Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2014, Vol. 8 Issue (3) : 355-363    https://doi.org/10.1007/s11708-014-0319-5
RESEARCH ARTICLE
Electromagnetic modeling and control of switched reluctance motor using finite elements
Ali ARIF1,Abderrazak GUETTAF1,Ahmed Chaouki MEGHERBI1,Said BENRAMACHE2,*(),Fateh BENC HABANE1
1. Electrical Engineering Department, University of Biskra, Biskra 07000, Algeria
2. Material Sciences Department, University of Biskra, Biskra 07000, Algeria
 Download: PDF(2063 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper considered the implementation of a current control method for switched reluctance motors (SRMs) and presented a novel approach to the accurate online modeling of a three phase 6/4 SRM drive. A three phase 6/4 SRM is given theoretical calculation of inductance of the SRM model. The SRM was then tested in a Matlab/Simulink environment and numerically analyzed by using nonlinear 2D look-up tables created from its calculated flux linkage and static torque data. The simulation studied the hysteresis and voltage control strategies. The ideal waveform of stator current under the voltage-current condition and improved shape of rotor were proposed.

Keywords switched reluctance motor (SRM)      hysteresis      control      finite element analysis     
Corresponding Author(s): Said BENRAMACHE   
Issue Date: 09 September 2014
 Cite this article:   
Ali ARIF,Abderrazak GUETTAF,Ahmed Chaouki MEGHERBI, et al. Electromagnetic modeling and control of switched reluctance motor using finite elements[J]. Front. Energy, 2014, 8(3): 355-363.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-014-0319-5
https://academic.hep.com.cn/fie/EN/Y2014/V8/I3/355
Fig.1  Reluctance machine variable
Fig.2  Mesh of SRM as θ = 0°
Fig.3  Flux distribution of SRM

(a) Flux distributions at θ = 0°; (b) flux distributions at θ = 45°

Fig.4  Flux linkage for different rotor position and phase currents
Fig.5  Inductance characteristics of phase as a function of rotor position at different test currents
Fig.6  Torque characteristics as a function of rotor position and phase current
Fig.7  3D plots of typical flux linkage characteristics
Fig.8  3D plots of typical torque characteristics
Fig.9  One phase nonlinear dynamic model of SRM
Fig.10  Dynamic model of 3-phase SRM
Fig.11  Second set of simulation resultants using θon = 0° and θoff = 30°, and with the motor functioning without load applied

(a) Current in phase; (b) torque in phase; (c) total torque

Fig.12  Co-energy
Fig.13  Ripple of total torque for values of θon = 0° and θoff = 30°, and by consequence of oscillation speed

(a) Current in phase; (b) torque in phase; (c) speed; (d) total torque

Fig.14  New dynamics of SRM

(a) Current in phase; (b) torque in phase; (c) speed; (d) total torque

Fig.15  Co-energy with θon = 0° and θoff = 38°
Fig.16  Mean torque as function of Iref and θoff
1 Dos Reis L L N, Coelho A A R, Almeida O M, Campos J C T. Modeling and controller performance assessment for a switched reluctance motor drive based on setpoint relay. ISA Transactions, 2009, 48(2): 206–212
doi: 10.1016/j.isatra.2008.10.012 pmid: 19100982
2 Omekanda A, Broche C, Baland R. Calcul des paramètres électromagnétiques d’un motor à réluctance à commutations par une méthode hybride: éléments finis. Equations intégrales de frontière. Journal de Physique. III, 1992,2(11): 2023–2033
doi: 10.1051/jp3:1992228
3 Song S, Liu W, Peitsch D, Schaefer U. Detailed design of a high speed switched reluctance starter/generator for more/all electric aircraft. Chinese Journal of Aeronautics, 2010, 23(2): 216–226
doi: 10.1016/S1000-9361(09)60208-9
4 Liu S, Tan G, Luo C, Zhang X, Ma Z. Magnetic performance of shearer switched reluctance motors drive. Procedia Earth and Planetary Science, 2011, 2: 98–103
doi: 10.1016/j.proeps.2011.09.016
5 Kwon Y A. Computation of optimal excitation of a switched reluctance motor using variable voltage. IEEE Transactions on Industrial Electronics, 1998, 45(1): 177–180
doi: 10.1109/41.661319
6 Hasanien H M, Muyeen S M. Speed control of grid-connected switched reluctance generator driven by variable speed wind turbine using adaptive neural network controller. Electric Power Systems Research, 2012, 84(1): 206–213
doi: 10.1016/j.epsr.2011.11.019
7 Chen H J, Lu S L, Shi L X. Development and validation of a general-purpose ASIC chip for the control of switched reluctance machines. Energy Conversion and Management, 2009, 50(3): 592–599
doi: 10.1016/j.enconman.2008.10.013
8 Wang S C. An fully-automated measurement system for identifying magnetization characteristics of switched reluctance motors. Measurement, 2012, 45(5): 1226–1238
doi: 10.1016/j.measurement.2012.01.014
9 Chen H, Pavlitov C. Large power analysis of switched reluctance machine system for coal mine. Mining Science and Technology(China), 2009, 19(5): 657–659
10 Hasanien H M, Muyeen S M, Tamura J. Torque ripple minimization of axial laminations switched reluctance motor provided with digital lead controller. Energy Conversion and Management, 2010, 51(12): 2402–2406
doi: 10.1016/j.enconman.2010.05.004
11 Chen H, Trifa V. Design of 2000 kW switched reluctance machine system. Procedia Earth and Planetary Science, 2009, 1(1): 1380–1384
12 Ding W, Liang D, Tang R. A fast nonlinear variable structure equivalent magnetic circuit modeling for dual-channel switched reluctance machine. Energy Conversion and Management, 2011, 52(1): 308–320
doi: 10.1016/j.enconman.2010.07.002
13 Song Q, Wang X, Guo L, Cheng L. Double switched reluctance motors parallel drive based on dual89C52 single chip microprocessors. Procedia Earth and Planetary Science, 2009, 1(1): 1435–1439
doi: 10.1016/j.proeps.2009.09.221
14 Chuang T S. Acoustic noise reduction of a 6/4 SRM drive based on third harmonic real power cancellation and mutual coupling flux enhancement. Energy Conversion and Management, 2010, 51(3): 546–552
doi: 10.1016/j.enconman.2009.10.020
15 Cameron D E, Lang J H, Umans S D. The origin and reduction of acoustic noise in doubly salient variable reluctance motors. IEEE Transactions on Industry Applications, 1992, 28(6): 1250–1255
doi: 10.1109/28.175275
16 Colby R S, Mottier F M, Miller T J E. Vibration modes and acoustic noise in a four-phase switched reluctance motor. IEEE Transactions on Industry Applications, 1996, 32(6): 1357–1364
doi: 10.1109/28.556639
17 Tang Y. Characterization, numerical analysis, and design of switched reluctance motors. IEEE Transactions on Industry Applications, 1997, 33(6): 1544–1552
doi: 10.1109/28.649967
18 Koibuchi K, Ohno T, Sawa K. A basic study for optimal design of switched reluctance motor by finite element method. IEEE Transactions on Magnetics, 1997, 33(2): 2077–2080
doi: 10.1109/20.582726
19 Arumugam R, Lowther D A, Krishnan R, Lindsay J F. Magnetic field analysis of a switched reluctance motor using a two dimensional finite element model. IEEE Transactions on Magnetics, 1985, 21(5): 1883–1885
doi: 10.1109/TMAG.1985.1063910
20 Xu L, Ruckstadter E. Direct modeling of switched reluctance machine by coupled filed-circuit method. IEEE Transactions on Energy Conversion, 1995, 10(3): 446–454
doi: 10.1109/60.464867
21 Amoros J G, Andrada P. Sensitivity analysis of geometrical parameters on a double-sided linearswitched reluctance motor. IEEE Transactions on Industrial Electronics, 2010, 57(1): 311– 319
doi: 10.1109/TIE.2009.2032208
22 Balaji M, Kamaraj V. Evolutionary computation based multi-objective pole shape optimization of switched reluctance machine. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 63–69
doi: 10.1016/j.ijepes.2012.05.011
23 Cao S, Tseng K J. Dynamic modeling of SRM including neighboring phase coupling effects. Electric Machines & Power Systems, 2000, 28(12): 1141–1163
doi: 10.1080/073135600449035
[1] Abdelkarim AMMAR, Amor BOUREK, Abdelhamid BENAKCHA. Robust SVM-direct torque control of induction motor based on sliding mode controller and sliding mode observer[J]. Front. Energy, 2020, 14(4): 836-849.
[2] Xiaojing LV, Weilun ZENG, Xiaoyi DING, Yiwu WENG, Shilie WENG. Experimental investigation of a novel micro gas turbine with flexible switching function for distributed power system[J]. Front. Energy, 2020, 14(4): 790-800.
[3] Mujahid TABASSUM, Manas K. HALDAR, Duaa Fatima S. KHAN. Implementation and performance evaluation of advance metering infrastructure for Borneo-Wide Power Grid[J]. Front. Energy, 2020, 14(1): 192-211.
[4] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
[5] Ali EL YAAKOUBI, Kamal ATTARI, Adel ASSELMAN, Abdelouahed DJEBLI. Novel power capture optimization based sensorless maximum power point tracking strategy and internal model controller for wind turbines systems driven SCIG[J]. Front. Energy, 2019, 13(4): 742-756.
[6] Weiliang WANG, Bo LI, Xuan YAO, Junfu LYU, Weidou NI. Air pollutant control and strategy in coal-fired power industry for promotion of China’s emission reduction[J]. Front. Energy, 2019, 13(2): 307-316.
[7] Alireza REZVANI, Ali ESMAEILY, Hasan ETAATI, Mohammad MOHAMMADINODOUSHAN. Intelligent hybrid power generation system using new hybrid fuzzy-neural for photovoltaic system and RBFNSM for wind turbine in the grid connected mode[J]. Front. Energy, 2019, 13(1): 131-148.
[8] Yufei YUE, Qianming XU, Peng GUO, An LUO. Constant temperature control of tundish induction heating power supply for metallurgical manufacturing[J]. Front. Energy, 2019, 13(1): 16-26.
[9] Qiaowan CHANG, Yuan XU, Shangqian ZHU, Fei XIAO, Minhua SHAO. Pt-Ni nanourchins as electrocatalysts for oxygen reduction reaction[J]. Front. Energy, 2017, 11(3): 254-259.
[10] B. VIDHYA,K. N. SRINIVAS. Flow, thermal, and vibration analysis using three dimensional finite element analysis for a flux reversal generator[J]. Front. Energy, 2016, 10(4): 424-440.
[11] T A BINSHAD,K VIJAYAKUMAR,M KALEESWARI. PV based water pumping system for agricultural irrigation[J]. Front. Energy, 2016, 10(3): 319-328.
[12] M. Abdelbasset MAHBOUB,Said DRID,M. A. SID,Ridha CHEIKH. Robust direct power control based on the Lyapunov theory of a grid-connected brushless doubly fed induction generator[J]. Front. Energy, 2016, 10(3): 298-307.
[13] Abdelhak DIDA,Djilani BENATTOUS. A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control[J]. Front. Energy, 2016, 10(2): 143-154.
[14] Louar FATEH,Ouari AHMED,Omeiri AMAR,Djellad ABDELHAK,Bouras LAKHDAR. Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system[J]. Front. Energy, 2016, 10(2): 155-163.
[15] H. AFGHOUL,F. KRIM,D. CHIKOUCHE,A. BEDDAR. Robust switched fractional controller for performance improvement of single phase active power filter under unbalanced conditions[J]. Front. Energy, 2016, 10(2): 203-212.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed