Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2014, Vol. 8 Issue (4) : 449-458    https://doi.org/10.1007/s11708-014-0316-8
RESEARCH ARTICLE
Artificial bee colony optimization for economic dispatch with valve point effect
Yacine LABBI1,*(),Djilani Ben ATTOUS1,Belkacem MAHDAD2
1. Department of Electrical Engineering, University of El-Oued, El-Oued 39014, Algeria
2. Department of Electrical Engineering, University of Biskra, Biskra 07000, Algeria
 Download: PDF(453 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, various heuristic optimization methods have been proposed to solve economic dispatch (ED) problem in power systems. This paper presents the well-known power system ED problem solution considering valve-point effect by a new optimization algorithm called artificial bee colony (ABC). The proposed approach has been applied to various test systems with incremental fuel cost function, taking into account the valve-point effects. The results show that the proposed approach is efficient and robust when compared with other optimization algorithms reported in literature.

Keywords artificial bee colony (ABC) algorithm      economic dispatch (ED)      valve-point effect      optimization     
Corresponding Author(s): Yacine LABBI   
Just Accepted Date: 09 October 2014   Online First Date: 24 November 2014    Issue Date: 09 January 2015
 Cite this article:   
Yacine LABBI,Djilani Ben ATTOUS,Belkacem MAHDAD. Artificial bee colony optimization for economic dispatch with valve point effect[J]. Front. Energy, 2014, 8(4): 449-458.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-014-0316-8
https://academic.hep.com.cn/fie/EN/Y2014/V8/I4/449
Fig.1  Fuel cost versus power output for 6 valve steam turbine units
Units P min ? i P max ? i a b c e f
123 10050100 600200400 0.0015620.0048200.001940 7.927.977.85 56178310 300150200 0.03150.0630.042
Tab.1  Generator data of test system 1
Units Proposed ABC
1 power output/MW2 power output/MW3 power output/MWTotal power output/MWTotal cost/($·h–1) 300.2656149.7344400.0000850.0008234.07245
Tab.2  Results obtained by proposed method for test system 1
Method P1/MW P2/MW P3/MW PD/MW Cost/($·h–1)
GA [18]EP [18]EP-SQP [18]PSO [18]PSO-SQP [18]GAB [19]GAF [19]CEP [19]FEP [19]MFEP [19]IFEP [19]PS [9]GSA [20]Proposed ABC 398.700300.264300.267300.268300.267300.2663300.2102300.2656 50.100149.736149.733149.732149.733149.7331149.7953149.7344 399.600400.000400.000400.000400.000399.9996399.9958400.0000 848.400850.000850.000850.000850.000849.9990850.0013850.000 8222.078234.078234.078234.078234.078234.088234.078234.078234.078234.088234.078234.058234.18234.07245
Tab.3  Comparison of proposed method for test system 1
Fig.2  Convergence of fitness value with valve-point effects for load demand 850 MW
Fig.3  Distribution of objective function value for 30 trails for load demand 850 MW
Units P min ? i P max ? i a b c e f
12345678910111213 00060606060606040405555 680360360180180180180180180120120120120 0.000280.000560.000560.003240.003240.003240.003240.003240.003240.002840.002840.002840.00284 8.108.108.107.747.747.747.747.747.748.608.608.608.60 550309307240240240240240240126126126126 300200150150150150150150150100100100100 0.0350.0420.0420.0630.0630.0630.0630.0630.0630.0840.0840.0840.084
Tab.4  Generator data of test system 2
Units ?Proposed ABC ?Units ?Proposed ABC
1 power output/MW2 power output/MW3 power output/MW4 power output/MW5 power output/MW6 power output/MW7 power output/MW8 power output/MW ?628.2772?148.8823?223.6160?60.0000?109.8531?109.8395?109.8605?109.8550 ?9 power output/MW?10 power output/MW?11 power output/MW?12 power output/MW?13 power output/MW?Total power output/MW?Total cost/($·h–1) ?109.8263?40.0000?40.0000?55.0000?55.00001800.0099?17962.4279
Tab.5  Results obtained by proposed method for test system 2 (1800 MW)
Units ?Proposed GSA ?Units ?Proposed GSA
1 power output/MW2 power output/MW3 power output/MW4 power output/MW5 power output/MW6 power output/MW7 power output/MW8 power output/MW ?628.3119?298.9825?295.7710?159.7329?159.7318?159.7293?159.7324?159.7277 ?9 power output/MW?10 power output/MW?11 power output/MW?12 power output/MW?13 power output/MW?Total power output/MW?Total cost/($·h–1) ?159.7309?77.2108?77.0372?92.2275?92.0833?2520.0092?24166.2199
Tab.6  Results obtained by proposed method for test case 2 (2520 MW)
Method ?Total cost/($·h–1) ?Method ?Total cost/($·h–1)
CEP [19]PSO [18]MFEP [19]FEP [19]IFEP [19]EP-SQP [18]HDE [21]CGA-MU [22]PSO-SQP [18]PS [9] ?18048.21?18030.72?18028.09?18018.00?17994.07?17991.03?17975.73?17975.34?17969.93?17969.17 ?UHGA [2]?QPSO [14]?IGA-MU [22]?ST-HDE [21]?HGA [7]?HQPSO(5) [8]?DE [23]?GSA [20]?Proposed ABC ?17964.81?17964?17963.98?17963.89?17963.83?17963.9571?17963.83?17960.3684?17962.4279
Tab.7  Comparison of proposed method for test system 2 (1800 MW)
Fig.4  Convergence of fitness value with valve-point effects for load demand 1800 MW
Fig.5  Convergence of fitness value with valve-point effects for load demand 1800 MW
Method Total cost/($·h–1) ?Method Total cost/($·h–1)
SA [18]GA [18]GA-SA [18]EP-SQP [18]PSO-SQP [18]UHGA [2]GA-MU [24] 24970.9124398.2324275.7124266.4424261.0524172.2524170.755 ?IGA-MU [24]?HGA [7]?EDSA [19]?DE [23]?GSA [20]?Proposed 24169.97924169.9224169.9224169.917724164.25135724166.2199
Tab.8  Comparison of proposed method for test case 2 (2520 MW)
Fig.6  Distribution of objective function value for 30 trails for load demand of 1800 MW
Fig.7  Distribution of objective function value for 30 trails for load demand of 2520 MW
Generator power output ABC NPSO-LRS [25] NPSO [25] MDE [26] CBPSO-RVM [27] FAPSO-NM [28]
Pg1/MWPg2/MWPg3/MWPg4/MWPg5/MWPg6/MWPg7/MWPg8/MWPg9/MWPg10/MWPg11/MWPg12/MWPg13/MWPg14/MWPg15/MWPg16/MWPg17/MWPg18/MWPg19/MWPg20/MWPg21/MWPg22/MWPg23/MWPg24/MWPg25/MWPg26/MWPg27/MWPg28/MWPg29/MWPg30/MWPg31/MWPg32/MWPg33/MWPg34/MWPg35/MWPg36/MWPg37/MWPg38/MWPg39/MWPg40/MWTotal cost/($·h–1) 110.7944110.791397.4473179.741787.8268139.9897259.5761284.5962284.5294130.0033168.790394.0010215.4183394.2843394.2274394.1741489.2802489.2863511.2606511.2471523.3126523.2619523.2069523.2790523.2828523.282810.003510.060110.006388.0050189.8676189.9970179.4734164.8527164.8280164.8093109.9733109.9999109.9544511.2777121479.6467 113.9761113.998697.4241179.732789.6511105.4044259.7502288.4534284.646204.812168.831194214.7663394.2852304.5187394.2811489.2807489.2832511.2845511.3049523.2916523.2853523.2797523.2994523.2865523.29361010.00011089.0139190190190199.9998165.1397172.027511011093.0962511.2996121664.43 113.9891113.633497.55180.005997140300300284.5797130.0517243.7131169.0104125393.9662304.7586304.512489.6024489.6087511.7903511.2624523.3274523.2196523.4707523.0661523.3978523.289710.020810.092710.062188.9456189.9951190190165.9825172.4153191.2978109.9893109.9521109.8733511.5671121704.73 110.831110.81597.399179.73487.808140259.6284.604284.601130168.799168.799214.759394.28394.28304.519489.279489.28511.28511.279523.279523.28523.28523.28523.281523.27910101092.645190190189.999164.831164.802164.805109.999109.999109.999511.278121414.79 11411497.4859179.733197140300300286.00791309494214.7598304.5196394.2794394.2794489.2794489.2794511.2794511.2794523.2796523.2794523.2797523.2802523.2795523.279410101097190190190200166.8603200110110110511.2794121555.32 111.38110.9397.41179.3389.22140259.62284.66284.66130168.82168.82214.75394.28304.54394.3489.29489.29511.28511.29523.33523.48523.33523.33523.33523.3310101088.7190190190165166165110110110511.3121418.3
Tab.9  Best power output for 40-generator system (Load = 10500 MW)
Method Minimum cost/($·h–1) Mean cost/($·h–1) Maximum cost/($·h–1) Mean time/s
CEP [19]FEP [19]MFEP [19]IFEP [19]NPSO-LRS [25]MDE [26]GA [26]CBPSO-RVM [27]PS [29]FAPSO-NM [28]EP-SQP [30]PSO [30]PSO-SQP [30]MPSO [31]ESO [32]DEC(2)-SQP(1) [33]TM [34]APSO [35]TS [36]ACO [36]ABC 123488.29122679.71122647.57122624.35121664.43121414.79121996.40121555.32121415.14121418.3122323.97123930.45122094.67122252.27122122.16121741.98122477.78121663.52122288.38121811.37121479.6467 124793.5124119.4123489.7123382.0122209.31121418.44123807.97122281.14122332.7121418.80122379.6124155122245.3122524.1122295.1123078.2122153.67122590.89121930.58121984.24 126902.9127245.6124356.5125740.6122981.59121466.04122919.77123094.98125486.3121419.8123143.1122839.3124693.8122912.39122424.81122048.06122137.42 1956.91039.12196.11167.319.8-320.3142.9840997.73933.39733.9714.2694.285.05238.3592.5416.52
Tab.10  Comparison of results (load= 10500 MW)
Fig.8  Convergence of fitness value with valve-point effects for load demand 10500 MW
Fig.9  Distribution of objective function value for 30 trails for load demand 10500 MW
1 Alsumait J S, Sykulski J K, Al-Othman A K. A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems. Applied Energy, 2010, 87(5): 1773–1781
https://doi.org/10.1016/j.apenergy.2009.10.007
2 He D K, Wang F L, Mao Z Z. Hybrid genetic algorithm for economic dispatch with valve point effect. Electric Power Systems Research, 2008, 78(4): 626–633
https://doi.org/10.1016/j.epsr.2007.05.008
3 Lin W M, Chen S J. Bid-based dynamic economic dispatch with an efficient interior point algorithm. International Journal of Electrical Power & Energy Systems, 2002, 24(1): 51–57
https://doi.org/10.1016/S0142-0615(01)00007-2
4 Granelli G P, Montagna M. Security-constrained economic dispatch using dual quadratic programming. Electric Power Systems Research, 2000, 56(1): 71–80
https://doi.org/10.1016/S0378-7796(00)00097-3
5 Silva M D A C, Coelho L D S. Biogeography-based optimization combined with predator-prey approach applied to economic load dispatch. In: 2010 Eleventh Brazilian Symposium on Neural Networks (SBRN). Sao Paulo, Brazil, 2010, 164–169
6 Sivasubramani S, Swarup K S. Multi-agent based differential evolution algorithm for economic dispatch with generator constraints. Journal of Electrical Systems, 2009, 5(4): 164–169
7 Dakuo He, Wang F L, Mao Z Z. A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect. International Journal of Electrical Power & Energy Systems, 2008, 30(1): 31–38
https://doi.org/10.1016/j.ijepes.2007.06.023
8 dos Santos Coelho L, Mariani V C. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects. Energy Conversion and Management, 2008, 49(11): 3080–3085
https://doi.org/10.1016/j.enconman.2008.06.009
9 Al-Sumait J S, Al-Othman A K, Sykulski J K. Application of pattern search method to power system valve-point economic load dispatch. Electrical Power and Energy Systems, 2007, 29(10): 720–730
https://doi.org/10.1016/j.ijepes.2007.06.016
10 Su C T, Lin C T. New approach with a Hopfield modelling framework to economic dispatch. IEEE Transactions on Power Systems, 2000, 15(2): 541–545
https://doi.org/10.1109/59.867138
11 Zhang Z S. Quantum-behaved particle swarm optimization algorithm for economic load dispatch of power system. Expert Systems with Applications, 2010, 37(2): 1800–1803
https://doi.org/10.1016/j.eswa.2009.07.042
12 Bhattacharya A, Chattopadhyay P K. Solving complex economic load dispatch problems using biogeography-based optimization. Expert Systems with Applications, 2010, 37(5): 3605–3615
https://doi.org/10.1016/j.eswa.2009.10.031
13 Hosseini S H, Dobakhshari A S, Jalayer R. A novel mathematical-heuristic method for non-convex dynamic economic dispatch. International Review of Electrical Engineering, 2009, 4(1): 108–109
14 Subramanian S, Anandhakumar R. Dynamic economic dispatch solution using composite cost function. International Review of Electrical Engineering, 2010, 5(4) Part B: 1664–1669
15 Hooshmand R, Mohammadi A H. Emission and economic load & reserve dispatch with frequency constraints in competitive power market. International Review of Electrical Engineering, 2008, 3(4): 682–690
16 Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical Report-Tr06t, Computer Engineering Department, Engineering faculty, Erciyes University, Turkey, 2005
17 Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 2008, 8(1): 687–697
https://doi.org/10.1016/j.asoc.2007.05.007
18 Victoire T A A, Jeyakumar A E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 2004, 71(1): 51–59
https://doi.org/10.1016/j.epsr.2003.12.017
19 Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary programming techniques for economic load dispatch. IEEE Transactions on Evolutionary Computation, 2003, 7(1): 83–94
https://doi.org/10.1109/TEVC.2002.806788
20 Duman S, Güven? U, Y?rükeren N. Gravitational search algorithm for economic dispatch with valve-point effects. International Review of Electrical Engineering (I.R.E.E), 2010, 5(6): 2890–2895
21 Wang S K, Chiou J P, Liu C W. Non-smooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm. IET Generation, Transmission and Distribution, 2007, 1(5): 793–803
https://doi.org/10.1049/iet-gtd:20070183
22 Chiang C L. Improved genetic algorithm for economic dispatch of units with valve-point effects and multiple fuels. IEEE Transactions on Power Systems, 2005, 20(4): 1690–1699
https://doi.org/10.1109/TPWRS.2005.857924
23 Noman N, Iba H. Differential evolution for economic load dispatch problems. Electric Power Systems Research, 2008, 78(8): 1322–1331
https://doi.org/10.1016/j.epsr.2007.11.007
24 Chiang C L. Genetic-based algorithm for power economic load dispatch. IET Generation, Transmission and Distribution, 2007, 1(2): 261–269
https://doi.org/10.1049/iet-gtd:20060130
25 Selvakumar A I, Thanushkodi K. A new particle swarm optimization solution to non-convex economic dispatch problems. IEEE Transactions on Power Systems, 2007, 22(1): 42–51
https://doi.org/10.1109/TPWRS.2006.889132
26 Amjady N, Sharifzadeh H. Solution of non-convex economic dispatch problem considering valve loading effect by a new modified differential evolution algorithm. International Journal of Electrical Power & Energy Systems, 2010, 32(8): 893–903
https://doi.org/10.1016/j.ijepes.2010.01.023
27 Lu H, Sriyanyong P, Song Y H, Dillon T. Experimental study of a new hybrid PSO with mutation for economic dispatch with non-smooth cost function. International Journal of Electrical Power & Energy Systems, 2010, 32(9): 921–935
https://doi.org/10.1016/j.ijepes.2010.03.001
28 Niknam T. A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem. Applied Energy, 2010, 87(1): 327–339
https://doi.org/10.1016/j.apenergy.2009.05.016
29 Al-Sumait J S, Al-Othman A K, Sykulski J K. Application of pattern search method to power system valve-point economic load dispatch. International Journal of Electrical Power & Energy Systems, 2007, 29(10): 720–730
https://doi.org/10.1016/j.ijepes.2007.06.016
30 Victoire T A A, Jeyakumar A E. Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 2004, 71(1): 51–59
https://doi.org/10.1016/j.epsr.2003.12.017
31 Park J B, Lee K S, Shin J R, Lee K Y. A particle swarm optimization for economic dispatch with nonsmooth cost function. IEEE Transactions on Power Systems, 2005, 20(1): 34–42
https://doi.org/10.1109/TPWRS.2004.831275
32 Pereira-Neto A, Unsihuay C, Saavedra O R. Efficient evolutionary strategy optimization procedure to solve the nonconvex economic dispatch problem with generator constraints. IEE Proceedings-Generation, Transmission and Distribution, 2005, 152(5): 653–660
https://doi.org/10.1049/ip-gtd:20045287
33 dos Santos Coelho L, Mariani V C. Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect. IEEE Transactions on Power Systems, 2006, 21(2): 989–996
https://doi.org/10.1109/TPWRS.2006.873410
34 Liu D, Cai Y. Taguchi method for solving the economic dispatch problem with nonsmooth cost functions. IEEE Transactions on Power Systems, 2005, 20(4): 2006–2014
https://doi.org/10.1109/TPWRS.2005.857939
35 Amjady N, Nasiri-Rad H. Solution of nonconvex and nonsmooth economic dispatch by a new adaptive real coded genetic algorithm. Expert Systems with Applications, 2010, 37(7): 5239–5245
https://doi.org/10.1016/j.eswa.2009.12.084
36 Pothiya S, Ngamroo I, Kongprawechnon W. Ant colony optimisation for economic dispatch problem with non-smooth cost functions. Electrical Power and Energy Systems, 2010, 32(5): 478–487
https://doi.org/10.1016/j.ijepes.2009.09.016
[1] Mohammad Reza NAZEMZADEGAN, Alibakhsh KASAEIAN, Somayeh TOGHYANI, Mohammad Hossein AHMADI, R. SAIDUR, Tingzhen MING. Multi-objective optimization in a finite time thermodynamic method for dish-Stirling by branch and bound method and MOPSO algorithm[J]. Front. Energy, 2020, 14(3): 649-665.
[2] Jianpeng ZHENG, Liubiao CHEN, Ping WANG, Jingjie ZHANG, Junjie WANG, Yuan ZHOU. A novel cryogenic insulation system of hollow glass microspheres and self-evaporation vapor-cooled shield for liquid hydrogen storage[J]. Front. Energy, 2020, 14(3): 570-577.
[3] Liang YIN, Yonglin JU. Review on the design and optimization of hydrogen liquefaction processes[J]. Front. Energy, 2020, 14(3): 530-544.
[4] Jidong WANG, Boyu CHEN, Peng LI, Yanbo CHE. Distributionally robust optimization of home energy management system based on receding horizon optimization[J]. Front. Energy, 2020, 14(2): 254-266.
[5] Aeidapu MAHESH, Kanwarjit Singh SANDHU. A genetic algorithm based improved optimal sizing strategy for solar-wind-battery hybrid system using energy filter algorithm[J]. Front. Energy, 2020, 14(1): 139-151.
[6] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[7] Junjie MA, Xiang CHEN, Zongchang QU. Structural optimal design of a swing vane compressor[J]. Front. Energy, 2019, 13(4): 764-769.
[8] Chongzhe ZOU, Huayi FENG, Yanping ZHANG, Quentin FALCOZ, Cheng ZHANG, Wei GAO. Geometric optimization model for the solar cavity receiver with helical pipe at different solar radiation[J]. Front. Energy, 2019, 13(2): 284-295.
[9] B. TUDU, K. K. MANDAL, N. CHAKRABORTY. Optimal design and development of PV-wind-battery based nano-grid system: A field-on-laboratory demonstration[J]. Front. Energy, 2019, 13(2): 269-283.
[10] Shixi MA, Shengnan SUN, Hang WU, Dengji ZHOU, Huisheng ZHANG, Shilie WENG. Decoupling optimization of integrated energy system based on energy quality character[J]. Front. Energy, 2018, 12(4): 540-549.
[11] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[12] Huayi ZHANG, Can ZHANG, Fushuan WEN, Yan XU. A comprehensive energy solution for households employing a micro combined cooling, heating and power generation system[J]. Front. Energy, 2018, 12(4): 582-590.
[13] Hongbo REN, Yinlong LU, Qiong WU, Xiu YANG, Aolin ZHOU. Multi-objective optimization of a hybrid distributed energy system using NSGA-II algorithm[J]. Front. Energy, 2018, 12(4): 518-528.
[14] Lanz UY, Patric UY, Jhoenson SIY, Anthony Shun Fung CHIU, Charlle SY. Target-oriented robust optimization of a microgrid system investment model[J]. Front. Energy, 2018, 12(3): 440-455.
[15] Sevket U. YURUKER, Michael C. FISH, Zhi YANG, Nicholas BALDASARO, Philip BARLETTA, Avram BAR-COHEN, Bao YANG. System-level Pareto frontiers for on-chip thermoelectric coolers[J]. Front. Energy, 2018, 12(1): 109-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed