Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

Postal Subscription Code 80-972

2018 Impact Factor: 1.701

Front. Energy    2014, Vol. 8 Issue (2) : 182-191    https://doi.org/10.1007/s11708-014-0320-z
RESEARCH ARTICLE
Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind energy conversion systems
Arash Hasssanpour ISFAHANI1(), Amirhossein Haji-Seyed BOROUJERDI2, Saeed HASANZADEH3
1. Everette Energy, LLC, Dallas 75225, USA
2. Faculty of Electrical and Engineering, Islamic Azad University, Islamshahr Branch, Tehran 33147-67653, Iran
3. Facuty of Electrical and Computer Engineering, Qom University of Technology, Qom 1519-37195, Inan
 Download: PDF(629 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper presents a simultaneous multi-objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e.,the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of Pareto optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the Pareto front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method.

Keywords permanent magnet synchronous generator      wind turbine      direct-drive      multi-objective optimization      cost      mass      annual energy output      finite element analysis (FEA)     
Corresponding Author(s): Arash Hasssanpour ISFAHANI   
Issue Date: 19 May 2014
 Cite this article:   
Arash Hasssanpour ISFAHANI,Amirhossein Haji-Seyed BOROUJERDI,Saeed HASANZADEH. Multi-objective design optimization of a large-scale direct-drive permanent magnet generator for wind energy conversion systems[J]. Front. Energy, 2014, 8(2): 182-191.
 URL:  
https://academic.hep.com.cn/fie/EN/10.1007/s11708-014-0320-z
https://academic.hep.com.cn/fie/EN/Y2014/V8/I2/182
Fig.1  Direct-drive wind energy conversion system
Turbine characteristics Value
Cut-in speed/(m·s−1) 3.5
Rated speed/(m·s−1) 8−12
Cut-off speed/(m·s−1) 20
C ρ max 0.39
λ opt 6.0
Average wind speed/(m·s−1) 8
Tab.1  Turbine characteristics
Fig.2  Electrical equivalent circuit of a PMSG
Parts and materials Cost
Copper/($·kg−1) 10
Magnet/($·kg−1) 40
Lamination/($·kg−1) 2
Turbine with a diameter of 70?m /$ 385000
Grid connection and control/$ 167000
Tab.2  Cost of different parts of system
Fig.3  Flowchart of design optimization algorithm
Value Design parameter
1.7−2 Maximum flux density in stator teeth/ T
8−12 Nominal turbine speed/(m·s 1)
120−150 Magnet arc/(°)
0.1−1 Machine length to air gap diameter ratio
600−1000 Nominal voltage/V
5−10 Nominal frequency/ Hz
4−6 Current density/(A·mm 2)
40000−80000 Specific current loading/(A·m 2)
Tab.3  Design variables and their constraints
Fig.4  Pareto front in a three dimensional space
Fig.5  Pareto fronts in two dimensional spaces along with objective limitations
Pareto optimal solutions Cost/$ Mass/kg AEO/GWh
1 1308786* 100391.7 5.38
2 291955 30651.4 3.31*
3 794045 63782.9 4.78
4 841184 65207.5 4.88
5 950647 71305.5* 5.07
6 1091651* 84516.5 5.19
7 680615 59556.8 4.57
8 609647 52339.5 4.43*
9 874168 67529.1 4.91
10 985398 75793.7* 5.092
11 547195 47638.4 4.30*
12 1243666* 94216.2 5.34
13 463218 41489.8 4.08*
14 1073334* 79883.8 5.18
15 1299947* 100283.8 5.37
16 1303234* 100832.0 5.37
Tab.4  Pareto optimal solutions
Value Parameter
9.45 Nominal turbine speed/(m·s 1)
600 Nominal voltage/V
5.5 Nominal frequency/ Hz
1 Stack length/ m
3.9 Air gap diameter/m
146.3 Magnet arc/(°)
31.4 Magnet height/mm
36.1 Slot height/mm
41 Slot width/mm
5 Number of conductors per slot
50 Number of poles
1 Number of slot/pole/phase
4.9 Air gap lengh/mm
617 Numinal current/A
94 Efficiency
90 Power factor
Tab.5  Characteristics of selected generator
Fig.6  Flux lines due to permanent magnets
Fig.7  No-load voltage excitation of the generator and its harmonic contents
Fig.8  Electrical circuit coupled to the FE domain
Fig.9  Voltage experienced by the load
Fig.10  Cogging toque before (circles) and after (solid line) magnet skewing
A z z-axis component of the magnetic potential vector
B mg Air gap magnet flux density
B Flux density
C ρ Turbine power coefficient
C gen Generator cost
C tur Blade cost
C PM Permanent magnet material cost
C cu Copper material cost
C lam Lamination cost
D Air gap diameter
E Back-emf rms value
F Electrical frequency of the motor supply
f(U i) Probability density
f B Frequency of the flux density distribution function
J m Equivalent magnetizing current density of PMs
J Current density
K sf Stacking factor
k h Hysteresis loss coefficient
k e Eddy current loss coefficient
k ex Extra loss coefficient
k manu Manufacturing cost coefficient
k w 1 Fundamental harmonic winding factor
L Generator stack length
M Magnetization vector of the permanent magnet
N ph Number of winding turns per phase
R Blade radius
T B Period of the flux density distribution function
T rated Turbine rated torque
T cut-in Turbine cut-in torque
U a Average wind speed
U Wind speed
V cu Copper volume along each slot
V end Copper volume along end winding
V PM Volume of permanent magnet material
V cu Volume of copper material
V lam Volume of laminations
w t Tooth width
α Pole arc to pole pitch ratio
β Current angle
λ Tip speed ratio
ω r Rotational speed of the wind turbine shaft
ϕ P M Permanent magnet flux per pole
σ c u Copper conduction resistivity
ρ P M Mass density of permanent magnet
ρ c u Mass density of copper
ρ l a m Mass density of laminations
τ Pole pitch
τ s Slot pitch
ρ a i r Air density
ε Back-emf to terminal voltage ratio
  Notation
1 H Bevrani, A Ghosh, G Ledwich. Renewable energy sources and frequency regulation: survey and new perspectives. IET Renewable Power Generation, 2010, 4(5): 438−457
2 REN 21. Renewables 2011 Global Status Report. 2013-05-06
3 H Arabian-Hoseynabadi, P J Tavner, H Oraee. Reliability comparison of direct- drive and geared-drive wind turbine concepts. Wind Energy, 2009, 13(1): 62−73
4 H Polinder, F F A Van der Pigl, P J Tavner. Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Transactions on Energy Conversion, 2006, 21(3): 725−733
5 P Lampola. Directly driven, low-speed permanent-magnet generators for wind power applications. Dissertation for the Doctoral Degree. Helsinki: Helsinki University of Technology, 2000
6 D Colli, F Marignetti, C Attaianese. Analytical and multiphysics approach to the optimal design of a 10-MW DFIG for direct-drive wind turbines. IEEE Transactions on Industrial Electronics, 2012, 59(7): 2791−2799
7 M Abbasian, A H Isfahani, S Shahghasemi, F Sheikholeslam. Effects of permanent magnet synchronous generator and wind turbine parameters on the performance of a small-scale wind power generation system. Przegląd Elektrotechniczny (Electrical Review), 2011, 87: 360−363
8 M R Dubis. Optimized permanent magnet generator topologies for direct-drive wind turbines. Dissertation for the Doctoral Degree. Delft: Delft University, 2004
9 Y Chen, P Pillay, M A Khan. PM wind generator topologies. IEEE Transactions on Industry Applications, 2005, 41(6): 1619−1626
10 E Muljadi, C P Butterfield, Y Wan. Axial-flux modular permanent-magnet generator with a toroidal winding for wind-turbine applications. IEEE Transactions on Industry Applications, 1999, 35(4): 831−836
11 E Spooner, A C Williamson. Direct coupled, permanent-magnet generators for wind turbine applications. IEE Proceedings-Electric Power Applications, 1996, 143(1): 1−8
12 S Eriksson, H Bernhoff. Loss evaluation and design optimisation for direct driven permanent magnet synchronous generators for wind power. Applied Energy, 2011, 88(1): 265−271
13 M Pinilla, S Martinez. Selection of main design variables for low-speed permanent magnet machines devoted to renewable energy conversion. IEEE Transactions on Energy Conversion, 2011, 26(3): 940−945
14 H Jung, C G Lee, S C Hahn, S Y Jung. Optimal design of a direct-driven PM wind generator aimed at maximum AEP using coupled FEA and parallel computing GA. Journal of Electrical Engineering & Technology, 2006, 3(4): 552−558
15 S Y Jung, H Jung, S C Hahn, H K Jung, C G Lee. Optimal design of direct-driven PM wind generator for maximum annual energy production. IEEE Transactions on Magnetics, 2008, 44(6): 1062−1065
16 M Abbasian, A H Isfahani. Optimal design of a direct-drive permanent magnet synchronous generator for small-scale wind energy conversion systems. Journal of Magnetism, 2011, 16(4): 379−385
17 J Zhang, M Cheng, Z Chen. Optimal design of stator interior permanent magnet machine with minimized cogging torque for wind power application. Energy Conversion and Management, 2008, 49(8): 2100−2105
18 J H J Potgieter, M J Kamper. Torque and Voltage quality in design optimisation of low cost non-overlap single layer winding permanent magnet wind generator. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2147−2156
19 X Sun, M Cheng, W Hua, L Xu. Optimal design of double-layer permanent magnet dual mechanical port machine for wind power application. IEEE Transactions on Magnetics, 2009, 45(5): 4613−4619
20 N E A M Hassanain, J E Fletcher. Steady-state performance assessment of three- and five-phase permanent magnet generators connected to a diode bridge rectifier under open-circuit faults. IET Renewable Power Generation, 2010, 4(5): 420−427
21 S Brisset, D Vizireanu, P Brochet. Design and optimization of a nine-phase axial-flux pm synchronous generator with concentrated winding for direct-drive wind turbine. IEEE Transactions on Industry Applications, 2008, 44(3): 707−715
22 M Morandin, E Fornasiero, S Bolognani, N Bianchi. Torque/power rating design of an IPM machine for maximum profit-to-cost ratio in wind power generation. In: IEEE International Electric Machines and Drives Conference. Niagara Falls, Canada, 2011, 1113−1118
23 A S McDonald, M A Mueller, H Polinder. Structural mass in direct-drive permanent magnet electrical generators. IET Renewable Power Generation, 2008, 2(1): 3−15
24 G Shrestha, H Polinder, D Bang, J A Ferreira. Structural flexibility: a solution for weight reductionof large direct-drive wind-turbine generators. IEEE Transactions on Energy Conversion, 2010, 25(3): 732−740
25 M A Mueller, A S McDonald. A lightweight low-speed permanent magnet electrical generator for direct-drive wind turbines. Wind Energy, 2009, 12(8): 768−780
26 H Li, Z Chen. Design optimization and site matching of direct-drive permanent magnet wind power generator systems. Renewable Energy, 2009, 34(3): 1175−1184
27 M A Khan. Contributions to permanent magnet wind generator design including the application of soft magnetic composites, Dissertation for the Doctoral Degree, New York: Clarkson University, 2006
28 Renewable Energy Organization of Iran. Iran wind atlas. 2014-03-21
29 D S Zinger, E Muljadi. Annualized wind energy improvement using variable-speeds. IEEE Transactions on Industry Applications, 1997, 33(6): 1444−1447
30 J F Gieras, M Wing. Permanent magnet motor technology: design and application. 2nd ed. Marcel Dekker Inc., 2002
31 M A Khan, P Pillay, K D Visser. On adapting a small PM wind generator for a multiblade, high solidity wind turbine. IEEE Transactions on Energy Conversion, 2005, 20(3): 685−692
32 T Burton, D Sharpe, N Jenkins, E Bossanyi. Wind Energy Handbook. England: John Wiley&Sons, Ltd, 2001
33 L Dosiek, P Pillay. Cogging torque reduction in permanent magnet machines. IEEE Transactions on Industry Applications, 2007, 43(6): 1565−1571
34 J J C Gyselinck, L Vandevelde, J A A Melkebeek. Multi-slice FE modeling of electrical machines with skewed slots- the skew discretization error. IEEE Transactions on Magnetics, 2011, 37(5): 3233−3237
[1] Islam HASHEM, Aida A. HAFIZ, Mohamed H. MOHAMED. Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations[J]. Front. Energy, 2022, 16(4): 661-682.
[2] Ali ALAJMI, Hosny ABOU-ZIYAN, Hamad H. Al-MUTAIRI. Reassessment of fenestration characteristics for residential buildings in hot climates: energy and economic analysis[J]. Front. Energy, 2022, 16(4): 629-650.
[3] Maria Carolina ANDRADE, Caio de Oliveira GORGULHO SILVA, Leonora Rios de SOUZA MOREIRA, Edivaldo Ximenes FERREIRA FILHO. Crop residues: applications of lignocellulosic biomass in the context of a biorefinery[J]. Front. Energy, 2022, 16(2): 224-245.
[4] Peiyuan PAN, Yunyun WU, Heng CHEN. Performance evaluation of an improved biomass-fired cogeneration system simultaneously using extraction steam, cooling water, and feedwater for heating[J]. Front. Energy, 2022, 16(2): 321-335.
[5] Xiaojun XUE, Yuting WANG, Heng CHEN, Gang XU. A coal-fired power plant integrated with biomass co-firing and CO2 capture for zero carbon emission[J]. Front. Energy, 2022, 16(2): 307-320.
[6] Yueling ZHANG, Junjie LI, Huan LIU, Guangling ZHAO, Yajun TIAN, Kechang XIE. Environmental, social, and economic assessment of energy utilization of crop residue in China[J]. Front. Energy, 2021, 15(2): 308-319.
[7] Yishu XU, Xiaowei LIU, Jiuxin QI, Tianpeng ZHANG, Minghou XU, Fangfang FEI, Dingqing LI. Compositional and structural study of ash deposits spatially distributed in superheaters of a large biomass-fired CFB boiler[J]. Front. Energy, 2021, 15(2): 449-459.
[8] A.S.O. OGUNJUYIGBE, T.R. AYODELE, O.D. BAMGBOJE. Optimal placement of wind turbines within a wind farm considering multi-directional wind speed using two-stage genetic algorithm[J]. Front. Energy, 2021, 15(1): 240-255.
[9] Md Tanvir ALAM, Baiqian DAI, Xiaojiang WU, Andrew HOADLEY, Lian ZHANG. A critical review of ash slagging mechanisms and viscosity measurement for low-rank coal and bio-slags[J]. Front. Energy, 2021, 15(1): 46-67.
[10] Fating LI, Pengfei JIE, Zhou FANG, Zhimei WEN. Determining the optimum economic insulation thickness of double pipes buried in the soil for district heating systems[J]. Front. Energy, 2021, 15(1): 170-185.
[11] Ru Shien TAN, Tuan Amran TUAN ABDULLAH, Anwar JOHARI, Khairuddin MD ISA. Catalytic steam reforming of tar for enhancing hydrogen production from biomass gasification: a review[J]. Front. Energy, 2020, 14(3): 545-569.
[12] Buqing YE, Rui ZHANG, Jin CAO, Bingquan SHI, Xun ZHOU, Dong LIU. Thermodynamic and economic analyses of a coal and biomass indirect coupling power generation system[J]. Front. Energy, 2020, 14(3): 590-606.
[13] Y. YU, Q. W. PAN, L. W. WANG. A small-scale silica gel-water adsorption system for domestic air conditioning and water heating by the recovery of solar energy[J]. Front. Energy, 2020, 14(2): 328-336.
[14] R. LALITHA NARAYANA, V. RAMACHANDRA RAJU. Experimental study on performance of passive and active solar stills in Indian coastal climatic condition[J]. Front. Energy, 2020, 14(1): 105-113.
[15] Ridha CHEIKH, Arezki MENACER, L. CHRIFI-ALAOUI, Said DRID. Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system[J]. Front. Energy, 2020, 14(1): 180-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed