state incentives for promoting wind energy: A panel data examination[J]. Front. Energy, 2015, 9(3): 247-258.
[8] Yajvender Pal VERMA, Ashwani KUMAR. Dynamic contribution of variable-speed wind energy conversion system in system frequency regulation[J]. Front Energ, 2012, 6(2): 184-192.
[9] Ali HMIDET, Rachid DHIFAOUI, Driss SAIDANI, Othman HASNAOUI, . Development of an experimental platform for research in energy and electrical machine control[J]. Front. Energy, 2010, 4(3): 366-375.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed