Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2015, Vol. 9 Issue (2) : 170-179    https://doi.org/10.1007/s11708-015-0353-y
RESEARCH ARTICLE
A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system
Nabil KAHOUL1(), Mourad HOUABES1, Ammar NEÇAIBIA2
1. Laboratoire d’ Electrotechnique, d’ Annaba, Badji Mokhtar-Annaba University, Annaba 23000, Algeria
2. Research Unit of Renewable Energy in Saharan Middle (URER/MS), Adrar 01000, Algeria
 Download: PDF(1557 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

When designing a maximum power point tracking (MPPT) algorithm, it is often difficult to correctly predict, before field testing, the behavior of this MPPT under varying solar irradiation on photovoltaic (PV) panels. A solution to this problem is to design a maximum power point trackers simulator of a PV system used to test MPPT algorithms. This simulator must have the same role as the MPPT card of the PV panel and thus will fully emulate the response of a real MPPT card of the PV panel. Therefore, it is a good substitute to help to test the peak power trackers of the PV system in the laboratory. This paper describes a simple peak power trackers simulator of the PV system which has a short response time thus, can be used to test MPPT algorithms under very rapid variation condition. The obtained results and the theoretical operation confirm the reliability and the superior performance of the proposed model.

Keywords photovoltaic module      DC-DC converter      design      maximum power point tracking (MPPT) card      microprocessor     
Corresponding Author(s): Nabil KAHOUL   
Just Accepted Date: 02 February 2015   Online First Date: 11 March 2015    Issue Date: 29 May 2015
 Cite this article:   
Nabil KAHOUL,Mourad HOUABES,Ammar NEÇAIBIA. A comprehensive simulator for assessing the reliability of a photovoltaic panel peak power tracking system[J]. Front. Energy, 2015, 9(2): 170-179.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0353-y
https://academic.hep.com.cn/fie/EN/Y2015/V9/I2/170
Fig.1  Single-diode model of PV cell
Parameter Value
Open-circuit voltage Voc/V 21.6
Short-circuit current Isc/A ???4.67
Voltage at MPP Vmp/V 17.3
Current at MPP Imp/A ???4.34
Maximum power Pm/W ?75.08
Quality factor A ?1.3
Series resistance Rs ???0.24
Parallel resistance Rp 866.92
Tab.1  Main parameters of the PV module ISOFOTON I-75
Fig.2  I-V simulated and experimental curves of the studied PV module
Fig.3  I-V simulated curves of the studied PV module under different solar irradiation levels
Fig.4  Simulink implementation of the PV panel simulator
Fig.5  Buck-boost converter circuit
Fig.6  Microcontroller 16F876A
Fig.7  Flowchart of P&O algorithm
Fig.8  Voltage divider circuitry
Fig.9  Hall Effect current sensor
Fig.10  Simulink implementation of the MPPT system simulator
Fig.11  Simulated results of the whole system at STC
Fig.12  Tracking power P(t)
Fig.13  Tracking voltage V(t) and current I(t) under fast-changing solar irradiation level and a temperature of 25°C.
Fig.14  Tracking voltage and current under different solar irradiation and a temperature of 25°C
1 I S Kim, M B Kim, M J Youn. New maximum power point tracker using sliding-mode observer for estimation of solar array current in the grid-connected photovoltaic system. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1027–1035
https://doi.org/10.1109/TIE.2006.878331
2 W Xiao, M G J Lind, W G Dunford, A Capel. Real-time identification of optimal operating points in photovoltaic power systems. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1017–1026
https://doi.org/10.1109/TIE.2006.878355
3 Y Li, T Lee, F Peng, D Liu. A hybrid control strategy for photovoltaic simulator. In: Proceedings of 2009 24th Annual IEEE Applied Power Electronics Conference and Exposition. Washington DC, 2009, USA, 899–903
4 B Subudhi, R Pradhan. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy, 2013, 4(1): 89–98
https://doi.org/10.1109/TSTE.2012.2202294
5 J L Santos, F Antunes, A Chehab, C Cruz. A maximum power point tracker for PV systems using a high performance boost converter. Solar Energy, 2006, 80(7): 772–778
https://doi.org/10.1016/j.solener.2005.06.014
6 Y Yang, F P Zhao. Adaptive perturb and observe MPPT technique for grid connected photovoltaic inverters. Procedia Engineering, 2011, 23: 468–473
https://doi.org/10.1016/j.proeng.2011.11.2532
7 J C Wang, J C Shieh, Y L Su, K C Kuo, Y W Chang, Y T Liang, J J Chou, K C Liao, J A Jiang. A novel method for the determination of dynamic resistance for photovoltaic modules. Energy, 2011, 36(10): 5968–5974
https://doi.org/10.1016/j.energy.2011.08.019
8 N Kahoul, M Houabes, M Sadok. Assessing the early degradation of photovoltaic modules performance in the Saharan region. Energy Conversion and Management, 2014, 82: 320–326
https://doi.org/10.1016/j.enconman.2014.03.034
9 G H Yordanov, O M Midtgård, T O Saetre. Series resistance determination and further characterization of c-Si PV modules. Renewable Energy, 2012, 46: 72–80
https://doi.org/10.1016/j.renene.2012.03.012
10 K S Tey, S Mekhilef. Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level. Solar Energy, 2014, 101: 333–342
https://doi.org/10.1016/j.solener.2014.01.003
11 A Safari, S Mekhilef. Implementation of incremental conductance method with direct control. 2014-02-25
12 A Scheurer, E Ago, J S Hidalgo, S Kobosko. Photovoltaic MPPT charge controller. 2014-02-25
13 T Nolan. Peak power tracker circuit description. 2014-02-26
14 I Houssamo, F Locment, M Sechilariu. Experimental analysis of impact of MPPT methods on energy efficiency for photovoltaic power systems. International Journal of Electrical Power & Energy Systems, 2013, 46: 98–107
https://doi.org/10.1016/j.ijepes.2012.10.048
15 K Ishaque, Z Salam, M Amjad, S Mekhilef. An improved particle swarm optimization (PSO) based MPPT for PV with reduced steady-state oscillation. IEEE Transactions on Power Electronics, 2012, 27(8): 3627–3638
https://doi.org/10.1109/TPEL.2012.2185713
16 K H Hussein, I Muta, T Hoshino, M Osakada. Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proceedings–Generation, Transmission and Distribution, 1995, 142(1): 59–64
https://doi.org/10.1049/ip-gtd:19951577
17 M Ahmed. Atallah, Y Almoataz. Abdelaziz, and S Raihan. Jumaah. Implementation of perturb and observe MPPT of PV system with direct control method using buck and buck-boost converters. Emerging Trends in Electrical, Electronics & Instrumentation Engineering: an International Journal (EEIEJ), 2014, 1(1): 31–44
18 K S Tey, S Mekhilef. Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5384–5392
https://doi.org/10.1109/TIE.2014.2304921
19 M Seyedmahmoudian, S Mekhilef, R Rahmani, R Yusof, E T Renani. Analytical modeling of partially shaded photovoltaic systems. Energies, 2013, 6(1): 128–144
https://doi.org/10.3390/en6010128
[1] Shu LI, Yonglin JU. Review of the LNG intermediate fluid vaporizer and its heat transfer characteristics[J]. Front. Energy, 2022, 16(3): 429-444.
[2] F. D’AURIA. An old issue and a new challenge for nuclear reactor safety[J]. Front. Energy, 2021, 15(4): 854-859.
[3] S.I. PANTYUSHIN, А.V. LITYSHEV, A.V. NIKOLAEVA, O.V. AULOVA, D.L. GASPAROV, V.V. ASTAKHOV, M.A. BYKOV. Experience gained in analyzing severe accidents for WWER RP using CC SOCRAT[J]. Front. Energy, 2021, 15(4): 872-886.
[4] Saeed GHAEMI, Farshad FAGHIHI. Core designing of a new type of TVS-2M FAs: neutronics and thermal-hydraulics design basis limits[J]. Front. Energy, 2021, 15(1): 256-278.
[5] Abdalla M. ABDALLA, Shahzad HOSSAIN, Pg MohdIskandr PETRA, Mostafa GHASEMI, Abul K. AZAD. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review[J]. Front. Energy, 2020, 14(2): 359-382.
[6] Junjie MA, Xiang CHEN, Zongchang QU. Structural optimal design of a swing vane compressor[J]. Front. Energy, 2019, 13(4): 764-769.
[7] Maurizio FACCIO, Mauro GAMBERI, Marco BORTOLINI, Mojtaba NEDAEI. State-of-art review of the optimization methods to design the configuration of hybrid renewable energy systems (HRESs)[J]. Front. Energy, 2018, 12(4): 591-622.
[8] Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG. Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine[J]. Front. Energy, 2016, 10(1): 88-104.
[9] Mohamed Yacine HAMMOUDI,Abdelkarim ALLAG,Mohamed BECHERIF,Mohamed BENBOUZID,Hamza ALLOUI. Observer design for induction motor: an approach based on the mean value theorem[J]. Front. Energy, 2014, 8(4): 426-433.
[10] Amel HADRI-HAMIDA, S. ZEROUALI, A. ALLAG. Toward a nonlinear control of an AC-DC-PWM converter dedicated to induction heating[J]. Front Energ, 2013, 7(2): 140-145.
[11] Jufang FAN, Weikun DING, Zhigeng WU, Yaling HE, Wenquan TAO, Yongxin ZHENG, Yifeng GAO, Ji SONG. A new performance evaluation method and its application in fin-tube surface design of small diameter tube[J]. Front Energ, 2011, 5(1): 59-68.
[12] Deodat MAKHANLALL, Linhua LIU, . Entropy production analysis of swirling diffusion combustion processes[J]. Front. Energy, 2010, 4(3): 326-332.
[13] B. V. BORGMEYER, H. B. MA, . Heat-spreading analysis of a heat sink base embedded with a heat pipe[J]. Front. Energy, 2010, 4(2): 143-148.
[14] Nengsheng BAO, Weidou NI, . Framework design of a hybrid energy system by combining wind farm with small gas turbine power plants[J]. Front. Energy, 2010, 4(2): 205-210.
[15] Chong-hyun CHO, Soo-yong CHO, Chaesil KIM, . Development of an axial-type fan with an optimization method[J]. Front. Energy, 2009, 3(4): 414-422.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed