Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2016, Vol. 10 Issue (1) : 88-104    https://doi.org/10.1007/s11708-015-0387-1
RESEARCH ARTICLE
Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine
Jinyuan SHI(),Zhicheng DENG,Yong WANG,Yu YANG
Shanghai Power Equipment Research Institute, Shanghai 200240, China
 Download: PDF(2976 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The optimized structure strength design and finite element analysis method for very high pressure (VHP) rotors of the 700°C ultra-super-critical (USC) steam turbine are presented. The main parameters of steam and the steam thermal parameters of blade stages of VHP welded rotors as well as the start and shutdown curves of the steam turbine are determined. The structure design feature, the mechanical models and the typical position of stress analysis of the VHP welded rotors are introduced. The steady and transient finite element analysis are implemented for steady condition, start and shutdown process, including steady rated condition, 110% rated speed, 120% rated speed, cold start, warm start, hot start, very hot start, sliding-pressure shutdown, normal shutdown and emergency shutdown, to obtain the temperature and stress distribution as well as the stress ratio of the welded rotor. The strength design criteria and strength analysis results of the welded rotor are given. The results show that the strength design of improved structure of the VHP welded rotor of the 700°C USC steam turbine is safe at the steady condition and during the transient start or shutdown process.

Keywords 700°C ultra-super-critical unit      steam turbine      very high pressure rotor      structure strength design      strength design criteria      finite element analysis     
Corresponding Author(s): Jinyuan SHI   
Just Accepted Date: 23 October 2015   Online First Date: 04 January 2016    Issue Date: 29 February 2016
 Cite this article:   
Jinyuan SHI,Zhicheng DENG,Yong WANG, et al. Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine[J]. Front. Energy, 2016, 10(1): 88-104.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-015-0387-1
https://academic.hep.com.cn/fie/EN/Y2016/V10/I1/88
Paramrter Stage
1 2 3 4 5 6 7 8 9 10 11 12
t0/°C 698.45 678.57 667.02 650.87 635.91 621.27 609.30 594.55 578.61 561.90 545.06 527.93
p0/MPa 34.30 30.85 29.08 26.76 24.74 22.92 21.42 19.78 18.14 16.54 15.04 13.63
t1/°C 682.12 671.95 658.51 641.65 628.57 615.29 601.22 585.94 569.92 553.05 535.59 518.14
p1/MPa 31.60 29.95 27.98 25.64 23.95 22.21 20.61 18.97 17.38 15.81 14.33 12.96
t2/°C 678.57 667.02 650.87 635.91 621.27 609.30 594.55 578.61 561.90 545.06 527.93 510.65
p2/MPa 30.85 29.08 26.76 24.74 22.92 21.42 19.78 18.14 16.54 15.04 13.63 12.33
Tab.1  Steam parameters of VHP blade stages
Fig.1  Cold startup of 700°C USC steam turbine
Fig.2  Warm startup of 700°C USC steam turbine
Fig.3  Hot startup of 700°C USC steam turbine
Fig.4  Very hot startup of 700°C USC steam turbine
Fig.5  Sliding pressure shutdown of 700°C USC steam turbine
Fig.6  Normal shutdown curve of 700°C USC steam turbine
Fig.7  Typical positions of stress analysis of VHP rotor of 700°C steam turbine
Fig.8  Calculation results of transient stress field of rotor original design structure at the cold start process of 19200 s
Position Steady rated condition σ eq 2 / σ 0.2 t Cold start 19200 s σ eq 3 / ( 2 σ 0.2 t )
Original Improvement Criteria Original Improvement Criteria
A1 0.11 0.08 1 1.35 0.97 1
A2 0.35 0.33 1 0.72 0.72 1
A3 0.22 0.23 1 0.88 0.87 1
A4 0.32 0.25 1 0.65 0.57 1
A5 0.19 0.19 1 0.62 0.63 1
A6 0.21 0.21 1 0.13 0.13 1
A7 0.27 0.26 1 0.05 0.04 1
A8 0.13 0.16 1 0.03 0.01 1
Tab.2  Calculation results of stress of high temperature segment of original and improved structure of VHP welded rotor
Position Original σ eq 1 / σ 10 5 t Improvement σ eq 1 / σ 10 5 t Criteria
A2-A3 segment 0.46 0.40 0.56
B1-B3 segment 0.19 0.19 0.44
B10-B12 segment 0.24 0.30 0.44
Tab.3  Stress ratio σ eq 1 / σ 10 5 t of original and improved structures of VHP welded rotor
Fig.9  Calculation result of steady temperature field of improved structure of rotor
Fig.10  Calculation result of transient temperature field of improved structure of rotor at the cold start process of 19200 s
Fig.11  Calculation result of transient temperature field of improved structure of rotor at the warm start process of 10200 s
Fig.12  Calculation result of transient temperature field of improved structure of rotor at the hot start process of 3420 s
Fig.13  Calculation result of transient temperature field of improved structure of rotor at the very hot start process of 540 s
Fig.14  Calculation result of transient temperature field of improved structure of rotor at the sliding pressure shutdown process of 10500 s
Fig.15  Calculation result of transient temperature field of improved structure rotor at the normal shutdown process of 7200 s
Fig.16  Calculation result of transient temperature field of improved structure of rotor at the emergency shutdown process of 80 s
Fig.17  Calculation result of steady stress field of improved structure of rotor
Fig.18  Calculation result of steady stress field of improved structure of rotor at 110% rated speed
Fig.19  Calculation result of steady stress field of improved structure of rotor at 120% rated speed
Fig.20  Calculation result of transient stress field of improved structure of rotor at the cold start process of 19200 s
Fig.21  Calculation result of transient stress field of improved structure of rotor at the warm start process of 10200 s
Fig.22  Calculation result of transient stress field of improved structure rotor at the hot start process of 3420 s
Fig.23  Calculation result of transient stress field of improved structure of rotor at the very hot start process of 540 s
Fig.24  Calculation result transient stress field of improved structure of rotor at the sliding pressure shutdown process of 10500 s
Fig.25  Calculation result of transient stress field of improved structure of rotor at the normal shutdown process of 7200 s
Fig.26  Calculation result of transient stress field of improved structure of rotor at the emergency shutdown process of 80 s
Position σ eq 2 / σ 0.2 t σ eq 3 / ( 2 σ 0.2 t ) Criteria
Rated condition 120% rated speed Cold start 19200 s Warm start 10200 s Hot start 3420 s Very hot start 540 s Sliding shutdown 10500 s Normal shutdown 7200 s
A1 0.08 0.16 0.97 0.74 0.62 0.38 0.42 0.53 1
A2 0.33 0.28 0.72 0.59 0.51 0.38 0.43 0.56 1
A3 0.23 0.27 0.87 0.69 0.56 0.46 0.44 0.53 1
A4 0.25 0.18 0.57 0.38 0.23 0.27 0.39 0.41 1
A5 0.19 0.31 0.63 0.39 0.29 0.15 0.31 0.29 1
A6 0.21 0.27 0.13 0.04 0.01 0.13 0.19 0.17 1
A7 0.26 0.33 0.04 0.03 0.07 0.15 0.19 0.17 1
A8 0.16 0.22 0.01 0.04 0.05 0.08 0.11 0.10 1
Tab.4  Calculation results of stress of high temperature segment of improved structure of the VHP welded rotor
Position σ eq 2 / σ 0.2 t σ eq 3 / ( 2 σ 0.2 t ) Criteria
Rated condition 120% rated speed Cold start 19200 s Warm start 10200 s Hot start 3420 s Very hot start 540 s Sliding shutdown 10500 s Normal shutdown 7200 s
C1 0.22 0.38 0.15 0.11 0.09 0.19 0.13 0.17 1
C2 0.59 0.67 0.21 0.26 0.30 0.25 0.23 0.22 1
C3 0.34 0.37 0.16 0.21 0.24 0.17 0.16 0.18 1
C4 0.44 0.57 0.28 0.27 0.29 0.18 0.14 0.14 1
C5 0.01 0.06 0.23 0.22 0.24 0.13 0.13 0.19 1
C6 0.13 0.18 0.09 0.08 0.08 0.06 0.05 0.05 1
C7 0.09 0.12 0.01 0.01 0.01 0.06 0.07 0.08 1
Tab.5  Calculation results of stress of non-high temperature segment of improved structure of the VHP welded rotor
Position σ eq 2 / σ 0.2 t σ eq 3 / ( 2 σ 0.2 t ) Criteria
Rated condition 120% rated speed Cold start 19200 s Warm start 10200 s Hot start 3420 s Very hot start 540 s Sliding shutdown 10500 s Normal shutdown 7200 s
B1 0.30 0.23 0.23 0.21 0.18 0.22 0.19 0.24 0.8
B2 0.24 0.23 0.17 0.13 0.11 0.16 0.18 0.19 0.8
B3 0.18 0.21 0.23 0.17 0.13 0.16 0.18 0.20 0.8
B4 0.28 0.32 0.22 0.21 0.20 0.18 0.16 0.19 0.8
B5 0.29 0.31 0.09 0.07 0.07 0.19 0.18 0.19 0.8
B6 0.44 0.48 0.11 0.12 0.13 0.27 0.25 0.28 0.8
B7 0.25 0.30 0.21 0.20 0.20 0.17 0.15 0.17 0.8
B8 0.26 0.29 0.07 0.05 0.05 0.17 0.17 0.18 0.8
B9 0.40 0.45 0.06 0.08 0.10 0.25 0.24 0.26 0.8
B10 0.22 0.23 0.23 0.19 0.17 0.22 0.16 0.22 0.8
B11 0.27 0.32 0.14 0.11 0.10 0.17 0.19 0.20 0.8
B12 0.44 0.53 0.18 0.17 0.17 0.24 0.25 0.26 0.8
B13 0.40 0.45 0.13 0.15 0.16 0.24 0.22 0.25 0.8
B14 0.40 0.49 0.07 0.09 0.11 0.23 0.22 0.24 0.8
B15 0.61 0.72 0.17 0.19 0.20 0.33 0.29 0.31 0.8
B16 0.37 0.43 0.11 0.14 0.14 0.23 0.21 0.24 0.8
B17 0.37 0.46 0.05 0.08 0.09 0.22 0.21 0.23 0.8
B18 0.57 0.69 0.13 0.16 0.17 0.31 0.29 0.31 0.8
Tab.6  Calculation results of stress of welded seam and heat affected zone of improved structure of the VHP welded rotor
Fig.27  Calculation results of stress ratio σ eq 2 / σ 0.2 t of the high temperature segment of improved structure of the VHP welded rotor at the steady condition
Fig.28  Calculation results of stress ratio σ eq 2 / σ 0.2 t of the non-high temperature segment of improved structure of the VHP welded rotor at the steady condition
Fig.29  Calculation results of stress ratio σ eq 2 / σ 0.2 t of the welded seam and heat affected zone of improved structure of the VHP welded rotor at the steady condition
Fig.30  Calculation results of stress ratio σ eq 3 / ( 2 σ 0.2 t ) of the high temperature segment of improved structure of the VHP welded rotor during the start process
Fig.31  Calculation results of stress ratio σ eq 3 / ( 2 σ 0.2 t ) of the non-high temperature segment of improved structure of the VHP welded rotor during the start process
Fig.32  Calculation results of stress ratio σ eq 3 / ( 2 σ 0.2 t ) of the welded seam and heat affected zone of improved structure of the VHP welded rotor during the start process
Fig.33  Calculation results of stress ratio σ eq 3 / ( 2 σ 0.2 t ) of the high temperature segment of improved structure of the VHP welded rotor during the shutdown process
Fig.34  Calculation results of stress ratio σ eq 3 / ( σ 0.2 t ) of the non-high temperature segment of improved structure of the VHP welded rotor during the shutdown process
Fig.35  Calculation results of stress ratio σ eq 3 / ( σ 0.2 t ) of the welded seam and heat affected zone of improved structure of the VHP welded rotor during the shutdown process
1 Blum  R, Kjær  S, Bugge  J. Development of a PF fired high efficiency power plant (AD700). In: Proceedings of the Riso International Energy Conference. Riso, Denmark, 2007, 69–80
2 Blum  R, Bugge  J, Kjaer  S. AD700 innovation pave the way for 53 percent efficiency. Modern Power Systems, 2008, 28(11): 15–19
3 Robert  R U S. Program for advanced ultra-super-critical (A-USC) coal fired power plants. In: Global Advanced Fossil-Gen Summit 2011. Shanghai, China, 2011
4 Li  Y S. National 700°C coal fired generating technology innovation alliance. 2010−07−23, www.ce.cn/cysc/ny/dl/201007/23/t20100723_20443749.shtml (in Chinese)
5 Huang  O, Peng  Z Y. Analysis of the economic benefit of 700°C high temperature ultra-super-critical technology. Thermal Turbine, 2010, 39(3): 170–174 (in Chinese)
6 Ji  S D, Zhou  R C, Wang  S P. Research and development status and localizations of recommendations of 700°C grade advanced ultra-super-critical power generation technology. Thermal Power Generation, 2011, 40(7): 86–88 (in Chinese)
7 Zhang  Y P, Cai  X Y, Huang  S H, Jin  Y C. Status quo of the design and development of 700°C ultra-super-critical coal-fired power generator unit system. Journal of Engineering for Thermal Energy and Power, 2012, 27(2): 143–148 (in Chinese)
8 Cai  X Y, Zhang  Y P, Li  Y, Huang  S H. Design and exergy analysis on thermodynamic system of a 700°C ultra-super-critical coal-fired power generating set. Journal of Chinese Society of Power Engineering, 2012, 32(12): 971–978 (in Chinese)
9 Wieghardt  K. Siemens steam turbine design for AD700 power plants. In: Proceedings of European Conference AD700- Advanced (700°C) PF Power Plant: A Clean Coal European Technology. Milan, Italy, 2005
10 Blum  R, Vanstone  R W. Materials development for boilers and steam turbines operating at 700 DGC. In: Proceedings of the Sixth International Charles Parsons Turbine Conference. Parsons, US, 2003, 489–510
11 Shi  J Y, Yang  Y, Deng  Z C. Life Prediction and Reliability of Large Capacity Steam Turbine. Beijing: China Electric Power Press, 2011 (in Chinese)
12 Shi  J Y, Yang  Y, Wang  Y. Reliability prediction and safety operation theory and methods of large capacity generating units. Beijing: China Electric Power Press, 2014 (in Chinese)
[1] B. VIDHYA,K. N. SRINIVAS. Flow, thermal, and vibration analysis using three dimensional finite element analysis for a flux reversal generator[J]. Front. Energy, 2016, 10(4): 424-440.
[2] Jie GUO,Danmei XIE,Hengliang ZHANG,Wei JIANG,Yan ZHOU. Effect of heat transfer coefficient of steam turbine rotor on thermal stress field under off-design condition[J]. Front. Energy, 2016, 10(1): 57-64.
[3] Ali ARIF,Abderrazak GUETTAF,Ahmed Chaouki MEGHERBI,Said BENRAMACHE,Fateh BENC HABANE. Electromagnetic modeling and control of switched reluctance motor using finite elements[J]. Front. Energy, 2014, 8(3): 355-363.
[4] Arash Hasssanpour ISFAHANI,Amirhossein Haji-Seyed BOROUJERDI,Saeed HASANZADEH. Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind energy conversion systems[J]. Front. Energy, 2014, 8(2): 182-191.
[5] Youmin HOU, Danmei XIE, Wangfan LI, Xinggang YU, Yang SHI, Hanshi QIN. Numerical simulation of a new hollow stationary dehumidity blade in last stage of steam turbine[J]. Front Energ, 2011, 5(3): 288-296.
[6] Dieter BOHN , Robert KREWINKEL , Shuqing TIAN , . Cooling performance of grid-sheets for highly loaded ultra-supercritical steam turbines[J]. Front. Energy, 2009, 3(3): 313-320.
[7] Michal HOZNEDL , Ladislav TAJC , Jaroslav KREJCIK , Lukas BEDNAR , Kamil SEDLAK , Jiri LINHART , . Exhaust hood for steam turbines-single-flow arrangement[J]. Front. Energy, 2009, 3(3): 321-329.
[8] SHI Jinyuan. Reliability design method for steam turbine blades[J]. Front. Energy, 2008, 2(4): 363-368.
[9] WANG Chunjie, SONG Shunguang, ZONG Xiao. Vibration analysis of blade-disc coupled structure of compressor[J]. Front. Energy, 2008, 2(3): 302-305.
[10] SHI Jinyuan, DENG Zhicheng, YANG Yu, JUN Ganwen. Heat transfer coefficient of wheel rim of large capacity steam turbines[J]. Front. Energy, 2008, 2(1): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed